首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The influence of 90 h of acute nutritional deprivation (ND) on the cross-sectional areas of muscle fibers and the contractile and fatigue properties of the adult rat diaphragm were determined. Isometric contractile properties and fatigue resistance of the diaphragm were measured by means of an in vitro nerve-muscle strip preparation. Contractions were evoked by using phrenic nerve stimulation (left hemidiaphragm) or direct muscle stimulation (right hemidiaphragm) in the presence of curare. Acute ND resulted in a 20% reduction in body weight. No significant decrements in diaphragm or soleus weights were noted in the ND animals compared with controls (CTL), whereas the weight of the medial gastrocnemius was reduced by 20% in the ND animals. Peak twitch and tetanic tensions (normalized for the weight of the diaphragm strip) were not reduced in ND compared with CTL animals after either nerve or muscle stimulation. The fatigue index of the diaphragm was significantly reduced in ND animals only after nerve stimulation. After the fatigue test, there was rapid recovery of the additional fatigue noted with nerve stimulation. The proportions of type I and II muscle fibers of the diaphragm were similar in the CTL and ND animals. No differences in diaphragm cross-sectional areas were noted for either type I or II muscle fibers in the CTL and ND animals. It is concluded that acute ND has no effect on diaphragm contractility or morphometry and only an inconsequential influence on diaphragm fatigue.  相似文献   

2.
The influence of prolonged nutritional deprivation on the succinate dehydrogenase (SDH) activity and cross-sectional areas of individual fibers in the rat diaphragm and deep portion of the medial gastrocnemius (MGr) muscles was determined. Fatigue resistance of the diaphragm was measured by means of an in vitro nerve-muscle strip preparation. Fiber SDH activity and cross-sectional area were quantified by means of an image processing system. Diaphragm fatigue resistance was significantly improved in the nutritionally deprived (ND) group. In both muscles, nutritional deprivation resulted in a significant decrease in fiber cross-sectional area (both type I and II), type II fibers showing greater atrophy. The SDH activities of type I and II fibers in the diaphragm were not affected by nutritional deprivation. This contrasted with a significant decrease in the SDH activity of both type I and II fibers in the MGr of ND animals. An assessment of the interrelationships between fiber atrophy and fiber SDH activity revealed a greater effect of malnutrition on those diaphragm type II fibers that had the lowest relative SDH activities and the largest cross-sectional areas. By comparison, the effect of malnutrition on type I and II fibers in the MGr was nonselective with regard to fiber SDH activity. We conclude that the enhanced diaphragm fatigue resistance in the ND animals does not result from an increase in the oxidative capacity of muscle fibers and is best explained by the pattern of diaphragm muscle fiber atrophy.  相似文献   

3.
The influence of 90 h of acute nutritional deprivation (ND; water ad libitum only) on in vitro contractile and fatigue properties, muscle fiber type proportions, and cross-sectional areas (CSA) of the adolescent rat diaphragm was determined. Diaphragm muscle properties in the ND rats were compared with those in control rats (CTL; food and water ad libitum). Acute ND resulted in a 32% reduction in body mass, whereas the body mass of CTL rats increased by 29%. Acute ND resulted in a significant reduction in the mass of the diaphragm (costal, 36%; crural, 43%), soleus (36%), and medial gastrocnemius (45%) muscles. Isometric twitch characteristics of the diaphragm muscle (contraction and half-relaxation times) were prolonged in the ND animals. Peak twitch and maximum tetanic forces were unaffected by ND. Fatigue resistance of the diaphragm muscle was improved in ND animals. Diaphragm muscle fiber type proportions were similar in ND and CTL groups. The CSA of type I and II diaphragm muscle fibers were reduced by 22 and 40%, respectively, in ND animals compared with CTL. We conclude that, whereas an identical protocol of acute ND had no significant effects on diaphragm muscle structure and function in adult rats, adolescent animals exhibit significantly less nutritional reserve. These differences may be due to curtailment of the rapid anabolic rate in growing animals.  相似文献   

4.
Adaptations of the diaphragm in emphysema.   总被引:3,自引:0,他引:3  
In adult male hamsters the influence of emphysema (EMP) on the in vitro contractile and fatigue properties and the histochemical, morphometric, and metabolic properties of muscle fibers in the costal diaphragm was determined 6 mo after the administration of either elastase or saline (controls, CTL). Isometric contractile properties were determined in vitro using supramaximal direct muscle stimulation. Optimal fiber length for force generation was significantly shorter in the EMP than in the CTL diaphragm. Maximum specific force (i.e., force per unit area) was 25% lower than CTL. Fatigue resistance was significantly improved in the EMP diaphragm compared with CTL. Diaphragm muscle fibers were classified as type I or II on the basis of histochemical staining for myofibrillar adenosinetriphosphatase after alkaline preincubation. The proportions of type I and II fibers were similar between the two groups. Cross-sectional areas of type II fibers were 30% larger in EMP than in CTL diaphragms. Succinate dehydrogenase activities of both type I and II fibers were higher in EMP than in CTL diaphragms. The number of capillaries surrounding both type I and II fibers increased with EMP, but in proportion to the hypertrophy of these fibers. Thus, capillary density (number of capillaries per fiber cross-sectional area) remained unchanged. We postulate that these contractile, morphometric, and metabolic adaptations reflect an increased activation of the diaphragm in response to the loads imposed by EMP.  相似文献   

5.
Oxidative capacity and capillary density of diaphragm motor units   总被引:2,自引:0,他引:2  
Motor units in the cat diaphragm (DIA) were isolated in situ by microdissection and stimulation of C5 ventral root filaments. Motor units were classified based on their isometric contractile force responses and fatigue indexes (FI). The muscle fibers belonging to individual units (i.e., the muscle unit) were identified using the glycogen-depletion method. Fibers were classified as type I or II based on histochemical staining for myofibrillar adenosine triphosphatase (ATPase) after alkaline preincubation. The rate of succinate dehydrogenase (SDH) activity of each fiber was determined using a microphotometric procedure. The location of capillaries was determined from muscle cross sections stained for ATPase after acid (pH = 4.2) preincubation. The capillarity of muscle unit fibers was determined by counting the number of capillaries surrounding fibers and by calculating the number of capillaries per fiber area. A significant correlation was found between the fatigue resistance of DIA units and the mean SDH activity of muscle unit fibers. A significant correlation was also observed between DIA unit fatigue resistance and both indexes of muscle unit fiber capillarity. The mean SDH activity and mean capillary density of muscle unit fibers were also correlated. We conclude that DIA motor unit fatigue resistance depends, at least in part, on the oxidative capacity and capillary density of muscle unit fibers.  相似文献   

6.
Tumor necrosis factor (TNF)-alpha has been implicated in several muscle-wasting disorders, with increased levels of the cytokine reported in malnourished children. The role of TNF-alpha in mediating malnutrition-induced inhibition of diaphragm (DIA) muscle growth in young growing rats was evaluated. Three groups of rats were studied: 1) control (CTL); 2) nutritional deprivation (ND; 50% of normal food intake for 7 days); and 3) ND + rat specific anti-TNF-alpha antibody. DIA fiber cross-sectional areas were determined. Serum and muscle TNF-alpha levels were measured by real-time PCR, ELISA, and immunohistochemistry. Body weights decreased 20% in ND rats and increased 46% in CTL animals. Anti-TNF-alpha had no effect on body weight or on DIA mass in ND animals. ND significantly reduced cross-sectional areas of all fiber types (33-46%). Anti-TNF-alpha failed to attenuate ND-induced inhibition of DIA fiber growth. Serum TNF-alpha levels increased 2.6-fold in ND animals, with levels suppressed to below CTL values with anti-TNF-alpha. DIA TNF-alpha mRNA and protein levels increased two- to threefold in ND rats. Anti-TNF-alpha antibodies suppressed muscle levels of the cytokine in ND animals to near CTL values. TNF-alpha immunoreactivity in all DIA fibers revealed similar directions of change in both ND groups. Direction and magnitude of change in DIA phosphorylated p38 MAPK (a likely second messenger of TNF-alpha) tracked those of TNF-alpha. Muscle levels of IGF-I mRNA and phosphorylated Akt were markedly reduced in ND animals with no change following anti-TNF-alpha therapy. Thus rat anti-TNF-alpha at a dose known to neutralize the cytokine failed to attenuate or reverse ND-induced inhibition of DIA fiber growth in our model.  相似文献   

7.
The impact of a targeted disruption of the Igf1 gene, encoding the insulin-like growth factor I (IGF-I), on diaphragm (DIA) cellularity was studied in 2-mo-old homozygous mutant [IGF-I(-/-)] mice and their wild-type [WT; i.e., IGF-I(+/+)] littermates. DIA fiber types were classified histochemically. DIA fiber cross-sectional areas (CSA) were determined from digitized muscle sections, and fiber succinate dehydrogenase (SDH) activity was determined histochemically using a microdensitometric procedure. An acidic ATPase reaction was used to visualize capillaries. Myosin heavy chain (MyHC) isoforms were identified by SDS-PAGE, and their proportions were determined by scanning densitometry. The body weight of IGF-I(-/-) animals was 32% that of WT littermates. DIA fiber type proportions were unchanged between the groups. The CSAs of types I, IIa, and IIx DIA fibers of IGF-I(-/-) mutants were 63, 68, and 65%, respectively, those of WT animals (P < 0.001). The DIA thickness and the number of fibers spanning its entire thickness were reduced by 36 and 25%, respectively, in IGF-I(-/-) mice (P < 0. 001). SDH activity was significantly increased in all three types of DIA fibers of IGF-I(-/-) mutants (P < 0.05). The number of capillaries per fiber was reduced approximately 30% in IGF-I(-/-) animals, whereas the capillary density was preserved. The proportions of MyHC isoforms were similar between the groups. Muscle hypoplasia likely reflects the importance of IGF-I on cell proliferation, differentiation, and apoptosis (alone or in combination) during development, although reduced cell size highlights the importance of IGF-I on rate and/or maintenance of DIA fiber growth in the postnatal state. Reduced capillarity may result from both direct and indirect influences on angiogenesis. Improved oxidative capacity likely reflects DIA compensatory mechanisms in IGF-I(-/-) mutants.  相似文献   

8.
Adaptations of diaphragm and medial gastrocnemius muscles to inactivity.   总被引:2,自引:0,他引:2  
The effects of 2 wk of inactivity on in vitro contractile properties of diaphragm and medial gastrocnemius (MG) muscles were examined in adult hamsters. In addition, inactivity effects on fiber-type proportions and cross-sectional areas were studied. Inactivity of the right hemidiaphragm or MG muscle was induced by either tetrodotoxin (TTX) blockade of nerve impulses or denervation (DNV). Inactivity effects on diaphragm or MG were compared with corresponding sham (saline-treated or untreated control) muscles. After both TTX- and DNV-induced inactivity, isometric twitch contraction and half-relaxation times were prolonged, maximum tetanic force decreased, and fatigue resistance improved. Proportions of type I and II fibers in both diaphragm and MG were unaffected by TTX- and DNV-induced inactivity. However, in both muscles, type I fibers hypertrophied, whereas type II fibers atrophied. In diaphragm, contractile and morphometric adaptations after DNV were generally more pronounced than those induced by TTX. In addition, compared with corresponding untreated or saline-treated control groups, inactivity effects (both TTX and DNV) on MG were generally greater than those induced in diaphragm, with the exception of hypertrophy of type I fibers. We conclude that inactivity exerts differential effects on type I and II fibers in both diaphragm and MG. Yet, these morphometric adaptations cannot completely account for the adaptations in muscle contractile and fatigue properties after inactivity.  相似文献   

9.
The present study examined the fiber-type proportions of 22 muscles spanning the shoulder and/or elbow joints of three Macaca mulatta. Fibers were classified as one of three types: fast-glycolytic (FG), fast-oxidative-glycolytic (FOG), or slow-oxidative (SO). In most muscles, the FG fibers predominated, but proportions ranged from 25-67% in different muscles. SO fibers were less abundant except in a few deep, small muscles where they comprised as much as 56% of the fibers. Cross-sectional area (CSA) of the three fiber types was measured in six different muscles. FG fibers tended to be the largest, whereas SO fibers were the smallest. While fiber-type size was not always consistent between muscles, the relative size of FG fibers was generally larger than FOG and SO fibers within the same muscle. When fiber CSA was taken into consideration, FG fibers were found to comprise over 50% of the muscle's CSA in almost all muscles.  相似文献   

10.
The aim was to investigate determinants of ankle dorsiflexor muscle (DF) strength and size in moderately active young men and women (n = 30; age 20-31 yr). Concentric (Con) and eccentric (Ecc) strength were measured isokinetically. Magnetic resonance imaging was used to determine the muscle cross-sectional area (CSA). Multiple biopsies were obtained from the tibialis anterior muscle to determine total numbers, areas (Area I and II) and proportions (Prop I and II) of type I and II fibers, respectively, and relative contents of myosin heavy chain (MHC) isoforms MHC1, MHC2a, and MHC2x. Women had lower Con and Ecc strength (24 and 27%; P < 0.01), smaller CSA (19%; P < 0.001), lower Ecc DF specific strength (strength/CSA) (10%; P < 0.01), and smaller Area I and Area II (21 and 31%; P < 0.01) than men. Prop I, MHC1, estimated total number of fibers, and Con DF specific strength were similar for both sexes. Con DF strength was up to 72% determined by CSA and Prop I, and Ecc DF strength was up to 81% determined by CSA, Prop I, and sex; variables other than CSA explained at most 9%. Body weight and fiber areas explained >50% of the variation in CSA. In conclusion, CSA was the predominant determinant of DF strength, CSA was to a great extent determined by the body weight and the sizes of muscle fibers, and sex differences in Ecc specific strength require further study.  相似文献   

11.
To investigate relationships between pituitary function and gender on skeletal muscle growth and hypertrophy, fiber cross sectional area (CSA) and type were assessed in the plantaris muscle of normal and dwarf (Dw) male and female Lewis rats after 6 weeks of functional overload (FO). Serum growth hormone levels were 70-80% less in Dw rats of both genders, and body mass was 62% greater in normal rats when compared to their Dw counterparts. Muscle weight was affected by gender, dwarfism, and FO as well as a significant gender*Dw*FO interaction. FO increased Type I, IIA, and IIX/B fiber CSA 120%, 102%, and 75%, respectively. Only type 1H fibers exhibited a reduction in CSA as a function of gender or dwarfism. Both type IIA and IIX/B fibers were affected by a significant gender*Dw*FO interaction. Our results suggest that the growth of type II fibers is sensitive to gender and pituitary function, while hypertrophy of type II muscle fibers is a function of the interaction between mechanical load, gender, and pituitary function.  相似文献   

12.
The scalene has been reported to be an accessory inspiratory muscle in the hamster. We hypothesize that with the chronic loads and/or dynamic hyperinflation associated with emphysema (Emp), the scalene will be actively recruited, resulting in functional, cellular, and biochemical adaptations. Emp was induced in adult hamsters. Inspiratory electromyogram (EMG) activity was recorded from the medial scalene and costal diaphragm. Isometric contractile and fatigue properties were evaluated in vitro. Muscle fibers were classified histochemically and immunohistochemically. Individual fiber cross-sectional areas (CSA) and succinate dehydrogenase (SDH) activities were determined quantitatively. Myosin heavy chain (MHC) isoforms were identified by SDS-PAGE, and their proportions were determined by scanning densitometry. All Emp animals exhibited spontaneous scalene inspiratory EMG activity during quiet breathing, whereas the scalene muscles of controls (Ctl) were silent. There were no differences in contractile and fatigue properties of the scalene between Ctl and Emp. In Emp, the relative amount of MHC(2A) was 15% higher whereas that of MHC(2X) was 14% lower compared with Ctl. Similarly, the proportion of type IIa fibers increased significantly in Emp animals with a concomitant decrease in IIx fibers. CSA of type IIx fibers were significantly smaller in Emp compared with Ctl. SDH activities of all fiber types were significantly increased by 53 to 63% in Emp. We conclude that with Emp the actively recruited scalene exhibits primary-like inspiratory activity in the hamster. Adaptations of the scalene with Emp likely relate both to increased loads and to factors intrinsic to muscle architecture and chest mechanics.  相似文献   

13.
Muscle weakness and effort intolerance are common in maintenance hemodialysis (MHD) patients. This study characterized morphometric, histochemical, and biochemical properties of limb muscle in MHD patients compared with controls (CTL) with similar age, gender, and ethnicity. Vastus lateralis muscle biopsies were obtained from 60 MHD patients, 1 day after dialysis, and from 21 CTL. Muscle fiber types and capillaries were identified immunohistochemically. Individual muscle fiber cross-sectional areas (CSA) were quantified. Individual fiber oxidative capacities were determined (microdensitometric assay) to measure succinate dehydrogenase (SDH) activity. Mean CSAs of type I, IIA, and IIX fibers were 33, 26, and 28% larger in MHD patients compared with CTL. SDH activities for type I, IIA, and IIX fibers were reduced by 29, 40, and 47%, respectively, in MHD. Capillary to fiber ratio was increased by 11% in MHD. The number of capillaries surrounding individual fiber types were also increased (type I: 9%; IIA: 10%; IIX: 23%) in MHD patients. However, capillary density (capillaries per unit muscle fiber area) was reduced by 34% in MHD patients, compared with CTL. Ultrastuctural analysis revealed swollen mitochondria with dense matrix in MHD patients. These results highlight impaired oxidative capacity and capillarity in MHD patients. This would be expected to impair energy production as well as substrate and oxygen delivery and exchange and contribute to exercise intolerance. The enlarged CSA of muscle fibers may, in part, be accounted for by edema. We speculate that these changes contribute to reduce limb strength in MHD patients by reducing specific force.  相似文献   

14.
The influence of nutritional deprivation on the contractile and fatigue properties of the diaphragm was studied in adult rats. Food access was restricted to one-third of normal daily intake until the body weight of nutritionally deprived (ND) animals was approximately 50% of controls (CTL). Isometric contractile properties were studied in an in vitro nerve muscle strip preparation. Both twitch (Pt) and tetanic (Po) tensions of diaphragms from the ND animals were markedly reduced compared with CTL; however, Pt/Po was higher for the ND group. The shape of the force-frequency curve (normalized to Po) was generally similar between the two groups, except at 5 and 10 pulses/s stimulation, where greater relative tensions were produced in diaphragms from the ND animals. Diaphragm fatigue was induced by repetitive stimulation at either 20 or 100 pulses/s. Endurance time (defined as the time required for tension to fall to 50% of initial) of diaphragms from ND animals was prolonged at both 20 and 100 pulses/s. Immediately after induction of fatigue, force-frequency curves for both ND and CTL diaphragms were shifted to the right. However, this rightward shift was attenuated in the ND group compared with CTL. Nutritional deprivation had no effect on the proportions of different fiber types within the diaphragm but did result in a significant decrease in the cross-sectional area of both fast-and slow-twitch fibers. This decrease in cross-sectional area was significantly greater for fast-twitch fibers. We conclude that these changes in diaphragm contractile and fatigue properties occur as a result of the influence of malnutrition on muscle fiber cross-sectional area.  相似文献   

15.
This study was conducted to determine whether the pedaling frequency of cycling at a constant metabolic cost contributes to the pattern of fiber-type glycogen depletion. On 2 separate days, eight men cycled for 30 min at approximately 85% of individual aerobic capacity at pedaling frequencies of either 50 or 100 rev.min-1. Muscle biopsy samples (vastus lateralis) were taken immediately prior to and after exercise. Individual fibers were classified as type I (slow twitch), or type II (fast twitch), using a myosin adenosine triphosphatase stain, and their glycogen content immediately prior to and after exercise quantified via microphotometry of periodic acid-Schiff stain. The 30-min exercise bout resulted in a 46% decrease in the mean optical density (D) of type I fibers during the 50 rev.min-1 condition [0.52 (0.07) to 0.28 (0.04) D units; mean (SEM)] which was not different (P > 0.05) from the 35% decrease during the 100 rev.min-1 condition [0.48 (0.04) to 0.31 (0.05) D units]. In contrast, the mean D in type II fibers decreased 49% during the 50 rev.min-1 condition [0.53 (0.06) to 0.27 (0.04) units]. This decrease was greater (P < 0.05) than the 33% decrease observed in the 100 rev.min-1 condition [0.48 (0.04) to 0.32 (0.06) units). In conclusion, cycling at the same metabolic cost at 50 rather than 100 rev.min-1 results in greater type II fiber glycogen depletion. This is attributed to the increased muscle force required to meet the higher resistance per cycle at the lower pedal frequency.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Tne anatomy of the human trapezius muscle is complex, with an extensive origin and fibers running in different directions. The muscle is commonly divided into three different muscle portions according to the fiber direction: the descending, transverse, and ascending portions. In a previous study in males, the structure of the muscle differed between different portions with respect to the enzyme-histochemical fiber-type profile. The lower regions of the descending portion and the transverse and the ascending portions had a predominance of type I fibers. The type II fibers were more frequent in the upper regions of the descending portion, and the cross-sectional fiber area in this region of the muscle was smaller. In this study, we have investigated the trapezius muscle in females and compared the results with those from males. The different portions of the female muscle had a relatively even fiber-type composition. However, there tended to be fewer type I fibers and more type IIB fibers in the descending portion of the muscle, and the fibers of the lower regions of the descending portion were somewhat larger. The fiber-type distribution pattern was similar to that of the male trapezius muscle, but the mean cross-sectional area of the fibers in the female muscle was considerably smaller. Thus, our conclusion is that the trapezius muscle of females has a similar activity pattern as that of males. The significantly smaller cross-sectional fiber area, however, may indicate a lower functional capacity which may be of importance in the development of neck and shoulder dysfunction in females.  相似文献   

17.
Histochemical (M-ATPase) fiber typing was done on extensor digitorum longus, (EDL), soleus (SOL), and diaphragm (DIA) muscles of barrier-reared Fisher 344 rats obtained at four different ages (3, 9, 28, and 30 months) from the colonies of the National Institute of Aging. In the EDL there are no differences in the percent of type I fibers among the four age groups. The percent of type IIa and IIb fibers also showed no difference between the 3 and 30 month age groups. There was no apparent trend for an increase or decrease in the percent of type IIa or IIb fibers between the four age groups. In both the SOL and DIA muscles the percent of type I fibers was greater in the aged than in the young groups. The percent of type IIa fibers was lower in the 30 month group than in the younger groups for both muscles. The percent of type IIb (DIA) and IIc (SOL) fibers did not change between groups. Total fiber number per cross section of muscle showed no change in the EDL over this age range or in the SOL after 9 months of age. These findings bring into question published results that imply that decreasing fiber number and preferential loss of type II (a and b) fibers are typical aging phenomena.  相似文献   

18.
Fiber-type composition and several stereological parameters of the levator ani (pubocaudal) muscle were evaluated in five nulliparous and five multiparous beagles using myosin ATPase-histochemistry and systematically selected muscle cross-sections. With respect to the narrow canine pelvic cavity, this study was also undertaken to determine whether vaginal birth of at least seven litters causes similar neuromuscular changes in the canine levator ani (pubocaudal) muscle analoguous to those seen in the pelvic floor muscles of women after vaginal delivery. The canine pubocaudal muscle is comprised of approximately equal amounts of slow twitch type I and fast twitch type II (IIA, IIS) fibers. The muscles of both the nulliparous and multiparous beagles did not display any signs indicative of denervation or myopathology. The multiparous dogs exhibited significantly increased mean absolute muscle (1720 mm(3)) and total fiber-type I volumes (850 mm(3)) as well as relevantly increased mean diameter of type I fibers (72.0 microm) when compared with the nulliparous group. The canine levator ani (pubocaudal) muscle is not pathologically affected by vaginal deliveries and seems to adapt to numerous successive pregnancies and births through fiber-type I hypertrophy.  相似文献   

19.
Endurance exercise training promotes a small but significant increase in antioxidant enzyme activity in the costal diaphragm (DIA) of rodents. It is unclear if these training-induced improvements in muscle antioxidant capacity are large enough to reduce oxidative stress during prolonged contractile activity. To test the hypothesis that training-related increases in DIA antioxidant capacity reduces contraction-induced lipid peroxidation, we exercise trained adult female Sprague-Dawley (n = 7) rats on a motor-driven treadmill for 12 weeks at approximately 75% maximal O2 consumption (90 min/day). Control animals (n = 8) remained sedentary during the same 12-week period. After training, DIA strips from animals in both experimental groups were excised and subjected to an in vitro fatigue contractile protocol in which the muscle was stimulated for 60 min at a frequency of 30 Hz, every 2 s, with a train duration of 330 m. Compared to the controls, endurance training resulted in an increase (P < 0.05) in diaphragmatic non-protein thiols and in the activity of the antioxidant enzyme superoxide dismutase. Following the contractile protocol, lipid peroxidation was significantly lower (P < 0.05) in the trained DIA compared to the controls. These data support the hypothesis that endurance exercise training-induced increases in DIA antioxidant capacity protect the muscle against contractile-related oxidative stress.  相似文献   

20.
Heart failure (HF) is characterized by a reduced tolerance to exercise due to early fatigue and dyspnea; this may be due in part to skeletal muscle myopathy with a shift from slow to fast fibers and loss of muscle mass. Muscle wasting does not occur similarly in all types of muscle fiber, thus we tested the hypothesis that HF induces skeletal muscle atrophy in a fiber type-specific manner altering the expression of atrogin-1 and MuRF1 in a fast muscle of rats with monocrotaline-induced heart failure. We studied extensor digitorum longus (EDL) muscle from both HF and control Wistar rats. Atrogin-1 and MuRF1 mRNA content were determined using Real-Time RT-qPCR while muscle fiber cross-sectional area (CSA) from sections stained histochemically for myofibrillar ATPase were used as an index of type-specific fiber atrophy. The measurement of gene expression by RT-qPCR revealed that EDL muscle mRNA expression of MuRF1 and atrogin-1 was significantly increased in the HF group. Muscle fiber type IIB CSA decreased in the HF group compared to the CT group; there was no significant difference in muscle fiber types I and IIA/D CSA between the HF and CT groups. In conclusion, we showed that HF induces fiber type IIB specific atrophy, up-regulating atrogin-1 and MuRF1 mRNA expression in EDL muscle of monocrotaline treated rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号