首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Graphic presentation of weekly rates of change of algal biomass (expressed as chlorophyll a) and nutrient and dissolved oxygen concentrations can be regarded as harmonic oscillation motion. Maximum amplitudes of these oscillations provide a useful tool to assess the degree of stability of aquatic ecosystems in relation to their trophic state. Data sets from seven different lakes ranging from hypereutrophic to oligo-mesotrophic were processed using a computerized method. The high values of oscillation amplitudes of approximately 150 g l–1 wk–1 chlorophyll a, 500 g l–1 wk–1 ammonia nitrogen, 50 g l–1 wk–1 soluble reactive phosphorus and 10 mg l–1 wk–1 dissolved oxygen, indicated strong ecosystem instability, while low values of less than 10 g l–1 wk–1 of chlorophyll a, 20 g l–1 wk–1 ammonia nitrogen, 2 g l–1 wk–1 soluble reactive phosphorus, and 3 mg l–1 wk–1 dissolved oxygen represented a stable system. Oscillation amplitudes of the chlorophyll a values were found to be the most representative indicator of ecosystem stability.  相似文献   

2.
The oxygen consumption of engorged nymphs of Hyalomma asiaticum was measured at various intervals after drop-off from mice hosts. Duration of nymphal development to the emergence of adults was 25–32 days at 25°C. The oxygen consumption was high immediately after completing the blood meal (193–248 mm3 g-1 h-1 but decreased significantly 18 days later (at 25°C) to 45–65 mm3 g-1 h-1. It increased again before ecdysis (81–102 mm3 g-1 h-1, and also after ecdysis in freshly moulted adults (177–220 mm3 g-1 h-1. The oxygen consumption in 8-month-old adult ticks was very variable ranging from 40–42 to 172 mm3 g-1 h-1. Neither engorged nymphs nor unfed adult ticks showed any dependence of their respiratory metabolism on the photoperiodic regimes tested (LD 20:4 and LD 12:12, with or without transfer to an alternative photoperiod after engorgement of nymphs).  相似文献   

3.
Phytoplankton often develop various defense mechanisms in response to zooplankton grazing, such as spines and colonies. While it is now known that increased spine length and cells in a colony of members of the genus Scenedesmus, when zooplankton grazing is intense, helps in reducing zooplankton filtering rates, the effect of these defense mechanisms at the population level has been observed in few studies. Here we present data on the growth rates of four zooplankton species, Brachionus calyciflorus, B. patulus, Ceriodaphnia dubia and Daphnia pulex at two food levels using two species of colony-forming Scenedesmus spp.: S. acutus (cell length = 18.2 ± 0.4 µm; width = 4.2 ± 0.1 µm; average colony length = 90 µm; width: 21 µm) and S. quadricauda (cell length: 21 ± 0.5 width 7.5 ± 0.3 µm; average colony length: 84 µm; width: 30 µm). Whereas S. acutus had no spines, S. quadricauda had spines of 6–10 µm. Population growth experiments of the test rotifers and cladocerans were conducted in 100 ml containers with 50 ml of the medium with test algae. Algae concentrations used were: 13 and 52 mg dw l–1 of each of the two algal species offered in colonial forms. We used an initial inoculation zooplankter density of 1 ind. ml–1 for either of the rotifer species and 0.2 ind. ml–1 for either of the cladoceran species. In all, we had 64 test containers (4 test species of zooplankton × 2 test species of algae × 2 algal densities × 4 replicates). We found a significant effect of algal size on the growth rates of all the four tested species of zooplankton. The population growth rates of zooplankton ranged from –0.58 to 0.66 and were significantly higher on diet of S. acutus than of S. quadricauda. Thus, our study confirms that the larger colony size and the formation of spines in S. quadricauda were effective defenses against grazing by both rotifers and smaller sized cladoceran Ceriodaphnia dubia but that larger-bodied Daphnia pulex could exploit both the algal populations equally.  相似文献   

4.
Synopsis In this study we investigate the effect of food availability (zooplankton biomass) on the growth of Odontesthes bonariensis (Atherinidae) larvae. The larvae were stocked in four 45 m2 outdoor tanks at relatively high densities (100 and 200 larvae m–2). Because of the high stocking densities, the zooplankton biomass was depleted in all tanks. However, the patterns of food limitation, and particularly periods of severe food shortage, differed in tanks stocked at different densities. We could therefore, observe the effect of food limitation in larvae that differed in weight and age. The effects of variables suspected to influence O. bonariensis growth rates (age and weight of larvae, available zooplankton biomass, mean individual weight of available preys, total ingested prey weight, and mean weight of ingested preys) were investigated using standard multiple regression methods, and a model assuming: (1) an allometric relationship between maximum growth rates and weight of larvae, and (2) an inverse relationship between growth depression and the available zooplankton biomass. Both methods were consistent in showing that only the weight of larvae, and the availability of zooplankton prey had significant effects on the growth of O. bonariensis. The model's results additionally suggest that, if the observed growth rates are scaled by the maximum growth rate corresponding to the larva weight, the effect of zooplankton biomass is largely independent of age and weight of larvae.  相似文献   

5.
Joaquim-Justo  C.  Gosselain  V.  Descy  J. P.  Thomé  J. P. 《Hydrobiologia》1995,(1):249-257
To determine the contribution of food ingestion (trophic pathway) to PCB contamination of zooplankton in the river Meuse (Belgium), we used 14C-labelled algae (Dictyosphaerium ehrenbergianum) to measure ingestion and assimilation rates in the rotifer species Brachionus calyciflorus. When the concentration of algae in the culture medium varied from 20 103 to 200 103 algal cells ml–1 (0.12 to 1.18 mg Cl–1), the Brachionus calyciflorus ingestion rate varied from 0.25 ± 0.12 to 1.52 ± 0.43 ng C ind–1 h–1 at 15 °C and from 0.74 ± 0.17 to 5.93 ± 0.61 ng C ind–1 h–1 at 20 °C. The assimilation efficiency (ratio of the assimilation rate to the ingestion rate) measured in a culture medium containing 200 103 algal cells ml–1 was 55.7 ± 5.8%. Since the PCB concentration measured in the phytoplankton of the river Meuse is about 3 µg PCBs g–1 D.W., the estimated PCB contamination of zooplankton ascribable to the trophic pathway ranges from 0.22 ± 0.17 to 1.31 ± 0.77 µg PCBs g–1 D.W. at 15 °C and from 0.64 ± 0.34 to 5.10 ± 2.10 µg PCBs g–1 D.W. at 20°C. The lower figure based on measurements effected at 20 °C is comparable to the actual level measured in zooplankton samples collected in the river Meuse (0.69 ± 0.20 µg PCBs g–1 D.W.). The applicability of the formula used in our estimate was checked in a 48-hour in vitro experiment in which the rotifers were fed contaminated algae. The PCB accumulation measured in the rotifers was found to coincide with the calculated PCB contamination. Additional experiments were carried out to determine the contribution of the direct pathway to PCB contamination of zooplankton living in the river Meuse (0.02 µg PCBs l–1 of water; average dissolved organic matter: 3 mg C 1–1). The PCB concentration in zooplankton resulting from direct uptake of PCBs from the water was estimated at 0.19 ± 0.05 µg PCBs g–1 D.W. These results show that in zooplankton living in polluted ecosystems, PCBs are likely to accumulate via the trophic pathway to concentrations up to 30 times higher than by direct contamination. Furthermore, our estimates of PCB contamination via the trophic pathway coincide quite well with actual concentrations measured in situ.  相似文献   

6.
Zooplankton feeding in the fish Trichogaster pectoralis Regan   总被引:1,自引:1,他引:0  
The traditional culture method of Trichogaster pectoralis, using zooplankton produced from fermenting aquatic weeds as a source of food for the fry, leads to productions of ca 1 000 kg ha–1 a–1. If chicken manure is applied at a rate of ca 450 kg ha–1 month–1 instead, much more zooplankton is produced more rapidly, and fish production increases to ca 2 000 kg ha–1 a–1. This results from a higher survival rate of the fry, which feeds on rotifers, ciliates, copepods and cladocera until a size of ca 15.0 mm, when plant material also becomes important in the diet.  相似文献   

7.
Standard growth analysis procedures were used to study the production and distribution of dry matter in 3 1/2 to 5-year-old coffee trees through their first and into their second commercial fruiting year. The trees were growing in the field and were treated according to normal commercial practice. Up to fifteen fruiting and deblossomed trees were harvested on each of seven occasions, at intervals of 63–90 days. The dry weights of four aerial fractions, five root fractions and all fallen, picked and pruned material were recorded. The net assimilation rate (E) of deblossomed trees was as large as that recorded in East Africa for coffee seedlings (0·13 g dm-2wk-1). Fruiting trees increased in dry weight faster than deblossomed trees, even when their leaf area was 30% smaller. Their E was up to 0·19 g dm-2wk-1when expressed on a leaf area basis and up to 0·16 g dm-2wk-1even when the total green fruit surface area was included in the calculation. In the hot, dry season, January–February 1968, all parts of the trees increased in dry weight relatively slowly, except the thin roots (< 3 mm diameter) which, in this season, took about 10% of the dry weight increment. The trees had been pruned in December and E of deblossomed trees was only 0·09 g dm-2wk-1. Flushes of shoot growth occurred at the beginning of the Long Rains 1967 and 1968 (February–March). During the 1967 shoot growth flush, 61% of the dry weight increment was used in the production of new, large leaves with a mean specific leaf area of over 140 cm2g-1. The thin roots took about 10 % of the increment, but the thicker roots increased in weight very slowly. The branches and trunk extended rapidly, but their radial growth was relatively slow. Following the shoot growth flushes, the leaf area ratio of the trees was large (0·38 dm2g-1in 1967) and during the Long Rains (April–June 1967, 1968), when conditions were favourable for photosynthesis (E 0·13 g dm-2wk-1), all parts increased in dry weight relatively rapidly, although in 1968 the thin roots took as little as 3 % of the total increment. Leaf area ratio decreased during the Long Rains owing to a large decrease in specific leaf area (in 1967: 118 to 95 cm2g-1). Pruning was carried out in June and new leaf production during the cool, dry season, July to mid-September, was very slow. Consequently, the total dry weight increase of the trees during this season was relatively small, although the E of deblossomed trees was 0·13 g dm-2wk-1. The leaves, which took 33 % of the increment, decreased further in specific leaf area (to 83 cm2g-1) and most root fractions increased in dry weight rapidly, the thin ones taking 17 % of the increment. Light fruiting in 1967 did not affect the seasonal periodicity in growth described. Both light and heavy fruiting tended, eventually, to lessen the dry weight increase of leaves and thin roots proportionately more than that of the trunk and thick roots. In 1968 fruiting trees retained over 8000 fruits per tree, which took over 70 % of the dry weight increment during the 1968 Long Rains, and became 36 % of the trees' dry weight. Some rootlets on these trees decreased in weight. Aspects of the productivity, growth periodicity and fruiting of coffee are discussed, and some management implications are noted.  相似文献   

8.
In situ growth of heterotrophic nanoflagellates (HNF) in Lake Donghu, a eutrophic shallow lake in mainland China, was studied from January 1999 to March 2000 using a modified Weisse protocol. The study results indicated that the growth rates of HNF showed pronounced seasonal variation (–0.37–1.25 d–1), reaching the maximum during spring to early summer. When the water temperature was higher than 25.5°C, HNF growth was inversely proportional to water temperature. There was an effect by bacterial abundance and autotrophic picoplankton on HNF growth that depended on location. HNF biomass was the highest in late spring, and the HNF production ranged from –2.25 to 35.45 mg l–1 d–1 with mean of 3.17 mg l–1d–1. When considered in the context of biomass and production data for zooplankton in Lake Donghu, it was evident that HNF contributed significantly to the total zooplankton production in Lake Donghu. These in situ studies indicate that temperature and food supply are the major determinants of HNF abundance and productivity.  相似文献   

9.
The stump and root systems of Scots pine (Pinus sylvestris) and field-layer vegetation were sampled before (1984) and three growing seasons after drainage and fertilization (1987) of a low-shrub pine bog. Average below-ground biomass of the field layer was 548 gDW m–2 in 1984, with no significant treatment effects during experimentation. The stump-plus-root biomass of the pine stands was 1464 gDW m–2 in the virgin state, and had increased to 1854 gDW m–2 three years after the NPK-fertilizer treatment. The distribution over fractions also changed with this treatment. The fraction of fine roots ( < 1 mm) in stump-root biomass increased from 4% (56 gDW m–2) to 11% (196 gDW m–2), while the other compartments changed less. Total pine root length was 729 mm–2 in 1984. Root length increased by 94% to 1380 mm–2 on NPK-fertilized plots. Most of the fine pine roots were in the surface layer (0–10 cm), 79% in 1984 and 88% in 1987, and few pine roots were deeper than 20 cm. Maximum root length of fine pine roots ( < 1 mm) was estimated to be 2710 mm–2 at about 800 gDW m–2 (NPK treatment), and the corresponding maximum for small pine roots (=1–10 mm) was 227 mm–2 at 809 gDW m–2. Drainage stimulated net growth of fine roots, but this treatment also caused higher mortality rates of small roots. The fine roots responded to fertilization with higher net growth rate, and secondary growth of the large roots ( > 10 mm) was improved. The observed changes in root biomass and structure are explained as strategic adaptations to altered hydrological and nutritional circumstances in the root zone after drainage and fertilization.  相似文献   

10.
The zooplankton community of the brackish part of the Westerschelde estuary (November 1989–October 1990) was dominated by two calanoid copepods, Eurytemora affinis and Acartia tonsa. Eurytemora was present during a longer period of the year and was much more important in terms of total abundances and biomasses than Acartia.The secondary production of these species was estimated by means of the growth rate method, using weight-specific growth rates obtained from laboratory cultures (Eurytemora) or from the literature (Acartia).Due to the substantially higher growth rates of Acartia compared to Eurytemora, total yearly productions of both communities were comparable, notwithstanding the large discrepancies in biomass. They amounted to about 5 and 6 g C m–2 y–1 by Acartia and Eurytemora respectively.The food needed to realise this production was estimated to be about 14 and 17 g C m–2 y–1 by Acartia and Eurytemora respectively. Provided that the copepods are able to selectively ingest the phytoplankton, in situ net production provides sufficient carbon for zooplankton demands for a short period of the year only. As phytoplankton standing stock is very low and net phytoplankton productivity is negative from late fall to early spring, nutritional demands of the copepods have to be fulfilled by other than algal food at least during this period of the year.Although the copepods in the brackish part can have an important impact on some food items, their contribution to total carbon fluxes in the brackish zone is negligible: each year some 6% of all consumed carbon in the brackish part of the estuary passes through the copepod food web.  相似文献   

11.
Data on phosphate excretion rates of zooplankton are based on measurements using the pelagic crustacean zooplankton of Lake Vechten and laboratory-cultured Daphnia galeata. In case of Daphnia sp we measured the effects of feeding on P-rich algae and P-poor algae (Scenedesmus) as food on the P-excretion rates at 20°C. The excretion rates of the natural zooplankton community, irrespective of the influence of the factors mentioned, varied by an order of magnitude: 0.025–0.275µg PO4-Pmg–1C in zooplankton (C zp ) h–1. The temperature accounted for about half the observed variation in excretion rates. The mean excretion rates in the lake, computed for 20°C, varied between 0.141 and 0.260 µg Pmg–1C zp h–1. Based on data of zooplankton biomass in the lake the P-regeneration rates by zooplankton covered between 22 and 239% of the P-demand of phytoplankton during the different months of the study period.In D. galeata, whereas the C/P ratios of the Scenedesmus used as food differed by a factor 5 in the experiments, the excretion rates differed by factor 3 only. Despite the higher P-excretion rates (0.258± 0.022 µg PO4-P mg–1 C h–1) of the daphnids fed with P-rich food than those fed with P-poor food (0.105 ± 0.047 µg PO4-P mg–1 C hp–1), both the categories of the animals were apparently conserving P. A survey of the literature on zooplankton excretion shows that in Daphnia the excretion rates vary by a factor 30, irrespective of the species and size of animals and method of estimation and temperature used.About two-thirds of this variation can be explained by size and temperature. A major problem of comparability of studies on P-regeneration by zooplankton relates to the existing techniques of P determination, which necessitates concentrating the animals several times above the in situ concentration (crowding) and prolonged experimental duration (starving), both of which manifest in marked changes that probably lead to underestimation of the real rates.  相似文献   

12.
When grown photoautotrophically, Chlorella zofingiensis strain CCAP 211/14 accumulates a significant amount of valuable carotenoids, namely astaxanthin and lutein, of increasing demand for use as feed additives in fish and poultry farming, as colorants in food, and in health care products. Under standard batch-culture conditions, this microalgal strain exhibits high values of both growth rate (about 0.04 h–1) and standing cell population (over 1011 cells l–1, or 7 g dry weight l–1). Lutein, in a free (unesterified) form, was the prevalent carotenoid during early stages of cultivation (over 0.3 pg cell–1, equal to 4 mg g–1 dry weight, or 20 mg l–1 culture), whereas esterified astaxanthin accumulated progressively, to reach a maximum (over 0.1 pg cell–1, equal to 1.5 mg g–1 dry weight, or 15 mg l–1 culture) in the late stationary phase. A differential response of lutein and astaxanthin accumulation was also recorded with regard to the action of some environmental and nutritional factors. C. zofingiensis CCAP 211/14 represents a unique model system for analyzing the differential regulation of the levels of primary (lutein) and secondary (astaxanthin) carotenoids. Relevant also from the biotechnological viewpoint, this photosynthetic organism, with outstanding attributes for fast photosynthetic growth and carotenoid accumulation, might prove most valuable for its application to the mass production of either or both lutein and astaxanthin.  相似文献   

13.
Juta Haberman 《Hydrobiologia》1996,338(1-3):113-123
L. Peipsi is one of the richest fish lakes in Europe. Planktivorous smelt dominates in the fish fauna. The abundance of zooplankton fluctuates between 43 600–2241 500 ind m–3, with the average 974 000 ind m–3, biomass ranges from 0,09–3,69 g m–3, with the average 1,86 g m–3. Since the 1960s the abundance of rotifers has risen considerably while the mean zooplankter weight (B/N) has decreased from 0.005 mg to 0.004 mg. Zooplankton production (herbivores 20.6, predators 1.8, whole zooplankton community 22.4 g C m–2 per period between May and October) can be considered high. Predatory zooplankton eats on an average 50% of the production of herbivorous zooplankton; about 50% of the whole zooplankton production (PFilt + Pred) reaches fishes. The production of herbivorous zooplankton constitutes 10.1% of primary production. This ratio indicates a direct relationship between zoo- and phytoplankton in the food chain; the detrital food chain seems of little importance. About 6% of phytoplankton energy reaches fishes. The transformation of energy in the food web is efficient. On the basis of zooplankton L. Peipsi can be considered a moderately eutrophic or meso-eutrophic lake.  相似文献   

14.
Olsson  Håkan  Blomqvist  Peter  Olofsson  Hans 《Hydrobiologia》1992,(1):147-155
Lake Hecklan, in central Sweden, was fertilized with phosphorus and nitrogen during thermal stratification (late May-early Oct) 1984–1987. The nutrient additions were relatively small and raised the total phosphorus concentrations from 6 to 10 µg l–1. The working hypothesis was that this moderate increase in the phosphorus concentration could increase the phytoplankton biomass without adverse changes in the planktonic community structure. The fertilization increased the phytoplankton biomass from 0.1 to a maximum of 2 mm3 l–1. Chrysophyceae and Cryptophyceae dominated throughout the experimental period. Thus, the phytoplankton composition remained typical for a Swedish forest lake and provided a potential for increased zooplankton growth. An increased growth of zooplankton was indicated by increased biomass of Cladocera and Copepoda in 1984 and 1985, and by increased fecundity of herbivorous zooplankton.  相似文献   

15.
The suspension feeding of Bithynia tentaculata was tested in laboratory experiments. The animals were fed in 1-1 aerated glass beakers, and filtration rates were calculated from changes in cell concentrations during the 6-h experiment. Temperature influenced the filtering rate, with minimum values of 5ml · ind–1 · h–1 at 5° C and maxima of 17.2 ml · ind–1 · h–1 at 18° C. Three food species of different size, motility and cell surface characteristics (Chlamydomonas reinhardii, Chlorella vulgaris and Chlorogonium elongatum) did not affect filtration rates. Suspension feeding increased with increasing food concentrations up to 12 nl · ml–1, above which feeding rate was kept constant by lowering the filtering rates. Even the smallest animals tested (<4 mm body length) were found to be feeding on suspended food at a rate of 2.7 ml · ind–1 · h–1, and increasing rates up to 8.4 ml were found in the 6–7 mm size class. All size classes of Bithynia showed a circannual fluctuation of their filtration rates. The ecological consequences of Bithynia's ability to switch between two feeding modes, grazing and suspension feeding, are discussed.  相似文献   

16.
On the early growth of 0+ perch, Perca fluviatilis, in Windermere   总被引:1,自引:0,他引:1  
SUMMARY. The growth in length and weight (wet and dry) of 0+ perch Perca fluviatilis during their first summer of life in Windermere, has been investigated. Two major stanzas, occurring during and after metamorphosis, characterize the growth of 0+ perch in Windermere. The change from one stanza to another takes place between six and eight weeks after hatching. The exponential rate of growth in length was 0.26 and 0.27 mm mm−1 week−1 for the first stanzas of 1975 and 1976, respectively, and decreased to about 0.08 and 0.07 mm mm−1 week−1 for the second stanzas of the same years. Similarly, the growth in both wet and dry weights decreased from the first to the second stanza. Growth of 0+ perch was found to be logistic, and could not be described by the von Bertalanffy growth curve. The relationship between weight and length was allometric and the power values for length were, for wet weight: 4.154 (in 1975) and 4.033 (in 1976) for the first stanza and 2.400 (in 1975) and 2.734 (in 1976) for the second stanza; for dry weight: 3.988 (1975) and 3.971 (1976) for the first stanza and 3.066 (1975) and 2.651 (1976) for the second stanza. Half of the total growth was completed in 47% (1975) and 40% (1976) of the total growth period to the end of the summer.  相似文献   

17.
B. Azoulay  M. Gophen 《Hydrobiologia》1992,246(3):251-258
Interactions between the larvae of Mirogrex terraesanctae (Steinitz, 1952) in Lake Kinneret, Israel, and their zooplankton prey were studied experimentally. Prey species preference and size selectivities were measured. Larvae were hatched in the lab from eggs collected in the field, and fed different food items in various concentrations. The food items included lake zooplankton, algae, and commercial pellets. It was shown that small, first feeding larvae (7–8.5 mm SL) prefer small bodied zooplankters (< 180 µ). The effect of these food sources on larval growth was measured. It was found that larval Mirogrex grew at a higher rate when fed zooplankton prey sized from 63 µ–250 µ. Food items smaller than 63 µ, larger than 250 µ and Scenedesmus sp., produced less than optimal growth rates. The importance of Mirogrex feeding habits and their potential influence on the Kinneret ecosystem is considered.  相似文献   

18.
P. E. Ross  M. Munawar 《Hydrobiologia》1988,163(1):173-177
On three research cruises in 1981, zooplankton community filtration rates were measured at 4 stations: Saginaw Bay, mid-Lake Huron, Georgian Bay and North Channel. For all four stations, the highest rates were observed during the late-September cruise. The maximum observed rate was 137 000 ml d–1 m–3, while the lowest rate was 7200 ml d–1 m–3. The grazing experiments were performed on three size classes of radioactively labelled algal food (0.45–5 µm, 5–20 µm and 20–64 µm). In 11 of 12 experiments, the smallest size class of food yielded the highest filtration rate. For the late-May cruise we used published data on phytoplankton biomass for the Georgian Bay and North Channel stations to calculate community feeding rates of 0.09 and 0.015 mg C mg C m–3 d–1, respectively, and percent cropping rates of 0.74 and 0.35 per day, respectively. A comparison of our feeding rates to literature values for zooplankton biomass suggests that algal food alone may not be sufficient to sustain zooplankton growth at those stations.  相似文献   

19.
Factors affecting the early life history of yellow perch,Perca flavescens   总被引:2,自引:0,他引:2  
Synopsis From 1979 to 1981 we followed the movement, diet, and growth of yellow perch,Perca flavescens, for their first 70 days after hatching in Lake Itasca, Minnesota. Perch spawned inshore during early spring; hatching occurred 10–20 days after spawning. Newly hatched perch were 5.6–6.2 mm total length (TL). Soon after hatching the larvae moved into the limnetic zone where they began feeding. This movement is probably a mechanism to escape intense predation in the littoral zone. Normally the first food of perch was immature copepods, but within a week they incorporated all common zooplankters into their diet. When the perch reached 25 mm TL (about day 40) they returned to the littoral zone, where they ate larger and more abundant prey than was present in the limnetic habitat. There is no correlation between growth rates and zooplankton abundances, which suggests that food quantity is not a limiting factor in the early life history of perch in Lake Itasca.  相似文献   

20.
Synopsis Laboratory experiments were conducted to examine changes in behavior of red hake,Urophycis chuss, under decreasing concentrations of dissolved oxygen (DO). Since the ecological requirements of this species change with age, responses were measured for three different groups: (1) age 0+, = 89 mm total length (TL); (2) age 1+, = 238 mm TL; and (3) age 2–3+, = 397 mm TL. As DO decreased from 8–10 mg l-1 to < 0.5 mg l-1, changes were evident in active time, water column activity, range of horizontal movement, food searching, and agonistic behavior. Age 0+ fish were most sensitive, moving up into the water column and swimming continuously as DO levels fell below 4.2 mg l-1. Age 2–3+ fish were the least responsive, remaining on the substrate and increasing only their range of movement at concentrations below 3 mg l-1. Responses of age 1 + fish were variable, possibly reflecting a transition stage between the younger and older fish. Common to all groups was the decrease and eventual cessation of food searching.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号