首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A study of the effect of non-linearities in the equation of bone remodeling   总被引:7,自引:0,他引:7  
In this paper, we introduced a high-order non-linear equation of bone remodeling to combine with FEM by introducing two non-linearities, i.e. the remodeling coefficient B(t) and the order of non-linear remodeling equation. The influence of each non-linearity was tested based on its mechanical and physiological implications discussed. We use two finite element models to investigate the influences of non-linearities in this equation: a plate subjected to a ramp load, and a 2D model of the cross-section of a vertebra. By importing the idea of topology optimization in engineering, their external shapes and internal density distributions were simulated from unfixed configurations. To a certain extent, the high-order non-linear equation of bone remodeling we suggested here can control the remodeling processes of bones in different stages of growth or at different anatomic sites more effectively, and make it more consistent with physiological reality, i.e. express the remodeling characteristic that bone's best morphology is adapted to its mechanical environment. Furthermore, it is likely to describe the process of bone growth and evolution.  相似文献   

2.
External remodelling is significant in the bone healing process, and it is essential to predict the bone external shape in the design of artificial bone grafts. This paper demonstrates the effectiveness of the evolutionary structural optimisation (ESO) method for the simulation of bone morphology. A two-dimensional ESO strategy is developed which is capable of finding the modified bone topology beginning with any geometry under any loading conditions. The morphology of bone structure is described by the quantitative bone adaptation theory, which is integrated with the finite element method. The evolutionary topology optimisation process is introduced to find the bone shape. A rectangle, which occupies a larger space than the external shape of the bone structure, is specified as a design domain; the evolutionary process iteratively eliminates and redistributes material throughout the domain to obtain an optimum arrangement of bone materials. The technique has been tested on a wide range of examples. In this paper, the formation of trabecular bone architecture around an implant is studied; as another example, the growth of the coronal section of a vertebral body is predicted. The examples support the assertion that the external shape of bone structure can be successfully predicted by the proposed ESO procedure.  相似文献   

3.
Elucidation of the mechanism by which the shape of bones is formed is essential for understanding vertebrate development. Bones support the body of vertebrates by withstanding external loads, such as those imposed by gravity and muscle tension. Many studies have reported that bone formation varies in response to external loads. An increased external load induces bone synthesis, whereas a decreased external load induces bone resorption. This relationship led to the hypothesis that bone shape adapts to external load. In fact, by simulating this relationship through topology optimization, the internal trabecular structure of bones can be successfully reproduced, thereby facilitating the study of bone diseases. In contrast, there have been few attempts to simulate the external structure of bones, which determines vertebrate morphology. However, the external shape of bones may be reproduced through topology optimization because cells of the same type form both the internal and external structures of bones. Here, we constructed a three-dimensional topology optimization model to attempt the reproduction of the external shape of teleost vertebrae. In teleosts, the internal structure of the vertebral bodies is invariable, exhibiting an hourglass shape, whereas the lateral structure supporting the internal structure differs among species. Based on the anatomical observations, we applied different external loads to the hourglass-shaped part. The simulations produced a variety of three-dimensional structures, some of which exhibited several structural features similar to those of actual teleost vertebrae. In addition, by adjusting the geometric parameters, such as the width of the hourglass shape, we reproduced the variation in the teleost vertebrae shapes. These results suggest that a simulation using topology optimization can successfully reproduce the external shapes of teleost vertebrae. By applying our topology optimization model to various bones of vertebrates, we can understand how the external shape of bones adapts to external loads.  相似文献   

4.
A computational framework was developed to simulate the bone remodelling process as a structural topology optimisation problem. The mathematical formulation of the Level Set technique was extended and then implemented into a coronal plane model of the proximal femur to simulate the remodelling of internal structure and external geometry of bone into the optimal state. Results indicated that the proposed approach could reasonably mimic the major geometrical and material features of the natural bone. Simulation of the internal bone remodelling on the typical gross shape of the proximal femur, resulted in a density distribution pattern with good consistency with that of the natural bone. When both external and internal bone remodelling were simulated simultaneously, the initial rectangular design domain with a regularly distributed mass reduced gradually to an optimal state with external shape and internal structure similar to those of the natural proximal femur.  相似文献   

5.
Jang IG  Kim IY 《Journal of biomechanics》2008,41(11):2353-2361
In the field of bone adaptation, it is believed that the morphology of bone is affected by its mechanical loads, and bone has self-optimizing capability; this phenomenon is well known as Wolff's law of the transformation of bone. In this paper, we simulated trabecular bone adaptation in the human proximal femur using topology optimization and quantitatively investigated the validity of Wolff's law. Topology optimization iteratively distributes material in a design domain producing optimal layout or configuration, and it has been widely and successfully used in many engineering fields. We used a two-dimensional micro-FE model with 50 microm pixel resolution to represent the full trabecular architecture in the proximal femur, and performed topology optimization to study the trabecular morphological changes under three loading cases in daily activities. The simulation results were compared to the actual trabecular architecture in previous experimental studies. We discovered that there are strong similarities in trabecular patterns between the computational results and observed data in the literature. The results showed that the strain energy distribution of the trabecular architecture became more uniform during the optimization; from the viewpoint of structural topology optimization, this bone morphology may be considered as an optimal structure. We also showed that the non-orthogonal intersections were constructed to support daily activity loadings in the sense of optimization, as opposed to Wolff's drawing.  相似文献   

6.
A computational framework was developed to simulate the bone remodelling process as a structural topology optimisation problem. The mathematical formulation of the Level Set technique was extended and then implemented into a coronal plane model of the proximal femur to simulate the remodelling of internal structure and external geometry of bone into the optimal state. Results indicated that the proposed approach could reasonably mimic the major geometrical and material features of the natural bone. Simulation of the internal bone remodelling on the typical gross shape of the proximal femur, resulted in a density distribution pattern with good consistency with that of the natural bone. When both external and internal bone remodelling were simulated simultaneously, the initial rectangular design domain with a regularly distributed mass reduced gradually to an optimal state with external shape and internal structure similar to those of the natural proximal femur.  相似文献   

7.
There are a large number of clinical and experimental studies that analyzed trabecular architecture as a result of bone adaptation. However, only a limited amount of quantitative data is currently available on the progress of trabecular adaptation during growth. In this paper, we proposed a two-step numerical simulation method that predicts trabecular adaptation progress during growth using a recently developed topology optimization algorithm, design space optimization (DSO), under the hypothesis that the mechanisms of DSO are functionally equivalent to those of bone adaptation. We applied the proposed scheme to trabecular adaptation simulation in human proximal femur. For the simulation, the full trabecular architecture in human proximal femur was represented by a two-dimensional μFE model with 50 μm resolution. In Step 1, we determined a reference value that regulates trabecular adaptation in human proximal femur. In Step 2, we simulated trabecular adaptation in human proximal femur during growth with the reference value derived in Step 1. We analyzed the architectural and mechanical properties of trabecular patterns through iterations. From the comparison with experimental data in the literature, we showed that in the early growth stage trabecular adaptation was achieved mainly by increasing bone volume fraction (or trabecular thickness), while in the later stage of the development the trabecular architecture gained higher structural efficiency by increasing structural anisotropy with a relatively low level of bone volume fraction (or trabecular thickness). We demonstrated that the proposed numerical framework predicted the growing progress of trabecular bone that has a close correlation with experimental data.  相似文献   

8.
The stiffness of the external fixation highly influences the fracture healing pattern. In this work we study this aspect by means of a finite element model of a simple transverse mid-diaphyseal fracture of an ovine metatarsus fixed with a bilateral external fixator. In order to simulate the regenerative process, a previously developed mechanobiological model of bone fracture healing was implemented in three dimensions. This model is able to simulate tissue differentiation, bone regeneration, and callus growth. A physiological load of 500 N was applied and three different stiffnesses of the external fixator were simulated (2300, 1725, and 1150 N/mm). The interfragmentary strain and load sharing mechanism between bone and the external fixator were compared to those recorded in previous experimental works. The effects of the stiffness on the callus shape and tissue distributions in the fracture site were also analyzed. We predicted that a lower stiffness of the fixator delays fracture healing and causes a larger callus, in correspondence to well-documented clinical observations.  相似文献   

9.
Reverse engineering is the problem of inferring the structure of a network of interactions between biological variables from a set of observations. In this paper, we propose an optimization algorithm, called MORE, for the reverse engineering of biological networks from time series data. The model inferred by MORE is a sparse system of nonlinear differential equations, complex enough to realistically describe the dynamics of a biological system. MORE tackles separately the discrete component of the problem, the determination of the biological network topology, and the continuous component of the problem, the strength of the interactions. This approach allows us both to enforce system sparsity, by globally constraining the number of edges, and to integrate a priori information about the structure of the underlying interaction network. Experimental results on simulated and real-world networks show that the mixed discrete/continuous optimization approach of MORE significantly outperforms standard continuous optimization and that MORE is competitive with the state of the art in terms of accuracy of the inferred networks.  相似文献   

10.
An often-proposed tissue engineering design hypothesis is that the scaffold should provide a biomimetic mechanical environment for initial function and appropriate remodeling of regenerating tissue while concurrently providing sufficient porosity for cell migration and cell/gene delivery. To provide a systematic study of this hypothesis, the ability to precisely design and manufacture biomaterial scaffolds is needed. Traditional methods for scaffold design and fabrication cannot provide the control over scaffold architecture design to achieve specified properties within fixed limits on porosity. The purpose of this paper was to develop a general design optimization scheme for 3D internal scaffold architecture to match desired elastic properties and porosity simultaneously, by introducing the homogenization-based topology optimization algorithm (also known as general layout optimization). With an initial target for bone tissue engineering, we demonstrate that the method can produce highly porous structures that match human trabecular bone anisotropic stiffness using accepted biomaterials. In addition, we show that anisotropic bone stiffness may be matched with scaffolds of widely different porosity. Finally, we also demonstrate that prototypes of the designed structures can be fabricated using solid free-form fabrication (SFF) techniques.  相似文献   

11.
Heterochrony, evolutionary modifications in the rates and/or the timing of development, is widely recognized as an important agent of evolutionary change. In this paper, we are concerned with the detection of this evolutionary mechanism through the analysis of long bone growth. For this, we provide a function sigma (t) for the ontogenetic variation of bone shape by taking the ratio of two Gompertz curves explaining, respectively, the relative contribution to long bone growth of (a) endochondral ossification and (b) periosteal ossification. The significance of the fitting of this function to empirical data was tested in Anas platyrhynchos (Anseriformes). In this function sigma (t), the time t(m) at which periosteal growth rate first equalizes endochondral growth rate was taken as the timing parameter to be compared between taxa. On the other hand, the maximum rate of ontogenetic change in bone shape (maximum slope, beta) from hatching to t(m) was taken as the rate parameter to be compared. Comparisons of these parameters between the plesiomorphic condition and the derived character state would provide evidence for hypomorphosis (earlier occurrence of t(m)), hyper-morphosis (delayed occurrence of t(m)), deceleration (smaller beta) or acceleration (higher beta).Regarding the phylogenetic context, the ancestral condition for the character of interest should be estimated to polarize the direction of the heterochronic change. We have quantified the influence of the phylogenetic history on the variation of adult bone shape in a sample of 13 species of Anseriformes and 17 species from other neornithine orders of birds by using permutational phylogenetic regressions. Phylogenetic effects are significant, and this fact allows the optimization of bone shape onto a phylogenetic tree of Anseriformes to estimate the ancestral condition for Anas platyrhynchos.  相似文献   

12.
A novel topology optimization model based on homogenization methods was developed for predicting bone density distribution and anisotropy, assuming the bone structure to be a self-optimizing biological material which maximizes its own structural stiffness. The feasibility and efficiency of this method were tested on a 2D model for a proximal femur under single and multiple loading conditions. The main aim was to compute homogenized optimal designs using an optimal laminated microstructure. The computational results showed that high bone density levels are distributed along the diaphysis and form arching struts within the femoral head. The pattern of bone density distribution and the anisotropic bone behavior predicted by the model in the multiple load case were both in good agreement with the structural architecture and bone density distribution occurring in natural femora. This approach provides a novel means of understanding the remodeling processes involved in fracture repair and the treatment of bone diseases.  相似文献   

13.
A novel topology optimization model based on homogenization methods was developed for predicting bone density distribution and anisotropy, assuming the bone structure to be a self-optimizing biological material which maximizes its own structural stiffness. The feasibility and efficiency of this method were tested on a 2D model for a proximal femur under single and multiple loading conditions. The main aim was to compute homogenized optimal designs using an optimal laminated microstructure. The computational results showed that high bone density levels are distributed along the diaphysis and form arching struts within the femoral head. The pattern of bone density distribution and the anisotropic bone behavior predicted by the model in the multiple load case were both in good agreement with the structural architecture and bone density distribution occurring in natural femora. This approach provides a novel means of understanding the remodeling processes involved in fracture repair and the treatment of bone diseases.  相似文献   

14.
In this work, a complete internal-external bone-remodelling scheme is presented and implemented into a finite element code. This model uses a combination of an anisotropic internal remodelling model based on a new Continuum "Damage-Repair" theory and an external adaptation approach that follows the idea, early introduced by Mattheck et al., to simulate the growth behaviour of biological systems, known as CAO method. This combined scheme qualitatively resembles most of the main features of the bone adaptive behaviour, like the bone mass distribution (heterogeneity and porosity), the directional internal structure (anisotropy), the alignment of the microstructure with the constitutive principal directions and these with those of the stress tensor when permanently loaded by a unique stress state (Wolff's law). It is also thermodynamically consistent, fulfilling a principle of minimum mechanical dissipation. Finally, the comparison between the predicted results and the ones obtained by different experimental tests allows us to conclude that this model is able of reproducing qualitatively the global behaviour of bone tissue when subjected to external mechanical loads.  相似文献   

15.
Abstract

In this work, a complete internal-external bone-remodelling scheme is presented and implemented into a finite element code. This model uses a combination of an anisotropic internal remodelling model based on a new Continuum "Damage-Repair" theory and an external adaptation approach that follows the idea, early introduced by Mattheck et ah, to simulate the growth behaviour of biological systems, known as CAO method. This combined scheme qualitatively resembles most of the main features of the bone adaptive behaviour, like the bone mass distribution (heterogeneity and porosity), the directional internal structure (anisotropy), the alignment of the microstructure with the constitutive principal directions and these with those of the stress tensor when permanently loaded by a unique stress state (WolfFs law). It is also thermodynamically consistent, fulfilling a principle of minimum mechanical dissipation. Finally, the comparison between the predicted results and the ones obtained by different experimental tests allows us to conclude that this model is able of reproducing qualitatively the global behaviour of bone tissue when subjected to external mechanical loads.  相似文献   

16.
Complexity of scaffold geometries and biological mechanisms involved in the bone generation process make the design of scaffolds a quite challenging task. The most common approaches utilized in bone tissue engineering require costly protocols and time-consuming experiments. In this study we present an algorithm that, combining parametric finite element models of scaffolds with numerical optimization methods and a computational mechano-regulation model, is able to predict the optimal scaffold microstructure. The scaffold geometrical parameters are perturbed until the best geometry that allows the largest amounts of bone to be generated, is reached. We study the effects of the following factors: (1) the shape of the pores; (2) their spatial distribution; (3) the number of pores per unit area. The optimal dimensions of the pores have been determined for different values of scaffold Young''s modulus and compression loading acting on the scaffold upper surface.Pores with rectangular section were predicted to lead to the formation of larger amounts of bone compared to square section pores; similarly, elliptic pores were predicted to allow the generation of greater amounts of bone compared to circular pores. The number of pores per unit area appears to have rather negligible effects on the bone regeneration process. Finally, the algorithm predicts that for increasing loads, increasing values of the scaffold Young''s modulus are preferable.The results shown in the article represent a proof-of-principle demonstration of the possibility to optimize the scaffold microstructure geometry based on mechanobiological criteria.  相似文献   

17.
Probabilistic analyses allow the effect of uncertainty in system parameters on predicted model performance measures to be determined. Furthermore, using performance functions to describe a failure event, the probability of failure can be quantified. The effect of three-dimensional prosthesis shape optimization on the probabilistic response and failure probability of a cemented hip prosthesis system is investigated. Random variables include joint and muscle loading, cortical and cancellous bone and PMMA bone cement elastic properties, and strength parameters describing failure of the bone cement and the prosthesis-bone cement interface. Several performance functions describing the bone cement and prosthesis-cement interface are used to compute the probability of failure. When evaluated deterministically, most performance functions indicated a safe design, with the exception of interface tensile failure. However, when evaluated probabilistically, finite probabilities of failure were computed, some significant. The most likely mode of failure before shape optimization was prosthesis-bone cement interface tensile failure with a predicted probability of failure of 97.9%. Deterministic prosthesis shape optimization reduced the probability of failure for all performance functions and reduced prosthesis-bone cement interface tensile failure by 31.7%. Probability sensitivity factors indicate that the uncertainty in the joint loading, cement strength, and implant-cement interface strength have the greatest effect on the computed probability of failure. Implant shape optimization results in a more robust implant design that is less sensitive to uncertainties in joint loading, which cannot be easily controlled, and more sensitive to cement and interface properties, which are easier to modify.  相似文献   

18.
The law of bone remodeling, commonly referred to as Wolff's Law, asserts that the internal trabecular bone adapts to external loadings, reorienting with the principal stress trajectories to maximize mechanical efficiency creating a naturally optimum structure. The goal of the current study was to utilize an advanced structural optimization algorithm, called design space optimization (DSO), to perform a micro-level three-dimensional finite element bone remodeling simulation on the human proximal femur and analyse the results to determine the validity of Wolff's hypothesis. DSO optimizes the layout of material by iteratively distributing it into the areas of highest loading, while simultaneously changing the design domain to increase computational efficiency. The result is a "fully stressed" structure with minimized compliance and increased stiffness. The large-scale computational simulation utilized a 175 μm mesh resolution and the routine daily loading activities of walking and stair climbing. The resulting anisotropic trabecular architecture was compared to both Wolff's trajectory hypothesis and natural femur samples from literature using a variety of visualization techniques, including radiography and computed tomography (CT). The results qualitatively revealed several anisotropic trabecular regions, that were comparable to the natural human femurs. Quantitatively, the various regional bone volume fractions from the computational results were consistent with quantitative CT analyses. The global strain energy proceeded to become more uniform during optimization; implying increased mechanical efficiency was achieved. The realistic simulated trabecular geometry suggests that the DSO method can accurately predict bone adaptation due to mechanical loading and that the proximal femur is an optimum structure as the Wolff hypothesized.  相似文献   

19.
Innovations in micro-computed tomography (microCT) in the medical field have resulted in the development of techniques that allow the precise quantification of bone density and fabric related parameters of trabecular bone. For the purpose of this study, the technique was applied to a small sample of Perodicticus potto and Galago senegalensis femora to see if differences in loading environment elicit the predicted effects on trabecular structure. While the overall bone volume was approximately three times larger in the potto, there was no significant difference in the apparent volume density in the two taxa. When regional differences in the proximal femur were examined, the cancellous bone of the femoral head of Perodicticus potto and Galago senegalensis, while not differing in volume density, showed differences in trabecular orientation, with the potto having more randomly oriented trabeculae than the bushbaby. This was as hypothesized, given that the bushbaby submits its femora to more stereotypical loading environments than the potto. In the femoral neck, the cancellous bone was not only more randomly oriented, it was also denser in the potto compared with the bushbaby. This suggests that trabecular morphology may be extremely sensitive to certain differences in the loading environment and that this information, combined with information on cortical bone structure and external geometry, will result in a more complete understanding of how bone shape and composition correspond to loading and locomotor patterns. Ultimately, a synthesis of these different lines of evidence may have considerable applications in paleontological studies that attempt to reconstruct bone use from morphology.  相似文献   

20.
It is proposed that the external asymmetric formation of callus tissues that forms naturally about an oblique bone fracture can be predicted computationally. We present an analysis of callus formation for two cases of bone fracture healing: idealised and subject-specific oblique bone fractures. Plane strain finite element (FE) models of the oblique fractures were generated to calculate the compressive strain field experienced by the immature callus tissues due to interfragmentary motion. The external formations of the calluses were phenomenologically simulated using an optimisation style algorithm that iteratively removes tissue that experiences low strains from a large domain. The resultant simulated spatial formation of the healing tissues for the two bone fracture cases showed that the calluses tended to form at an angle equivalent to the angle of the oblique fracture line. The computational results qualitatively correlated with the callus formations found in vivo. Consequently, the proposed methods show potential as a means of predicting callus formation in pre-clinical testing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号