首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
alpha-Synuclein (alpha-Syn) is implicated in the pathogenesis of Parkinson's Disease, genetically through missense mutations linked to early onset disease and pathologically through its presence in Lewy bodies. alpha-Syn is phosphorylated on serine residues; however, tyrosine phosphorylation of alpha-Syn has not been established (, ). A comparison of the protein sequence between Synuclein family members revealed that all four tyrosine residues of alpha-Syn are conserved in all orthologs and beta-Syn paralogs described to date, suggesting that these residues may be of functional importance (). For this reason, experiments were performed to determine whether alpha-Syn could be phosphorylated on tyrosine residue(s) in human cells. Indeed, alpha-Syn is phosphorylated within 2 min of pervanadate treatment in alpha-Syn-transfected cells. Tyrosine phosphorylation occurs primarily on tyrosine 125 and was inhibited by PP2, a selective inhibitor of Src protein-tyrosine kinase (PTK) family members at concentrations consistent with inhibition of Src function (). Finally, we demonstrate that alpha-Syn can be phosphorylated directly both in cotransfection experiments using c-Src and Fyn expression vectors and in in vitro kinase assays with purified kinases. These data suggest that alpha-Syn can be a target for phosphorylation by the Src family of PTKs.  相似文献   

2.
Staphylococcus aureus, a common cause of nosocomial infections, is able to invade eukaryotic cells by indirectly engaging beta1 integrin-containing host receptors, whereas non-pathogenic Staphylococcus carnosus is not invasive. Here, we identify intracellular signals involved in integrin-initiated internalization of S. aureus. In particular, the host cell actin cytoskeleton and Src family protein-tyrosine kinases (PTKs) are essential to mediate S. aureus invasion. Src PTKs are activated in response to pathogenic S. aureus, but not S. carnosus. In addition, pharmacological and genetic interference with Src PTK function reduces bacterial internalization. Importantly, Src PTK-deficient cells are resistant to S. aureus invasion, demonstrating the essentiality of host Src PTKs in integrin-mediated uptake of this pathogen.  相似文献   

3.
4.
5.
CD148 is a receptor-like protein-tyrosine phosphatase known to inhibit transduction of mitogenic signals in non-hematopoietic cells. Similarly, in the hematopoietic lineage, CD148 inhibited signal transduction downstream of T cell receptor. However, it also augmented immunoreceptor signaling in B cells and macrophages via dephosphorylating C-terminal tyrosine of Src family kinases (SFK). Accordingly, endogenous CD148 compensated for the loss of the main SFK activator CD45 in murine B cells and macrophages but not in T cells. Hypothetical explanations for the difference between T cells and other leukocyte lineages include the inability of CD148 to dephosphorylate a specific set of SFKs involved in T cell activation or the lack of CD148 expression during critical stages of T cell development. Here we describe striking differences in CD148 expression between human and murine thymocyte subsets, the only unifying feature being the absence of CD148 during the positive selection when the major developmental block occurs under CD45 deficiency. Moreover, we demonstrate that similar to CD45, CD148 has both activating and inhibitory effects on the SFKs involved in TCR signaling. However, in the absence of CD45, activating effects prevail, resulting in functional complementation of CD45 deficiency in human T cell lines. Importantly, this is independent of the tyrosines in the CD148 C-terminal tail, contradicting the recently proposed phosphotyrosine displacement model as a mechanism of SFK activation by CD148. Collectively, our data suggest that differential effects of CD148 in T cells and other leukocyte subsets cannot be explained by the CD148 inability to activate T cell SFKs but rather by its dual inhibitory/activatory function and specific expression pattern.  相似文献   

6.
It is widely accepted that receptor protein-tyrosine kinases (RTKs) are activated upon dimerization by binding to their extracellular ligands. However, EGF receptor (EGFR) dimerization per se does not require ligand binding. Instead, its cytoplasmic kinase domains have to form characteristic head-to-tail asymmetric dimers to become active, where one 'activator' domain activates the other 'receiver' domain. The non-catalytic, cytoplasmic regions of RTKs, namely the juxtamembrane and carboxy terminal portions, also regulate kinase activity. For instance, the juxtamembrane region of the RTK MuSK inhibits the kinase domain probably together with a cellular factor(s). These findings suggest that RTKs could be activated by cytoplasmic proteins. Indeed, Dok-7 and cytohesin have recently been identified as such activators of MuSK and EGFR, respectively. Given that failure of Dok-7 signaling causes myasthenia, and inhibition of cytohesin signaling reduces the proliferation of EGFR-dependent cancer cells, cytoplasmic activators of RTKs may provide new therapeutic targets.  相似文献   

7.
The association of the SH3 (Src homology 3) domain of SFKs (Src family kinases) with protein partners bearing proline-rich motifs has been implicated in the regulation of SFK activity, and has been described as a possible mechanism of relocalization of SFKs to subcellular compartments. We demonstrate in the present study for the first time that p13, an accessory protein encoded by the HTLV-1 (human T-cell leukaemia virus type?1), binds the SH3 domain of SFKs via its C-terminal proline-rich motif, forming a stable heterodimer that translocates to mitochondria by virtue of its N-terminal mitochondrial localization signal. As a result, the activity of SFKs is dramatically enhanced, with a subsequent increase in mitochondrial tyrosine phosphorylation, and the recognized ability of p13 to insert itself into the inner mitochondrial membrane and to perturb the mitochondrial membrane potential is abolished. Overall, the present study, in addition to confirming that the catalytic activity of SFKs is modulated by interactors of their SH3 domain, leads us to hypothesize a general mechanism by which proteins bearing a proline-rich motif and a mitochondrial localization signal at the same time may act as carriers of SFKs into mitochondria, thus contributing to the regulation of mitochondrial functions under various pathophysiological conditions.  相似文献   

8.
Src family protein-tyrosine kinases, which play an important role in signal integration, have been implicated in tumorigenesis in multiple lineages, including breast cancer. We demonstrate, herein, that Src kinases regulate the phosphatidylinositol 3-kinase (PI3K) signaling cascade via altering the function of the PTEN tumor suppressor. Overexpression of activated Src protein-tyrosine kinases in PTEN-deficient breast cancer cells does not alter AKT phosphorylation, an indicator of signal transduction through the PI3K pathway. However, in the presence of functional PTEN, Src reverses the activity of PTEN, resulting in an increase in AKT phosphorylation. Activated Src reduces the ability of PTEN to dephosphorylate phosphatidylinositols in micelles and promotes AKT translocation to cellular plasma membranes but does not alter PTEN activity toward water-soluble phosphatidylinositols. Thus, Src may alter the capacity of the PTEN C2 domain to bind cellular membranes rather than directly interfering with PTEN enzymatic activity. Tyrosine phosphorylation of PTEN is increased in breast cancer cells treated with pervanadate, suggesting that PTEN contains sites for tyrosine phosphorylation. Src kinase inhibitors markedly decreased pervanadate-mediated tyrosine phosphorylation of PTEN. Further, expression of activated Src results in marked tyrosine phosphorylation of PTEN. SHP-1, a SH2 domain-containing protein-tyrosine phosphatase, selectively binds and dephosphorylates PTEN in Src transfected cells. Both Src inhibitors and SHP-1 overexpression reverse Src-induced loss of PTEN function. Coexpression of PTEN with activated Src reduces the stability of PTEN. Taken together, the data indicate that activated Src inhibits PTEN function leading to alterations in signaling through the PI3K/AKT pathway.  相似文献   

9.
Regulation of Btk by Src family tyrosine kinases.   总被引:5,自引:1,他引:4       下载免费PDF全文
Loss of function of Bruton's tyrosine kinase (Btk) results in X-linked immunodeficiencies characterized by a broad spectrum of signaling defects, including those dependent on Src family kinase-linked cell surface receptors. A gain-of-function mutant, Btk*, induces the growth of fibroblasts in soft agar and relieves the interleukin-5 dependence of a pre-B-cell line. To genetically define Btk signaling pathways, we used a strategy to either activate or inactivate Src family kinases in fibroblasts that express Btk*. The transformation potential of Btk* was dramatically increased by coexpression with a partly activated c-Src mutant (E-378 --> G). This synergy was further potentiated by deletion of the Btk Src homology 3 domain. Downregulation of Src family kinases by the C-terminal Src kinase (Csk) suppressed Btk* activation and biological potency. In contrast, kinase-inactive Csk (K-222 --> R), which functioned as a dominant negative molecule, synergized with Btk* in biological transformation. Activation of Btk* correlated with increased phosphotyrosine on transphosphorylation and autophosphorylation sites. These findings suggest that the Src and Btk kinase families form specific signaling units in tissues in which both are expressed.  相似文献   

10.
11.
Voltage-gated potassium (Kv) channels are a complex and heterogeneous family of proteins that play major roles in brain and cardiac excitability. Although Kv channels are activated by changes in cell membrane potential, tyrosine phosphorylation of channel subunits can modulate the extent of channel activation by depolarization. We have previously shown that dephosphorylation of Kv2.1 by the nonreceptor-type tyrosine phosphatase PTPepsilon (cyt-PTPepsilon) down-regulates channel activity and counters its phosphorylation and up-regulation by Src or Fyn. In the present study, we identify tyrosine 124 within the T1 cytosolic domain of Kv2.1 as a target site for the activities of Src and cyt-PTPepsilon. Tyr(124) is phosphorylated by Src in vitro; in whole cells, Y124F Kv2.1 is significantly less phosphorylated by Src and loses most of its ability to bind the D245A substrate-trapping mutant of cyt-PTPepsilon. Phosphorylation of Tyr(124) is critical for Src-mediated up-regulation of Kv2.1 channel activity, since Y124F Kv2.1-mediated K(+) currents are only marginally up-regulated by Src, in contrast with a 3-fold up-regulation of wild-type Kv2.1 channels by the kinase. Other properties of Kv2.1, such as expression levels, subcellular localization, and voltage dependence of channel activation, are unchanged in Y124F Kv2.1, indicating that the effects of the Y124F mutation are specific. Together, these results indicate that Tyr(124) is a significant site at which the mutually antagonistic activities of Src and cyt-PTPepsilon affect Kv2.1 phosphorylation and activity.  相似文献   

12.
Src family kinases (SFKs) are key factors in the process of coupling signals from the cell surface to intracellular machinery and critically involved in the regulation of many neural functions mediated through growth factors, G-protein-coupled receptors or ligand-gated ion channels. The three minireviews here focus on recent findings dealing with the regulation of N-methyl-d-aspartate (NMDA) receptors by SFKs.  相似文献   

13.
14.
We have sought to identify candidate substrates for src family protein-tyrosine kinases potentially important for transformation. Transfected NIH/3T3 cells, each overexpressing a normal or activated version of the fyn, fgr, or src translational product, were examined using antibody to phosphotyrosine as a probe. Expression of each cDNA induced similar but distinct patterns of tyrosine phosphorylated cellular proteins, with the extent of phosphorylation being greatest in cells expressing an activated kinase. A 70-kDa tyrosine-phosphorylated protein was found to associate with the activated fyn gene product. A protein designated p130, tyrosine phosphorylated in vitro, and in vivo, was found to physically associate with the activated product of each src family gene examined. Physical interaction of three different highly transforming tyrosine kinases with a common cellular protein suggests that p130 may play an important role in transformation induced by src family kinases.  相似文献   

15.
Src class protein-tyrosine kinases bind to and phosphorylate the nicotinic acetylcholine receptor of skeletal muscle. This study provided evidence for the functional importance of Src kinases in regulating the nicotinic acetylcholine receptor at the neuromuscular junction. Three Src class kinases, Fyn, Fyk, and Src, each formed a complex with the endplate-specific cytoskeletal protein rapsyn. In addition, cellular phosphorylation by each kinase was stimulated by rapsyn in heterologous transfected cells. Several lines of evidence supported rapsyn as a substrate for Src kinases. Most importantly, rapsyn regulation of Fyn, Fyk, and Src resulted in phosphorylation of the nicotinic acetylcholine receptor beta and delta subunits and anchoring of the receptor to the cytoskeleton. Both nicotinic acetylcholine receptor phosphorylation and cytoskeletal anchoring were blocked by the Src kinase-selective inhibitor herbimycin A. Rapsyn alone also induced a modest increase in nicotinic acetylcholine receptor phosphorylation and cytoskeletal translocation. However, inhibition by herbimycin A and a catalytically inactive dominant negative Src demonstrated that the effects of rapsyn were mediated by endogenous Src kinases. These data support the importance of Src class kinases for stabilization of the nicotinic acetylcholine receptor at the endplate during synaptic differentiation at the neuromuscular junction.  相似文献   

16.
Proteins encoded by oncogenes such as v-fps/fes, v-src, v-yes, v-abl, and v-fgr are cytoplasmic protein tyrosine kinases which, unlike transmembrane receptors, are localized to the inside of the cell. These proteins possess two contiguous regions of sequence identity: a C-terminal catalytic domain of 260 residues with homology to other tyrosine-specific and serine-threonine-specific protein kinases, and a unique domain of approximately 100 residues which is located N terminal to the kinase region and is absent from kinases that span the plasma membrane. In-frame linker insertion mutations in Fujinami avian sarcoma virus which introduced dipeptide insertions into the most stringently conserved segment of this N-terminal domain in P130gag-fps impaired the ability of Fujinami avian sarcoma virus to transform rat-2 cells. The P130gag-fps proteins encoded by these transformation-defective mutants were deficient in protein-tyrosine kinase activity in rat cells. However v-fps polypeptides derived from the mutant Fujinami avian sarcoma virus genomes and expressed in Escherichia coli as trpE-v-fps fusion proteins displayed essentially wild-type enzymatic activity, even though they contained the mutated sites. Deletion of the N-terminal domain from wild-type and mutant v-fps bacterial proteins had little effect on autophosphorylating activity. The conserved N-terminal domain of P130gag-fps is therefore not required for catalytic activity, but can profoundly influence the adjacent kinase region. The presence of this noncatalytic domain in all known cytoplasmic tyrosine kinases of higher and lower eucaryotes argues for an important biological function. The relative inactivity of the mutant proteins in rat-2 cells compared with bacteria suggests that the noncatalytic domain may direct specific interactions of the enzymatic region with cellular components that regulate or mediate tyrosine kinase function.  相似文献   

17.
Treatment of B lymphocytes with antibodies to membrane immunoglobulin (Ig) stimulates protein tyrosine phosphorylation. We have examined the phosphorylation in vitro of proteins associated with membrane Ig. The Src family protein tyrosine kinases p53/56lyn, p59fyn, and p56lck are associated with membrane Ig in spleen B cells and B-cell lines and undergo phosphorylation in vitro. The pattern of expression of Src family protein tyrosine kinases in B cells varied. Our studies suggest that multiple kinases can potentially interact with membrane Ig and that within any one B-cell type, all of the Src family kinases expressed can be found in association with membrane Ig. We also observed that the Ig-associated Ig alpha protein, multiple forms of Ig beta, and proteins of 100 and 25 kDa were tyrosine phosphorylated in vitro. The 100- and 25-kDa proteins remain unidentified.  相似文献   

18.
CSK: a protein-tyrosine kinase involved in regulation of src family kinases.   总被引:32,自引:0,他引:32  
The functions of src family protein-tyrosine kinases are thought to be regulated negatively by the phosphorylation of highly conserved tyrosine residues close to their carboxyl termini. Recently we have purified and cloned a protein-tyrosine kinase (designated as CSK) that can specifically phosphorylate the negative regulatory site of p60c-src. To elucidate the relationship between CSK and other types of src family kinases, we investigated the tissue distribution of CSK and examined whether CSK could phosphorylate the negative regulatory sites of src family kinases other than p60c-src. Western blot analysis indicated that CSK was enriched at the highest level in lymphoid tissues in which the expression of p60c-src is considerably lower than those of other types of src family kinases. CSK phosphorylated p56lyn and p59fyn, which are known to be expressed in lymphoid tissues at a relatively high level. The putative regulatory site, tyrosine 508, was found to be essential for phosphorylation in p56lyn, and the kinase activities of these src family kinases were repressed by phosphorylation with CSK. These findings raise the possibility that CSK might act as a universal regulator for src family kinases.  相似文献   

19.
Monteiro AN 《Biochimie》2006,88(7):905-911
When cells are treated with Ca(2+) and Ca(2+)-ionophore, c-Src kinase activity increases, whereas c-Yes kinase activity decreases. This opposite modulation can be reproduced in an in vitro reconstitution assay and is dependent on Ca(2+) and on soluble factors present in cell lysates. Since c-Src and c-Yes share a high degree of homology, with the exception of their N-terminal "unique" domains, their activity was thought to be coordinately regulated. To assess the mechanism of regulation we generated stable cell lines expressing eight different constructs containing wild type c-Src and c-Yes, as well as swaps of the unique domain alone, unique and Src homology 3 (SH3) domains together and the SH3 domain alone. Swapping of the unique domains was not sufficient to reverse the regulation of the chimeric molecules. On the other hand, chimeras containing swaps of the unique plus the SH3 domains displayed reverse regulation, implicating both domains in the regulation of kinase activity by Ca(2+). To rule out the participation of the unique domain, we used chimeric molecules with swapped SH3 domains only and found that the SH3 domain is necessary and sufficient to confer Ca(2+)-mediated regulation of Src and Yes tyrosine kinases.  相似文献   

20.
There is increasing evidence to suggest that cytoplasmic tyrosine kinases of the Src family have a pivotal role in the regulation of a number of cellular processes. Members of this family have been implicated in cellular responses to a variety of extracellular signals, such as those arising from growth factors and cell-cell interactions, as well as in differentiative and developmental processes in both vertebrates and invertebrates. A better understanding of the regulation and of the structure-function relationships of these enzymes might aid in the development of specific ways to interfere with their action, as well as serving as a paradigm for regulation of other protein tyrosine kinases that have SH2 and SH3 domains. In this review we will first discuss the regulation of Src family protein tyrosine kinases, with particular emphasis on their SH2 and SH3 domains. We will then briefly review other non-receptor protein tyrosine kinases that have SH2 and SH3 domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号