首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The binding to DNA of a mixed function ligand (NETGA) is described, in which a potential intercalating group, an acridine moiety, is incorporated at the carboxyl terminus of the minor groove binding oligopeptide netropsin skeleton. Scatchard analysis of absorption data provided evidence of two modes of binding to DNA with K1 = 9.1 x 10(5) M-1 at low r values (0.003-0.1), and a binding site size n = 10, indicative of binding of both moeities. At high binding ratios (greater than 0.1), K2 = 0.9 x 10(5) M-1 and n = 5 corresponding to external binding. Complementary strand MPE footprinting on a pBR322 restriction fragment showed NETGA binds to 5'-AAAT like netropsin. It causes enhanced cleavage by MPE, particularly at G-C rich sequences and remote from the preferred binding sites. Viscometry measurements provided evidence for biphasic modes of the two binding portions of NETGA. Fluorescence polarization and linear dichroism measurements were in accord with distinct modes of interaction of the acridine (intercalation) and oligopeptide (minor groove binding) portions of NETGA. LD measurements on NETGA indicate that the oligopeptide moiety (netropsin-like) has an orientation typical of minor groove binders, whereas the degree of intercalation of the acridine group is decreased by association of the oligopeptide moiety.  相似文献   

2.
Fluorescence and circular dichroism spectral measurements, thermal denaturation studies and binding competition experiments with netropsin and actinomycin D were carried out in systems containing phenosafranine bound to DNA's differing in base composition. The investigated properties exhibit a heterogeneity related to the content of A.T and G.C pairs in DNA and to the nature of phenosafranine binding modes. At low level of saturation of binding sites (r less than 0.1) phenosafranine does not show strong preference for any of the DNA base pairs in the overall binding. However, the strong monomer non-cooperative binding outside the helix (mode I1) occurs predominantly, even though not exclusively in G.C rich regions. The strong binding modes involving intercalated dye molecules (mode I2 and eventually mode II1) prevail in A.T rich regions. These binding modes become the principal types of strong phenosafranine interaction with DNA when the level of saturation of binding sites increases, i.e. at r greater than 0.1.20  相似文献   

3.
The interaction of the oligopeptide antibiotic netropsin (Nt) with (A . T) regions of DNA is characterized by a spectrum of discrete modes. This has been revealed by viscometric analysis, at 20 degrees C and 0.2 M "counterions", for NaDNA in a preceding and for NH4DNA in this paper. The increase of DNA contour length as induced by one Nt molecule was found to depend on the special mode only, while the respective stiffening is generally higher for NH4DNA. The latter property is interpreted in terms of an enhanced flexibility, relative to that of NaDNA, of the (A . T) cluster segments before complex formation. For some of the interaction modes of the DNA-Nt systems a difference in the number of corresponding binding sites has been observed. This phenomenon is understood by assuming an influence of the counterion species upon existing equilibria between different forms of the (A . T) cluster secondary structure. Not less than 5 to 10% of the total DNA are effected in this manner. Upper limits for the local differences in the axial rise per base pair are 0.04 nm and 0.02 nm.  相似文献   

4.
Interaction of netropsin, distamycin A and a number of bis-netropsins with DNA fragments of definite nucleotide sequence was studied by footprinting technique. The nuclease protection experiments were made at fixed DNA concentration and varying ligand concentrations. The affinity of ligand for a DNA site was estimated from measurements of ligand concentration that causes 50% protection of the DNA site. Distribution pattern of the protected and unprotected regions along the DNA fragment was compared with the theoretically expected arrangement of the ligand along the same DNA. The comparison led us to the following conclusions: 1. Footprinting experiments show that at high levels of binding the arrangement of netropsin molecules along the DNA corresponds closely to the distribution pattern expected from theoretical calculations based on the known geometry of netropsin--DNA complex. However, the observed differences in the affinity of netropsin for various DNA sequences is markedly greater than that expected from theoretical calculations. 2. Netropsin exhibits a greater selectivity of binding than that expected for a ligand with three specific reaction centers associated with the antibiotic amide groups. It binds preferentially to DNA regions containing four or more successive AT pairs. Among 13 putative binding sites for netropsin with four or more successive AT pairs there are 11 strong binding sites and two weaker sites which are occupied at 2 D/P less than or equal to 1/9 and 2 D/P = 1/4, respectively. 3. The extent of specificity manifested by distamycin A is comparable to that shown by netropsin although the molecule of distamycin A contains four rather than three amide groups. At high levels of binding distamycin A occupies the same binding sites on DNA as netropsin does. 4. The binding specificity of bis-netropsins is greater than that of netropsin. Bis-netropsins can bind to DNA in such a way that the two netropsin-like fragments are implicated in specific interaction with DNA base pairs. However, the apparent affinity of bis-netropsins estimated from footprinting experiments is comparable with that of netropsin for the same DNA region. 5. At high levels of binding bis-netropsins and distamycin A (but not netropsin) can occupy any potential site on DNA irrespectively of the DNA sequence. 6. Complex formation with netropsin increases sensitivity to DNase I at certain DNA sites along with the protection effect observed at neighboring sites.  相似文献   

5.
We have investigated some properties related to interaction with DNA and recognition of AT-rich sequences of netropsin-oxazolopyridocarbazole (Net-OPC) (Mrani et al., 1990), which is a hybrid groove-binder-intercalator. The hybrid molecule Net-OPC binds to poly[d(A-T)] at two different sites with Kapp values close to 7 x 10(6) and 6 x 10(8) M-1 (100 mM NaCl, pH 7.0). Data obtained from melting experiments are in agreement with these values and indicate that Net-OPC displays a higher binding constant to poly[d(A-T)] than does netropsin. On the basis of viscometric and energy transfer data, the binding of Net-OPC to poly[d(A-T)] is suggested to involve both intercalation and external binding of the OPC chromophore. In contrast, on poly[d(G-C)], Net-OPC binds to a single type of site composed of two base pairs in which the OPC chromophore appears to be mainly intercalated. The binding constant of Net-OPC to poly[d(G-C)] was found to be about 350-fold lower than that of the high-affinity binding site in poly[d(A-T)]. As evidenced by footprinting data, Net-OPC selectively recognizes TTAA and CTT sequences and strongly protects the 10-bp AT-rich DNA region 3'-TTAAGAACTT-5' containing the EcoRI site. The binding of Net-OPC to this sequence results in a strong and selective inhibition of the activity of the restriction endonuclease EcoRI on the plasmid pBR322 as substrate. The extent of inhibition of the rate constant of the first strand break catalyzed by the enzyme is about 100-fold higher than the one observed in the presence of netropsin under similar experimental conditions.  相似文献   

6.
Centrifuge transport, equilibrium dialysis, and electron paramagnetic resonance studies on the binding of Mn2+ to myosin revealed two sets of noninteracting binding sites which are characterized at low ionic strength (0.016 M KCl) by affinity constants of 10(6) M-1 (Class I) and 10(3) M-1 (Class II), respectively. At 0.6 M KCl concentration, the affinity of Mn2+ for both sets of sites is reduced. The maximum number of binding sites is 2 for the high affinity and 20 to 25 for the low affinity set. Other divalent metal ions displace Mn2+ from the high affinity sites in the following order of effectiveness: Ca greater than Mg = Zn = Co greater than Sr greater than Ni. The inhibitory effects of Mg2+ and Ca2+ upon the Mn2+ binding are competitive with inhibitor constants of 0.75 to 1 mM which is similar to that of the low affinity divalent metal ion binding sites. Exposure of myosin to 37 degrees partially inhibits Mn2+ binding to Class I parallel with inhibition of ATPase activity. The binding of Mn2+ to the high affinity binding sites is not significantly influenced by ADP or PPi, although Mn2+ increases the affinity of ADP binding to myosin at high ionic strength.  相似文献   

7.
Fluorescence spectroscopy was used to study the interaction between the minor-groove-binding drug netropsin and the self-complementary oligonucleotide d(CTGAnPTTCAG)2 containing the fluorescent base analogue 2-aminopurine (nP). The binding of netropsin to this oligonucleotide causes strong quenching of the 2-aminopurine fluorescence, observed by steady-state as well as time-resolved spectroscopy. From fluorescence titrations, binding isotherms were recorded and evaluated. The parameters showed one netropsin binding site/oligonucleotide duplex and an association constant of about 10(5) M-1 at 25 degrees C, 3-4 orders of magnitude weaker than for an exclusive adenine/thymine host sequence. From the temperature dependence of the association constant the thermodynamic parameters were obtained as delta G = -29 kJ/mol, delta H = -12 kJ/mol and delta S = +55 J.mol-1.K-1 at 25 degrees C. These parameters resemble those of the interaction of poly[(dG-dC).(dG-dC)] with netropsin, indicating a mainly entropy-driven reaction. The amino group of 2-aminopurine, like that of guanine, resides in the minor groove of DNA. Therefore the relatively weak binding of netropsin to d(CTGAnPTTCAG)2 is probably related to partial blockage of the tight fit of netropsin into the preferred minor groove of an exclusive adenine/thymine host sequence.  相似文献   

8.
Purified troponin (Tn), the complex of the Ca-2+ binding subunit (TnC), the inhibitory subunit (TnI), and the tropomyosin binding subunit (TnT) binds 4 mol of Ca-2+ per mol. Two sites bind Ca-2+ with a binding constant of 5 times 10-8 M- minus 1, and two with a binding constant of 5 times 10-6 M- minus 1. In the presence of 2 mM MgCl2 the binding to four sites can be characterized with a single affinity constant of 5 times 10-6 M- minus 1. Purified TnC also binds 4 mol of Ca-2+ per mol; two sites have a binding constant of 2 times 10-7 M- minus 1 and two have one of 2 times 10-5 M- minus 1. In the presence of 2 mM MgCl2 the binding constant of the sites of higher affinity is reduced to 2 times 10-6 M- minus 1, while Ca-2+ binding to the sites of lower affinity is unaffected. Assuming competition between Mg-2+ and Ca-2+ for the high affinity sites on TnC and Tn, the changes in Ca-2+ binding can be accounted for with KMg values of 5 times 10-3 M- minus 1 and 5 times 10-4 M- minus 1, respectively. Tn and TnC bind 4 mol of Mg-2+ per mol in the absence of Cs-2+. The fact that at [Ca-2+] similar to 10- minus 5 M four Ca-2+ and only two Mg-2+ are bound per mol of TnC in the presence of 2 mM Mg-2+ further supports the view that there is direct competition between Mg-2+ and Ca-2+ for the high affinity Ca-2+ binding sites on TnC and Tn. These results then suggest that Tn and TnC contain six divalent cation binding sites: two high affinity Ca-2+ binding sites that also bind Mg-2+ competitively (Ca-2+-Mg-2+ sites); two sites with lower affinity for Ca-2+ that do not bind Mg-2+ (Ca-2+-specific sites); and two sites that bind Mg-2+ but not Ca-2+ (Mg-2+-specific sites). The complex of TnC and TnI (1:1 molar ratio) has the same binding properties as Tn, suggesting a conformational change in TnC upon interaction with TnI. Studies on myofibrillar ATPase activity as a function of free Ca-2+ concentration at two different free Mg-2+ concentrations suggest that full activation by Ca-2+ occurs only upon binding of Ca-2+ to the two Ca-2+-specific binding sites in Tn but does not require binding of Ca-2+ to the Ca-2+-Mg-2+ sites.  相似文献   

9.
Molecular recognition of B-DNA by Hoechst 33258.   总被引:19,自引:14,他引:5       下载免费PDF全文
The binding sites of Hoechst 33258, netropsin and distamycin on three DNA restriction fragments from plasmid pBR322 were compared by footprinting with methidiumpropyl-EDTA X Fe(II) [MPE X Fe(II)]. Hoechst, netropsin and distamycin share common binding sites that are five +/- one bp in size and rich in A X T DNA base pairs. The five base pair protection patterns for Hoechst may result from a central three base pair recognition site bound by two bisbenzimidazole NHs forming a bridge on the floor of the minor groove between adjacent adenine N3 and thymine O2 atoms on opposite helix strands. Hydrophobic interaction of the flanking phenol and N-methylpiperazine rings would afford a steric blockade of one additional base pair on each side.  相似文献   

10.
Crayfish tail muscle troponin C (TnC) has been fractionated into its five components and the Ca2+-binding properties of the two major isoforms (alpha and gamma) determined by equilibrium dialysis. alpha-TnC contains one Ca2+-binding site with a binding constant of 1 x 10(6) M-1 and one Ca2+ site with a binding constant of 1 x 10(4) M-1. In the complex of alpha-TnC with troponin I (TnI) or with TnI and troponin T (TnT), both sites bind Ca2+ with a single affinity constant of 2-4 x 10(6) M-1. gamma-TnC contains two Ca2+-binding sites with a binding constant of 2 x 10(4) M-1. In the gamma-TnC.TnI and gamma-TnC.TnI.TnT complexes, the binding constant of one of the sites is increased to 4-5 x 10(6) M-1, while Ca2+ binding to the second site is hardly affected (KCa = 4-7 x 10(4) M-1). In the presence of 10 mM MgCl2, the two Ca2+-binding sites of both TnC isoforms exhibit a 2-3-fold lower affinity. Assuming competition between Ca2+ and Mg2+ for these sites, their binding constants for Mg2+ were 120-230 M-1. In the absence of Ca2+, however, alpha-TnC and gamma-TnC bind 4-5 mol of Mg2+/mol with a binding constant of 1 x 10(3) M-1. These results suggest that the effect of Mg2+ on Ca2+ binding at the two Ca2+ sites is noncompetitive, i.e. Mg2+ does not bind directly to these sites (Ca2+-specific sites). Since the formation of the complex of crayfish TnI with alpha-TnC or gamma-TnC increases significantly the affinity of one of their two Ca2+-specific sites, I conclude that the binding of Ca2+ to only one site (regulatory Ca2+-specific site) controls the Ca2+-dependent interaction between crayfish TnCs and TnI.  相似文献   

11.
The Ca2+ binding component (TnC) of troponin has been selectively labeled with either a spin label, N-(1-oxyl-2,2,6,6-tetramethyl-4-piperidinyl) iodoacetamide, or with a fluorescent probe, S-mercuric-N-dansyl cysteine, presumably at its single cysteine residue (Cys-98) in order to probe the interactions of TnC with divalent metals and with other subunits of troponin. The modified protein has the same Ca2+ binding properties as native TnC (Potter, J. D., and Gergely, J. (1975) J. Biol. Chem. 250, 4628), viz. two Ca2+ binding sites at which Mg2+ appears to compete (Ca2+-Mg2+ sites, KCa = 2 X 10(7) M-1) and two sites at which Mg2+ does not compete (Ca2+-specific sites, KCa = 2 X 10(5) M-1). Either Ca2+ or Mg2+ alters the ESR spectrum of spin-labeled TnC in a manner that indicates a decrease in the mobility of the label, Ca2+ having a slightly greater effect. In systems containing both Ca2+ and Mg2+ the mobility of the spin label is identical with that in systems containing Ca2+ alone. The binding constants for Ca2+ and Mg2+ deduced from ESR spectral changes are 10(7) and 10(3) M-1, respectively, and the apparent affinity for Ca2+ decreases by about an order of magnitude on adding 2 mM Mg2+. Thus, the ESR spectral change is associated with binding of Ca2+ to one or both of the Ca2+-Mg2+ sites. Addition of Ca2+ to the binary complexes of spin-labeled TnC with either troponin T (TnT) or troponin I (TnI) produces greater reduction in the mobility of the spin label than in the case of spin-labeled TnC alone, and in the case of the complex with TnI the affinity for Ca2+ is increased by an order of magnitude. The fluorescence of dansyl (5-dimethylaminonaphthalene-1-sulfonyl)-labeled TnC is enhanced by Ca2+ binding to both high and low affinity sites with apparent binding constants of 2.6 X 10(7) M-1 and 2.9 X 10(5) M-1, respectively, calculated from the transition midpoints. The presence of 2 mM Mg2+, which produces no effect on dansyl fluorescence itself, in contrast to its effect on the spin label, shifts the high affinity constant to 2 X 10(6) M-1. Spectral changes produced by Ca2+ binding to the TnC-TnI complex furnish evidence that the affinity of TnC for Ca2+ is increased in the complex. The reactivity of Cys-98 to the labels and to 5,5'-dithiobis(2-nitrobenzoic acid) (Nbs2) is decreased by Ca2+ or Mg2+ both with native TnC and in 6 M urea. The reaction rate between Cys-98 and Nbs2 decreases to one-half the maximal value at a Ca2+ concentration that suggests binding to the Ca2+-Mg2+ sites. Formation of a binary complex between TnI and TnC reduces the rate of reaction, and there is a further reduction by Ca2+. The effect of Ca2+ takes place at concentrations that are 1 order of magnitude lower than in the case of TnC alone. These results suggest that the Ca2+ binding site adjacent to Cys-98 is one of the Ca2+-Mg2+ binding sites.  相似文献   

12.
The titration viscometric investigation of the multi-mode interaction of netropsin (Nt) with (A.T) clusters of NaDNA12 and NH4DNA10 has been extended to different temperatures. The position of two boundaries on the r-scale (r= [Nt]bound/[DNA-P]) with increasing temperature steadily (rI/II) or more abruptly (rO/I) shifts to lower values. For the most (A.T) rich Nt-binding sites of modes (O), (I) and (II) this observation suggests the existence of an equilibrium between different DNA secondary structures with a different translation per base pair. The mode specific changes delta L1Nt of DNA contour length as induced by one Nt molecule proved to be almost independent of temperature. Concomitant stiffening effects increase with decreasing temperature, contrary to initial expectation. Conformational variability of (A.T) clusters may represent an essential feature in specific or selective DNA-protein interaction.  相似文献   

13.
The interaction between acridine orange (AO) and diluted and concentrated solutions of DNA, DNP systems and chromatin suspension at the physiologic ionic strength was investigated. The effect of AO on DNP systems was also investigated. It was shown that highest possible number of AO molecules bound to DNA made up 70% of the total number of nucleotides. The model of AO binding to DNA is proposed and used for calculation of constants of stronger and weaker AO-binding capacities equal to 6-10(6) M-1 and 1,7-10(5) M-1, respectively. The AO-DNA binding constants in DNP-complex are five as low. The primary number of binding sites in chromatin suspension made up 10% of the corresponding sites in DNA and increased as AO was adsorbed. AO induced the supercontraction of oriented DNP systems at the physiologic ionic strength and the appearance of the low-temperature melting hump.  相似文献   

14.
The interaction of the antibiotic netropsin with calf thymus DNA, T4 DNA and poly(dA-dT) . poly(dA-dT) in complexes with sequential polypeptides containing repetitive lysine sequences and histone H1 was investigated using circular dichroism spectroscopy and equilibrium dialysis. Both soluble DNA-polypeptide complexes and insoluble complexes showed binding of netropsin. The possibility of displacement of polypeptides from DNA binding sites by competition with netropsin molecules was eliminated by experiments using 14C-labelled polypeptides. From the analysis of CD titration behavior as well as from the results of equilibrium dialysis studies it follows that netropsin does not compete with polypeptides for DNA binding sites, which suggests that these two ligands occupy different sites. Various explanations for minor differences in the CD behavior of the bound netropsin in the saturation region are also discussed.  相似文献   

15.
The calcium binding properties of non-activated phosphorylase kinase at pH 6.8 have been studied by the gel filtration technique at calcium concentrations from 50 nM to 50 muM. Taking into account the subunit structure alpha4beta4gamma4 the enzyme binds 12 mol Ca2+ per mol with an association constant of 6.0 X 10(7) M-1, 4 mol with an association constant of 1.7 X 10(6) M-1 and 36 mol with a binding constant of 3.9 X 10(4) M-1 at low ionic strength. In buffer of high ionic strength, i.e. 180 mM NH4Cl or 60 mM (NH4)2SO4, only a single set of eight binding sites with a binding constant of 5.5 X 10(7) M-1 is left. In a buffer containing 155 mM NH4Cl and 10 mM MgCl2, the calcium affinity of these sites is reduced to a KCa of 3.0 X 10(6) M-1, indicating competition between Ca2+ and Mg2+. From these measurements, the binding constant of Mg2+ for these sites is calculated to be 1.7 X 10(3) M-1 is left. In a buffer containing 155 mM NH4Cl and 10 mM MgCl2, the calcium affinity of these sites is reduced to a KCa of 3.0 X 10(6) M-1, indicating competition between Ca2+ and Mg2+. from these measurements, the binding constant of Mg2+ for these sites is calculated to be 1.7 X 10(3) M-1. Additionally, 10 mM Mg2+ induces a set of four new Ca2+ binding sites which show positive cooperativity. Their half-saturation constant under the conditions described is 3.5 X 10(5) M-1, and they, too, exhibit competition between Ca2+ and Mg2+. Since this set of sites is induced by Mg2+ a third group of binding sites for the latter metal must be postulated.  相似文献   

16.
Circular dichroism has been used as a monitoring tool to probe the distribution of the non-intercalating drug netropsin (NTPS) between the two biomolecules DNA and heparin. The stoichiometry of the interaction of the individual biomolecules and the drug is determined from conductometric titrations; the titration in each case shows two breaks corresponding to two stoichiometries of interaction. Though netropsin is non-intercalating, DNA wins over heparin in binding the drug due to strong hydrogen bonding capability of NTPS in the minor grooves of DNA through its greater than NH donor groups. Potential hydrogen bond breakers like KF and urea reduce the induced dichroism of NTPS-DNA system, probably dislodging some drug from DNA through hydrogen bond breaking.  相似文献   

17.
We use gel equilibration and electrophoretic techniques to compare the binding properties of thyroxine binding globulin and thyroxine binding prealbumin in rat sera. The evidence indicates that TBG bears the serum lowest capacity highest affinity sites for thyroxine (T4) and triiodothyronine (T3) (Ka1 greater than or equal to 10(9) M-1) as well as weaker saturable T3 sites (Ka2 approximately 10(8) M-1). TBPA bears for T4 only Ka2 approximately 10(8) M-1 sites and for T3 only Ka approximately 10(6) M-1 sites. Consistent with these parameters are the specific responses of TBG and TBPA binding activities to varying serum concentrations of T4, T3, oleic acid, the drugs diphenylhydantoin or salicylate. The primary attack of these compounds is aimed at TBG. Small T4, oleate or DPH doses chase the TBG-bound T4 to TBPA, high doses of T4 or oleate but not of DPH inhibiting the T4 binding to both proteins. In the T3-serum interactions, all tested compounds displace the TBG-bound hormone without chasing it to TBPA. The high reactivity of TBG sites designates the protein as crucially involved in modulating the free vs bound serum levels of T4 and T3 against physiological or pathological variations of binding competitors.  相似文献   

18.
Caldolysin, the extracellular proteinase from the extreme thermophile Thermus aquaticus strain T351, is stabilized by Ca2+. A variety of metal ions were able to substitute for Ca2+. Most were unable to confer as much stability as Ca2+, with the exception of the lanthanide ions, which increased the half-life at 95 degrees C from 1 h to more than 4 h. Results from a variety of separation methods indicated that caldolysin binds 6 Ca2+ ions/molecule of enzyme. The presence of non-linear Ca2+ titration plots, and the removal of 4 Ca2+ ions/molecule by treatment with a cationic ion-exchange gel suggested that caldolysin possesses at least two different types of Ca2+-binding sites, with different affinities. Average binding constants of the two types of binding sites were 2.8 X 10(4)M-1 (for the low-affinity sites) and 7.5 X 10(5) M-1 (for the high-affinity sites). The total Ca2+-binding free energy for caldolysin was shown to be greater than for either thermolysin or Bacillus subtilis neutral proteinase. It appears that the higher thermostability of caldolysin is due to the presence of 6 Ca2+ ions rather than 4 Ca2+ ions/molecule.  相似文献   

19.
In-vitro interaction of nitrofurantoin with V. cholerae DNA resulted in a quenching and red spectral shift of the drug absorption pattern. Scatchard analysis revealed that the drug binding involved more than one processes and that the strongest mode of binding was characterised by an association constant (k) of 5.04 x 10(6) M-1 and the number of binding sites per nucleotide (n) of 0.015. Based on viscosity measurements, the mode of drug binding to DNA appeared to be through intercalation, the helix unwinding angle of supercoiled plasmid pBR322 DNA being 10 degrees. Nitrofurantoin binding to DNA resulted in an elevation of the thermal melting temperature (Tm) of DNA by 6 degrees C and inhibition of the action of DNase on DNA.  相似文献   

20.
We report the DNA binding properties of two hybrid molecules which result from the combination of the DNA sequence-specific minor groove ligand netropsin with the bithiazole moiety of the antitumor drug bleomycin. The drug-DNA interaction has been investigated by means of electric linear dichroism (ELD) spectroscopy and DNase I footprinting. In compound 1 the two moieties are linked by a flexible aliphatic tether while in compound 2 the two aromatic ring systems are directly coupled by a rigid peptide bond. The results are consistent with a model in which the netropsin moiety of compound 1 resides in the minor groove of DNA and where the appended bithiazole moiety is projected away from the DNA groove. This monocationic hybrid compound has a weak affinity for DNA and shows a strict preference for A and T stretches. ELD measurements indicate that in the presence of DNA compound 2 has an orientation typical of a minor groove binder. Similar orientation angles were measured for netropsin and compound 2. This ligand which has a biscationic nature tightly binds to DNA (Ka = 6.3 x 10(5) M-1) and is mainly an AT-specific groove binder. But, depending on the nature of the sequence flanking the AT site first targeted by its netropsin moiety, the bithiazole moiety of 2 can accommodate various types of nucleotide motifs with the exception of homooligomeric sequences. As evidenced by footprinting data, the bithiazole group of bleomycin acts as a DNA recognition element, offering opportunities to recognize GC bp-containing DNA sequences with apparently a preference (although not absolute) for a pyrimidine-G-pyrimidine motif. Thus, the bithiazole unit of bleomycin provides an additional anchor for DNA binding and is also capable of specifically recognizing particular DNA sequences when it is appended to a strongly sequence selective groove binding entity. Finally, a model which schematizes the binding of compound 2 to the sequence 5'-TATGC is proposed. This model readily explains the experimentally observed specificity of this netropsin-bithiazole conjugate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号