首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Six 16S rRNA-targeted oligonucleotide probes were designed, validated, and used to quantify predominant groups of anaerobic bacteria in human fecal samples. A set of two probes was specific for species of the Bacteroides fragilis group and the species Bacteroides distasonis. Two others were designed to detect species of the Clostridium histolyticum and the Clostridium lituseburense groups. Another probe was designed for the genera Streptococcus and Lactococcus, and the final probe was designed for the species of the Clostridium coccoides-Eubacterium rectale group. The temperature of dissociation of each of the probes was determined. The specificities of the probes for a collection of target and reference organisms were tested by dot blot hybridization and fluorescent in situ hybridization (FISH). The new probes were used in initial FISH experiments to enumerate human fecal bacteria. The combination of the two Bacteroides-specific probes detected a mean of 5.4 × 1010 cells per g (dry weight) of feces; the Clostridium coccoides-Eubacterium rectale group-specific probe detected a mean of 7.2 × 1010 cells per g (dry weight) of feces. The Clostridium histolyticum, Clostridium lituseburense, and Streptococcus-Lactococcus group-specific probes detected only numbers of cells ranging from 1 × 107 to 7 × 108 per g (dry weight) of feces. Three of the newly designed probes and three additional probes were used in further FISH experiments to study the fecal flora composition of nine volunteers over a period of 8 months. The combination of probes was able to detect at least two-thirds of the fecal flora. The normal biological variations within the fecal populations of the volunteers were determined and indicated that these variations should be considered when evaluating the effects of agents modulating the flora.  相似文献   

2.
DNA sequence information for the small-subunit rRNA gene (16S rDNA) obtained from cyanobacterial cultures was used to investigate the presence of cyanobacteria and their abundance in natural habitats. Eight planktonic communities developing in lakes characterized by relatively low algal biomass (mesotrophic) and in lakes with correspondingly high biomass (eutrophic) were selected for the study. The organismal compositions of the water samples were analyzed genetically, using multiplex sequence-specific labeling of oligonucleotide probes targeted to 16S rDNA and subsequent hybridization of the labeled probes to their respective complements spotted onto a solid support (DNA array). Ten probes were established to determine the relative abundances of the discernible cyanobacteria encountered in the selected lakes. The probes were generally specific for their targets, as determined through analyses of clone cultures. Reproducible abundance profiles were established for the lakes investigated in the subsequent analyses of natural cyanobacterial communities. The results from the genetic analyses were then compared with information obtained from standard hydrobiological and hydrochemical analyses. Qualitatively, there were relatively good correlations among the groups of organisms (Nostoc, Microcystis, and Planktothrix species) found in the different lakes. The levels of correlation were lower for the quantitative data. This may, however, be due to differences in sample processing technique. The conclusions from these comparisons are that the genetic abundance profiles may provide a foundation for separating and quantifying genetically distinct groups of cyanobacteria in their natural habitats.  相似文献   

3.
Dehalococcoides ethenogenes is the only known cultivated organism capable of complete dehalogenation of tetrachloroethene (PCE) to ethene. The prevalence of Dehalococcoides species in the environment and their association with complete dehalogenation of chloroethenes suggest that they play an important role in natural attenuation of chloroethenes and are promising candidates for engineered bioremediation of these contaminants. Both natural attenuation and bioremediation require reliable and sensitive methods to monitor the presence, distribution, and fate of the organisms of interest. Here we report the development of 16S rRNA-targeted oligonucleotide probes for Dehalococcoides species. The two designed probes together encompass 28 sequences of 16S rRNA genes retrieved from the public database. Except D. ethenogenes and CBDB1, all the others are environmental clones obtained from sites contaminated with chlorinated ethenes. They are all closely related and form a unique cluster of Dehalococcoides species. In situ hybridization of probe Dhe1259t with D. ethenogenes strain 195 and two enrichment cultures demonstrated the applicability of the probe to monitoring the abundance of active Dehalococcoides species in these enrichment samples.  相似文献   

4.
Whole-cell hybridization with non-radioactively labeled oligonucleotide probes was used to detect and identify Frankia strains in pure cultures and in nodules. Digoxigenin-labeled probes, which were detected with antibody-alkaline phosphatase conjugates, were more suitable for in situ detection of Frankia strains than fluorescent probes since the sensitivity of the former was higher and problems arising from the autofluorescence of cells and plant material were avoided. Successful detection of Frankia strains in paraformaldehyde-fixed cell material with digoxigenin-labeled oligonucleotide probes depended on pretreatments to permeabilize the cells. Specific hybridization signals on vesicles were obtained after lysozyme pretreatment (1 mg ml-1 for 30 min at 20°C). Reliable penetration of the antibody-enzyme conjugate into hyphae required additional washing with the detergent Nonidet P-40 (0.1%) and toluene (1% in ethanol) after lysozyme treatment. Identification of Frankia vesicles in nodule homogenates was possible only after the removal of the polysaccharide capsule surrounding the vesicles. Incubation with H2O2 (15% in water for 1 h at room temperature) before lysozyme and detergent treatments was found to facilitate specific hybridization. No filaments or spores could be detected in nodule homogenates. This technique should be a powerful tool in the identification of Frankia isolates, in the characterization of as-yet-uncultured nodule populations, and in the confirmation of the origin of unusual Frankia isolates.  相似文献   

5.
6.
To investigate the population structure of the predominant phylogenetic groups within the human adult fecal microbiota, a new oligonucleotide probe designated S-G-Clept-1240-a-A-18 was designed, validated, and used with a set of five 16S rRNA-targeted oligonucleotide probes. Application of the six probes to fecal samples from 27 human adults showed additivity of 70% of the total 16S rRNA detected by the bacterial domain probe. The Bacteroides group-specific probe accounted for 37% ± 16% of the total rRNA, while the enteric group probe accounted for less than 1%. Clostridium leptum subgroup and Clostridium coccoides group-specific probes accounted for 16% ± 7% and 14% ± 6%, respectively, while Bifidobacterium and Lactobacillus groups made up less than 2%.  相似文献   

7.
Abstract Two approaches employing 16S rRNA oligonucleotide probes, in situ hybridization combined with 33P-autoradiography and 32P-labeled slot-blot hybridizations on nitrocellulose filters, were used to enumerate methylotrophic bacteria in the water column of Ryans 1 Billabong, a small floodplain lake in northeastern Victoria, Australia. Methylotrophic bacterioplankton numbered 0.6–1.2 × 109 cells liter−1 in the winter of 1994, and 0.8–5.5 × 109 cells liter−1 in the summer of 1994–95. This was equivalent to 10–46% of total bacterioplankton cell counts, determined via epifluorescence microscopy. Methylotrophic bacteria were not detected in the water column of the nearby Kiewa River, and a set of laboratory controls indicated that the high abundance of methylotrophs in the billabong samples was not a methodological artifact. There was no change, with water depth, in total bacterioplankton or methylotroph abundance in winter, a result consistent with the water column being well mixed at this time of year (dissolved O2 concentrations 5–7 mg liter−1; dissolved methane concentrations <60 μg liter−1, or <5% methane saturation, at all depths). In summer the billabong became diurnally stratified (dissolved O2 concentrations <2 mg liter−1 at water depths of >45 cm; dissolved methane concentrations <100 μg liter−1 at the surface, but >500 μg liter−1 near the sediments) and there was a correspondingly marked increase in the abundance of total bacterioplankton and methylotrophs with depth. In situ hybridizations and slot-blot hybridizations both indicated that type II methylotrophs (detected with a probe specific for the 9-α subgroup of Proteobacteria) were markedly less abundant than were type I and X methylotrophs (detected with a probe specific for the 10-γ subgroup of Proteobacteria). Received: 12 March 1996; Accepted: 2 October 1996  相似文献   

8.
Species-specific 16S rRNA-targeted, Cy3 (indocarbocyanine)-labeled oligonucleotide probes were designed and validated to quantify different Eubacterium species in human fecal samples. Probes were directed at Eubacterium barkeri, E. biforme, E. contortum, E. cylindroides (two probes), E. dolichum, E. hadrum, E. lentum, E. limosum, E. moniliforme, and E. ventriosum. The specificity of the probes was tested with the type strains and a range of common intestinal bacteria. With one exception, none of the probes showed cross-hybridization under stringent conditions. The species-specific probes were applied to fecal samples obtained from 12 healthy volunteers. E. biforme, E. cylindroides, E. hadrum, E. lentum, and E. ventriosum could be determined. All other Eubacterium species for which probes had been designed were under the detection limit of 107 cells g (dry weight) of feces−1. The cell counts obtained are essentially in accordance with the literature data, which are based on colony counts. This shows that whole-cell in situ hybridization with species-specific probes is a valuable tool for the enumeration of Eubacterium species in feces.  相似文献   

9.

Background  

It has recently been demonstrated that organism identifications can be recovered from mass spectra using various methods including base-specific fragmentation of nucleic acids. Because mass spectrometry is extremely rapid and widely available such techniques offer significant advantages in some applications. A key element in favor of mass spectrometric analysis of RNA fragmentation patterns is that a reference database for analysis of the results can be generated from sequence information. In contrast to hybridization approaches, the genetic affinity of any unknown isolate can in principle be determined within the context of all previously sequenced 16S rRNAs without prior knowledge of what the organism is. In contrast to the original RNase T1 cataloging method, when digestion products are analyzed by mass spectrometry, products with the same base composition cannot be distinguished. Hence, it is possible that organisms that are not closely related (having different underlying sequences) might be falsely identified by mass spectral coincidence. We present a convenient spectral coincidence function for expressing the degree of similarity (or distance) between any two mass-spectra. Trees constructed using this function are consistent with those produced by direct comparison of primary sequences, demonstrating that the inherent degeneracy in mass spectrometric analysis of RNA fragments does not preclude correct organism identification.  相似文献   

10.
Previous studies have shown the predominance of mycolic acid-containing filamentous actinomycetes (mycolata) in foam layers in activated sludge systems. Gordona (formerly Nocardia) amarae often is considered the major representative of this group in activated sludge foam. In this study, small-subunit rRNA genes of four G. amarae strains were sequenced, and the resulting sequences were compared to the sequence of G. amarae type strain SE-6. Comparative sequence analysis showed that the five strains used represent two lines of evolutionary descent; group 1 consists of strains NM23 and ASAC1, and group 2 contains strains SE-6, SE-102, and ASF3. The following three oligonucleotide probes were designed: a species-specific probe for G. amarae, a probe specific for group 1, and a probe targeting group 2. The probes were characterized by dissociation temperature and specificity studies, and the species-specific probe was evaluated for use in fluorescent in situ hybridizations. By using the group-specific probes, it was possible to place additional G. amarae isolates in their respective groups. The probes were used along with previously designed probes in membrane hybridizations to determine the abundance of G. amarae, group 1, group 2, bacterial, mycolata, and Gordona rRNAs in samples obtained from foaming activated sludge systems in California, Illinois, and Wisconsin. The target groups were present in significantly greater concentrations in activated sludge foam than in mixed liquor and persisted in anaerobic digesters. Hybridization results indicated that the presence of certain G. amarae strains may be regional or treatment plant specific and that previously uncharacterized G. amarae strains may be present in some systems.  相似文献   

11.
Target site inaccessibility represents a significant problem for fluorescence in situ hybridization (FISH) of 16S rRNA with oligonucleotide probes. Here, unlabeled oligonucleotides (helpers) that bind adjacent to the probe target site were evaluated for their potential to increase weak probe hybridization signals in Escherichia coli DSM 30083T. The use of helpers enhanced the fluorescence signal of all six probes examined at least fourfold. In one case, the signal of probe Eco474 was increased 25-fold with the use of a single helper probe, H440-2. In another case, four unlabeled helpers raised the FISH signal of a formerly weak probe, Eco585, to the level of the brightest monolabeled oligonucleotide probes available for E. coli. The temperature of dissociation and the mismatch discrimination of probes were not significantly influenced by the addition of helpers. Therefore, using helpers should not cause labeling of additional nontarget organisms at a defined stringency of hybridization. However, the helper action is based on sequence-specific binding, and there is thus a potential for narrowing the target group which must be considered when designing helpers. We conclude that helpers can open inaccessible rRNA regions for FISH with oligonucleotide probes and will thereby further improve the applicability of this technique for in situ identification of microorganisms.  相似文献   

12.
Two 16S rRNA-targeted oligonucleotide probes, Mcell-1026 and Mcell-181, were developed for specific detection of the acidophilic methanotroph Methylocella palustris using fluorescence in situ hybridization (FISH). The fluorescence signal of probe Mcell-181 was enhanced by its combined application with the oligonucleotide helper probe H158. Mcell-1026 and Mcell-181, as well as 16S rRNA oligonucleotide probes with reported group specificity for either type I methanotrophs (probes M-84 and M-705) or the Methylosinus/Methylocystis group of type II methanotrophs (probes MA-221 and M-450), were used in FISH to determine the abundance of distinct methanotroph groups in a Sphagnum peat sample of pH 4.2. M. palustris was enumerated at greater than 106 cells per g of peat (wet weight), while the detectable population size of type I methanotrophs was three orders of magnitude below the population level of M. palustris. The cell counts with probe MA-221 suggested that only 104 type II methanotrophs per g of peat (wet weight) were present, while the use of probe M-450 revealed more than 106 type II methanotroph cells per g of the same samples. This discrepancy was due to the fact that probe M-450 targets almost all currently known strains of Methylosinus and Methylocystis, whereas probe MA-221, originally described as group specific, does not detect a large proportion of Methylocystis strains. The total number of methanotrophic bacteria detected by FISH was 3.0 (±0.2) × 106 cells per g (wet weight) of peat. This was about 0.8% of the total bacterial cell number. Thus, our study clearly suggests that M. palustris and a defined population of Methylocystis spp. were the predominant methanotrophs detectable by FISH in an acidic Sphagnum peat bog.  相似文献   

13.
14.
15.
Based on the analysis of nucleotide sequences of 16S rRNA, oligonucleotide probes were designed for the detection and identification of representatives of the genus Desulfurococcus (kingdom Crenarchaeota of the domain Archaea). The detection procedure included obtaining PCR products on DNA isolated from pure cultures, enrichments, or natural samples with a designed Crenarchaeota-specific primer pair: Cren 7F (5"-TTCCGGTTGATCCYGCCGGACC-3") and Cren 518R (5"-GCTGGTWTTACCGCGGCGGCTGA-3"). The PCR products were hybridized with Dig-11-dUTP–labeled oligonucleotide probes targeting the genus Desulfurococcus (Dco 198, 5"-CGTTAACYCCYGCCACACC-3") and its species D. mobilis (Dco_mob 198, 5"-CGTTAACCCCTGCCACACC-3") and D. amylolyticus (Dco_amy 198, 5"-CGTTAACCCCCGCCACACC-3"). With the use of these primers and probes, four new strains isolated from hydrotherms of Kamchatka and Kunashir Island were identified as members of the speciesDesulfurococcus amylolyticus. Desulfurococcus representatives were detected in several natural samples, including a sample taken from a marine hydrotherm at Kunashir Island; this demonstrates that representatives of this genus occur not only in terrestrial but also in marine environments.  相似文献   

16.
We describe a rapid oligonucleotide probe design strategy based on subtractive hybridization which yields probes for 16S rRNA or rRNA genes of individual members of microbial communities that are specific within the context of those communities. This strategy circumvents the need to sequence many similar or identical clones of dominant members of a community. Radioactively labeled subfragments of a cloned 16S rRNA gene sequence for which a probe is required (target) were hybridized with biotinylated total 16S ribosomal DNA (rDNA) amplified from the microbial community, and the hybrids formed were subsequently discarded. The remaining enriched fragments were used to screen a library consisting of cloned subfragments of the target sequence by colony hybridization in order to identify the variable regions of the 16S rRNA gene with the required specificity. The sequencing of random clones in one 16S rDNA library demonstrated that only those clones with 100% sequence identity with the probe fragment were detected by it. Moreover, sequencing of other, randomly selected, probe-positive clones revealed 100% sequence identity with the probe. Probes developed in this way tended to correspond to more variable regions of the 16S rRNA if the target sequences were similar to the sequences of other clones in the library and to less variable regions if the target sequences were phylogenetically isolated within the clone library. Although the absolute specificity of the latter probes, as assessed by comparison with available database sequences, was lower than the absolute specificity of the probes from the more variable regions, they were specific within the context of the environmental samples from which they were derived.  相似文献   

17.
River microbial communities play an important role in global nutrient cycles, and aggregated bacteria such as those in epilithic biofilms may be major contributors. In this study the bacterial diversity of River Taff epilithon in South Wales was investigated. A 16S ribosomal DNA (rDNA) clone library was constructed and analyzed by partial sequencing of 76 of 347 clones and hybridization with taxon-specific probes. The epilithon was found to be very diverse, with an estimated 59.6% of the bacterial populations not accounted for by these clones. Members of the Cytophaga-Flexibacter-Bacteroides division (CFBs) were most abundant in the library, representing 25% of clones, followed by members of the α subdivision of the division Proteobacteria (α-Proteobacteria), γ-Proteobacteria, gram-positive bacteria, Cyanobacteria, β-Proteobacteria, δ-Proteobacteria, and the Prosthecobacter group. This study concentrated on the epilithic CFB populations, and a new set of degenerate 16S rDNA probes was developed to enhance their detection, namely, CFB560, CFB562, and CFB376. The commonly used probe CF319a/b may frequently lead to the underestimation of CFB populations in environmental studies, because it does not fully detect members of the division. CFB560 had exact matches to 95.6% of CFBs listed in the Ribosomal Database Project (release 8.0) small-subunit phylogenetic trees, compared to 60% for CF319a/b. The CFB probes detected 66 of 347 epilithon TAF clones, and 60 of these were partially sequenced. They affiliated with the RDP-designated groups Cytophaga, Sphingobacterium, Lewinella, and Cytophaga aurantiaca. CFB560 and CF319a/b detected 94% (62 of 66) and 48.5% (32 of 66) of clones, respectively, and therefore CFB560 is recommended for future use. Probe design in this study illustrated that multiple degenerate positions can greatly increase target range without adversely effecting specificity or experimental performance.  相似文献   

18.
Identification problems restrict quantitative ecological research on specific nanoflagellates. Identification by specific oligonucleotide probes permits use of flow cytometry for enumeration and measurement of size of nanoflagellates in statistically meaningful samples. Flow cytometry also permits measurement of intensity of probe binding by cells. Five fluorescent probes targeted to different regions of the small subunit rRNA of the common marine flagellate Paraphysomonas vestita all hybridized with cells of this flagellate. Cells fixed with trichloroacetic acid gave detectable signals at a probe concentration of 15 aM and specific fluorescence increased almost linearly to 1.5 fM, but at higher concentrations nonspecific binding increased sharply. Three flagellates, P. vestita, Paraphysomonas imperforata, and Pteridomonas danica, all bound a general eukaryotic probe approximately in proportion to their cell size, but the specific P. vestita probe gave 14 times more fluorescence with P. vestita than with either of the other flagellates. Cell fluorescence increased during the early growth of a batch culture and decreased toward the stationary phase; cell size changed in a comparable manner. Cell fluorescence intensity may allow inferences about growth rate, but whether fluorescence (assumed to reflect ribosome number) merely correlates with cell biomass or changes in a more complex manner remains unresolved.  相似文献   

19.
We report on the development and validation of a simple microarray method for the direct detection of intact 16S rRNA from unpurified soil extracts. Total RNAs from Geobacter chapellei and Desulfovibrio desulfuricans were hybridized to an oligonucleotide array consisting of universal and species-specific 16S rRNA probes. PCR-amplified products from Geobacter and Desulfovibrio were easily and specifically detected under a range of hybridization times, temperatures, and buffers. However, reproducible, specific hybridization and detection of intact rRNA could be accomplished only by using a chaperone-detector probe strategy. With this knowledge, assay conditions were developed for rRNA detection using a 2-h hybridization time at room temperature. Hybridization specificity and signal intensity were enhanced using fragmented RNA. Formamide was required in the hybridization buffer in order to achieve species-specific detection of intact rRNA. With the chaperone detection strategy, we were able to specifically hybridize and detect G. chapellei 16S rRNA directly from a total-RNA soil extract, without further purification or removal of soluble soil constituents. The detection sensitivity for G. chapellei 16S rRNA in soil extracts was at least 0.5 μg of total RNA, representing approximately 7.5 × 106 Geobacter cell equivalents of RNA. These results suggest that it is now possible to apply microarray technology to the direct detection of microorganisms in environmental samples, without using PCR.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号