首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A substituted 4-aminopiperidine was identified as showing activity in an MCH assay from an HTS effort. Subsequent structural modification of the scaffold led to the identification of a number of active MCH antagonists. 3,5-Dimethoxy-N-(1-(naphthalen-2-ylmethyl)piperidin-4-yl)benzamide (5c) was among those with the highest binding affinity to the MCH receptor (K(i)=27nM), when variations were made at benzoyl and naphthylmethyl substitution sites from the initial HTS hit. Further optimization via piperidine ring contraction resulted in enhanced MCH activity in a 3-aminopyrrolidine series, where (R)-3,5-dimethoxy-N-(1-(naphthalen-2-ylmethyl)-pyrrolidin-3-yl)benzamide (10i) was found to be an excellent MCH antagonist (K(i)=7nM).  相似文献   

2.
Biaryl urea lead compound 1 was discovered earlier in our MCH antagonist program. Novel benzimidazole analogues with increased chemical stability, devoid of the potential carcinogenic liability associated with a biarylamine moiety, were synthesized and evaluated to be potent MCH R1 antagonists. Two compounds in this series have demonstrated in vivo efficacy in a rodent obesity model.  相似文献   

3.
The design, synthesis and structure-activity relationships of a novel class of N-phenylpyridone MCH1R antagonists are described. The core part of the N-phenylpyridone structure was newly designed and the side chain moieties that were attached to the core part were extensively explored. As a result of optimization of the N-phenylpyridone leads, we successfully developed the orally available, and brain-penetrable MCH1R selective antagonist 7c, exhibiting excellent anti-obese effect in diet-induced obese (DIO) mice.  相似文献   

4.
A structure-activity study on benzylpiperidine 1 was accomplished by utilizing high-throughput synthesis. Three focused libraries were designed and synthesized to quickly develop SAR. Further optimization led to the discovery of compound 2, an MCH receptor R1 antagonist with over 400-fold improvement in biological activity over the original lead.  相似文献   

5.
Melanin concentrating hormone (MCH) plays an important role in the regulation of food intake and energy balance in mammals. MCH-1 receptor (MCH1R) deficient mice are lean and resistant to diet-induced obesity. As such, MCH1R antagonists are believed to have potential as possible treatments for obesity. The discovery of a novel class of tetralin ureas as potent MCH1R antagonists is described herein.  相似文献   

6.
We investigated the use of Eu3+ chelate-labeled analogues of melanin-concentrating hormone (MCH) as ligands for both human MCH receptors (MCHR1 and MCHR2). The analogues employed were Ala17 MCH, S36057 (Y-ADO-RC*MLGRVFRPC*W, where ADO=8-amino-3,6-dioxyoctanoyl and *=disulfide bond), and R2P (RC*MLGRVFRPC*Y-NH2). The peptides were readily labeled on the alpha-amino residue with the Eu3+ chelate of N1-(p-isothiocyanatobenzyl)-diethylenetriamine-N1,N2,N3,N3-tetraacetic acid and then purified by reverse-phase fast-performance liquid chromatography at neutral pH to maintain Eu3+ chelation. Both labeled Ala17 MCH and S36057 had high affinity for MCHR1 ( Kd = 0.37 and 0.059nM, respectively) while Eu3+ -labeled S36057 and R2P had high affinity for MCHR2 ( Kd = 0.16 and 0.10nM, respectively). Labeled Ala17 MCH had little demonstrable binding affinity for MCHR2. Eu3+ -labeled S36057 and R2P were full agonists at MCHR1 when assessed by measurement of agonist-stimulated GTPgamma(35)S binding. Competition binding experiments with both MCHR isoforms, a series of previously characterized alanine scan MCH analogues, and a recently identified nonpeptide MCHR1-selective antagonist T-226296 confirmed the expected receptor selectivity. These studies further extend the utility of Eu3+ chelate time-resolved fluorescence for the development of high-sensitivity, nonradioactive receptor binding assays and demonstrate the need to select the optimal ligand for labeling.  相似文献   

7.
A strategy of systematically targeting more rigid analogues of the known MCH R1 receptor antagonist, SB-568849, serendipitously uncovered a binding mode accessible to N-aryl-phthalimide ligands. Optimisation to improve the stability of this compound class led to the discovery of novel N-aryl-quinazolinones, benzotriazinones and thienopyrimidinones as selective ligands with good affinity for human melanin-concentrating hormone receptor 1.  相似文献   

8.
Saito Y  Tetsuka M  Li Y  Kurose H  Maruyama K 《Peptides》2004,25(10):1597-1604
Melanin-concentrating hormone (MCH) is a neuropeptide that plays an important role in several physiological processes. It activates two G protein-coupled receptors (GPCRs), MCH1R and MCH2R, of which MCH1R seems to be a key regulator of food intake. By using HEK293T cells stably transfected with Flag-tagged rat MCH1R, we investigated the mechanism underlying the MCH-induced internalization pathway, which is important for the desensitization or regulation of the receptor response. Quantitative analysis by flow cytometry indicated that the rate of MCH1R internalization progressed in a rapid and time-dependent manner during the first 30 min, and was partly inhibited by pretreatment with the selective protein kinase C (PKC) inhibitor Go6850. Overexpression of dominant-negative beta-arrestin-2 (284-409) or dynamin I-K44A significantly prevented MCH-induced internalization of MCH1R, while overexpression of dominant-negative beta-arrestin-1-V53D had no effect. A triple-substituted mutant at Thr317, Ser325 and Thr342 to Ala residue in the C-terminus significantly prevented MCH-induced receptor internalization. Similar extents of internalization prevention were noted with the deletion mutants DeltaThr342 and DeltaGlu346, lacking 11 and 7 residues in the C-terminal tail, respectively. Our data suggest that MCH1R undergoes rapid MCH-induced internalization through a PKC-, beta-arrestin-2- and dynamin I-dependent pathway and that a portion of the C-terminal tail plays an important role in the internalization process.  相似文献   

9.
Objective: To identify and functionally characterize single‐nucleotide polymorphisms (SNPs) in melanin‐concentrating hormone (MCH)‐R1 and ‐R2. Research Methods and Procedures: The entire coding regions and intron/exon splice junction regions of MCH‐R1 and MCH‐R2 were sequenced from anonymous white (n = 45) and African‐American (n = 46) individuals. DNA was analyzed, and SNPs were identified using Phred, Phrap, and Consed software. DNA constructs containing MCH‐R1 and MCH‐R2 SNPs were generated and expressed in CHO cells. The effect of the SNPs in MCH‐R1 and MCH‐R2 were assessed in receptor binding assays and functional assays measuring changes in intracellular cAMP and Ca2+ levels. Results: We identified 12 SNPs in the MCH‐R1 gene. Two of these SNPs are in coding regions, and one produces an arginine‐for‐glycine substitution at residue 34 in the MCH‐R1 sequence. This SNP is present at a minor allele frequency of 15% in the African‐American population tested in this study. We identified eight SNPs in the MCH‐R2 gene. Four of these SNPs are in coding regions, and two produce amino acid substitutions. Lysine substitutes for arginine at residue 63 of the African‐American population, and glutamine substitutes for arginine at residue 152 in whites (minor allele frequency of 2% for both SNPs). No changes in receptor binding or functional signaling were observed with the SNP mutations in MCH‐R1 or MCH‐R2. Discussion: These data indicate that potential therapeutics designed to act at the MCH receptor are unlikely to have altered effects in subpopulations that express variant forms of MCH‐R1 or MCH‐R2.  相似文献   

10.
Melanin concentrating hormone (MCH) is an orexigenic hypothalamic neuropeptide, which plays an important role in the complex regulation of energy balance and body weight. Here we show that SNAP-7941, a selective, high-affinity MCH1 receptor (MCH1-R) antagonist, inhibited food intake stimulated by central administration of MCH, reduced consumption of palatable food, and, after chronic administration to rats with diet-induced obesity, resulted in a marked, sustained decrease in body weight. In addition, after mapping the binding sites for [(3)H]SNAP-7941 in rat brain, we evaluated its effects in a series of behavioral models. SNAP-7941 produced effects similar to clinically used antidepressants and anxiolytics in three animal models of depression/anxiety: the rat forced-swim test, rat social interaction and guinea pig maternal-separation vocalization tests. Given these observations, an MCH1-R antagonist may be useful not only in the management of obesity but also as a treatment for depression and/or anxiety.  相似文献   

11.
We report here the discovery of a class of MCH R1 ligands based on a biphenyl carboxamide template. A docked-in model is presented indicating key interactions in the putative binding site of the receptor. Parallel high throughput synthetic techniques were utilised to allow rapid exploration of the structure-activity relationship around this template, leading to compound SB-568849 which possessed good receptor affinity and selectivity. This compound proved to be an antagonist with stability in vivo, an acceptable brain-blood ratio and oral bioavailability.  相似文献   

12.
Abstract

Melanin‐concentrating hormone (MCH) is a neuropeptide occurring in all vertebrates and some invertebrates and is now known to stimulate pigment aggregation in teleost melanophores and food‐intake in mammals. Whereas the two MCH receptor subtypes hitherto cloned, MCH‐R1 and MCH‐R2, are thought to mediate mainly the central effects of MCH, the MCH‐R on pigment cells has not yet been identified, although in some studies MCH‐R1 was reported to be expressed by human melanocytes and melanoma cells. Here we present data of a structure‐activity study in which 12 MCH peptides were tested on rat MCH‐R1 and mouse B16 melanoma cell MCH‐R, by comparing receptor binding affinities and biological activities. For receptor binding analysis with HEK‐293 cells expressing rat MCH‐R1 (SLC‐1), the radioligand was [125I]–[Tyr13]‐MCH with the natural sequence. For B16 cells (F1 and G4F sublines) expressing B16 MCH‐R, the analog [125I]–[D‐Phe13, Tyr19]‐MCH served as radioligand. The bioassay used for MCH‐R1 was intracellular Ca2+ mobilization quantified with the FLIPR instrument, whereas for B16 MCH‐R the signal determined was MAP kinase activation. Our data show that some of the peptides displayed a similar relative increase or decrase of potency in both cell types tested. For example, linear MCH with Ser residues at positions 7 and 16 was almost inactive whereas a slight increase in side‐chain hydrophilicity at residues 4 and 8, or truncation of MCH at the N‐terminus by two residues hardly changed binding affinity or bioactivity. On the other hand, salmonic MCH which also lacks the first two residues of the mammalian sequence but in addition has different residues at positions 4, 5, 9, and 18 exhibited a 5‐ to 10‐fold lower binding activity than MCH in both cell systems. A striking difference in ligand recognition between MCH‐R1 and B16 MCH‐R was however observed with modifications at position 13 of MCH: whereas L‐Phe13 in [Phe13, Tyr19]‐MCH was well tolerated by both MCH‐R1 and B16 MCH‐R, change of configuration to D‐Phe13 in [D‐Phe13, Tyr19]‐MCH or [D‐Phe13]‐MCH led to a complete loss of biological activity and to a 5‐ to 10‐fold lower binding activity with MCH‐R1. By contrast, the D‐Phe13 residue increased the affinity of [D‐Phe13, Tyr19]‐MCH to B16 MCH‐R about 10‐fold and elicited MAP kinase activation as observed with [Phe13, Tyr19]‐MCH or MCH. These data demonstrate that ligand recognition by B16 MCH‐R differs from that of MCH‐R1 in several respects, indicating that the B16 MCH‐R represents an MCH‐R subtype different from MCH‐R1.  相似文献   

13.
A series of 2-aminoquinoline compounds was prepared and evaluated in MCH1R binding and functional antagonist assays. Small dialkyl, methylalkyl, methylcycloalkyl, and cyclic amines were tolerated at the quinoline 2-position. The in vivo efficacy of compound 12 was explored and compared to that of a related inactive analog to determine their effects on food intake and body weight in rodents.  相似文献   

14.
-4-Amino-2-arylbutylbenzamides such as 1 were identified as micromolar MCH 1 receptor (MCH1R) antagonists via screening using a scintillation proximity assay based on [125I]-MCH binding to recombinant, human MCH1R. Subsequent lead optimization efforts using solid-phase parallel synthesis resulted in the defined structure-activity relationships and the identification of 4-amino-2-biarylbutylureas, such as 11g, as potent single digit nanomolar MCH1R antagonists.  相似文献   

15.
Structure-activity relationships of a 4-aminoquinoline MCH1R antagonist lead series were explored by synthesis of analogs with modifications at the 2-, 4-, and 6-positions of the original HTS hit. Improvements to the original screening lead included lipophilic groups at the 2-position and biphenyl, cyclohexyl phenyl, and hydrocinnamyl carboxamides at the 6-position. Modifications of the 4-amino group were not well tolerated.  相似文献   

16.
Optimization of a series of constrained melanin-concentrating hormone receptor 1 (MCH R1) antagonists has provided compounds with potent and selective MCH R1 activity. Details of the optimization process are provided and the use of one of the compounds in an animal model of diet-induced obesity is presented.  相似文献   

17.
MCH receptor is a G protein-coupled receptor with two subtypes R1 and R2. Many studies have demonstrated the role of MCH-R1 in feeding and energy homeostasis. It has been proven that oral administration of small molecule MCH-R1 antagonists significantly reduces food intake and causes a dose-dependent weight loss. In this study, two ligand-based pharmacophores were developed and validated based on recently published MCH-R1 antagonists with diverse structures. Successful pharmacophores had one hydrogen bond acceptor, one positive ionizable, one ring aromatic and two or three hydrophobic groups. These 3D-QSAR models were used for virtual screening of the ZINC chemical database resulting in the identification of nine compounds with more than 50% displacement of radiolabeled MCH at a 20 μM concentration. Moreover, four of these compounds showed antagonistic activities in Aequorin functional assay, including MH-3 which is the first MCH-R1 antagonist based on a diazaspiro[4.5]decane scaffold. The most active compounds were also docked into our previously published MCH-R1 homology model to gain insights into their binding determinants. These compounds could represent a viable starting scaffold for the design of potent MCH-R1 antagonists with improved pharmacokinetic properties as an effective treatment for obesity.  相似文献   

18.
Melanin-concentrating hormone (MCH) is a cyclic 19 amino acid orexigenic neuropeptide. The action of MCH on feeding is thought to involve the activation of its respective G protein-coupled receptor MCH-R1. Consequently, antagonists that block MCH regulated MCH-R1 activity may provide a viable approach to the treatment of diet-induced obesity. This communication reports the discovery of a novel MCH-R1 receptor antagonist, the biarylether 7, identified through high throughput screening. The solid-phase synthesis and structure-activity relationship of related analogs is described.  相似文献   

19.
Melanin-concentrating hormone (MCH) receptor 1 (MCH1R) belongs to the class A G protein-coupled receptors (GPCRs). The MCH-MCH1R system plays a central role in energy metabolism, and thus the regulation of signaling pathways activated by this receptor is of particular interest. Regulator of G protein signaling (RGS) proteins work by increasing the GTPase activity of G protein alpha subunits and attenuate cellular responses coupled with G proteins. Recent evidence has shown that RGS proteins are not simple G protein regulators but equally inhibit the signaling from various GPCRs. Here, we demonstrate that RGS8, which is highly expressed in the brain, functions as a negative modulator of MCH1R signaling. By using biochemical approaches, RGS8 was found to selectively and directly bind to the third intracellular (i3) loop of MCH1R in vitro. When expressed in HEK293T cells, RGS8 and MCH1R colocalized to the plasma membrane and RGS8 potently inhibited the calcium mobilization induced by MCH. The N-terminal 9 amino acids of RGS8 were required for the optimal capacity to downregulate the receptor signaling. Furthermore, Arg(253) and Arg(256) at the distal end of the i3 loop were found to comprise a structurally important site for the functional interaction with RGS8, since coexpression of RGS8 with R253Q/R256Q mutant receptors resulted in a loss of induction of MCH-stimulated calcium mobilization. This functional association suggests that RGS8 may represent a new therapeutic target for the development of novel pharmaceutical agents.  相似文献   

20.
In goldfish, intracerebroventricular (ICV) administration of melanin-concentrating hormone (MCH) inhibits feeding behavior, and fasting decreases hypothalamic MCH-like immunoreactivity. However, while MCH acts as an anorexigenic factor in goldfish, in rodents MCH has an orexigenic effect. Therefore, we examined the involvement of two anorexigenic neuropeptides, alpha-melanocyte-stimulating hormone (alpha-MSH) and corticotropin-releasing hormone (CRH), in the anorexigenic action of MCH in goldfish, using an alpha-MSH receptor antagonist, HS024, and a CRH receptor antagonist, alpha-helical CRH((9-41)). ICV injection of HS024, but not alpha-helical CRH((9-41)), suppressed MCH-induced anorexigenic action for a 60-min observation period. We then examined, using a real-time PCR method, whether MCH affects the levels of mRNAs encoding various orexigenic neuropeptides, including neuropeptide Y (NPY), orexin, ghrelin and Agouti-related peptide (AgRP), in the goldfish diencephalon. ICV administration of MCH at a dose sufficient to inhibit food consumption decreased the expression of mRNAs for NPY and ghrelin, but not for orexin and AgRP. These results indicate that the anorexigenic action of MCH in the goldfish brain is mediated by the alpha-MSH signaling pathway and is accompanied by inhibition of NPY and ghrelin synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号