首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Modifying the pollen coat protein composition in Brassica   总被引:2,自引:0,他引:2  
The interactions between pollen and stigma are essential for plant reproduction and are made possible by compounds, such as proteins and lipids, located on their surfaces. The pollen coat is formed in part by compounds synthesized in, and released from, the tapetum, which become transferred to the pollen coat late in pollen development. In the Brassicaceae the predominant proteins of the mature pollen coat are the tapetal oleosin-like proteins, which are highly expressed in, and ultimately transferred from, the tapetum. Here we report the modification of the protein composition of the pollen coat by the addition of an active enzyme which was synthesized in the tapetum. The marker enzyme beta-glucuronidase (GUS) was successfully targeted to the pollen coat in transgenic Brassica carinata plants expressing GUS translationally fused to a B. napus tapetal oleosin-like protein (BnOlnB;4). To our knowledge this is the first demonstration of the targeting of an enzyme to the pollen coat.  相似文献   

2.
Pollination in species with dry stigmas begins with the hydration of desiccated pollen grains on the stigma, a highly regulated process involving the proteins and lipids of the pollen coat and stigma cuticle. Self-incompatible species of the Brassicaceae block pollen hydration, and while the early signaling steps of the self-incompatibility response are well studied, the precise mechanisms controlling pollen hydration are poorly understood. Both lipids and proteins are important for hydration; loss of pollen coat lipids and proteins results in defective or delayed hydration on the stigma surface. Here, we examine the role of the pollen coat protein extracellular lipase 4 (EXL4), in the initial steps of pollination, namely hydration on the stigma. We identify a mutant allele, exl4-1, that shows a reduced rate of pollen hydration. exl4-1 pollen is normal with respect to pollen morphology and the downstream steps in pollination, including pollen tube germination, growth, and fertilization of ovules. However, owing to the delay in hydration, exl4-1 pollen is at a disadvantage when competed with wild-type pollen. EXL4 also functions in combination with GRP17 to promote the initiation of hydration. EXL4 is similar to GDSL lipases, and we show that it functions in hydrolyzing ester bonds. We report a previously unknown function for EXL4, an abundant pollen coat protein, in promoting pollen hydration on the stigma. Our results indicate that changes in lipid composition at the pollen–stigma interface, possibly mediated by EXLs, are required for efficient pollination in species with dry stigmas.  相似文献   

3.
Pollen hydration on dry stigmas is strictly regulated by pollen–stigma interactions in Brassicaceae. Although several related molecular events have been described, the molecular mechanism underlying pollen hydration remains elusive. Multiple B-class pollen coat proteins(PCP-Bs) are involved in pollen hydration. Here, by analyzing the interactions of two PCP-Bs with three Arabidopsis thaliana stigmas strongly expressing S-domain receptor kinase(SD-RLK), we determined that SD-RLK28 directly intera...  相似文献   

4.
Murphy DJ 《Protoplasma》2006,228(1-3):31-39
Summary. I have used cellular and molecular genetic and bioinformatic approaches to characterise the components of the pollen coat in plants of the family Brassicaceae, including Arabidopsis thaliana and several brassicas including Brassica napus, B. oleracea, and B. rapa. The pollen coat in these species is mostly made up of a unique mixture of lipids that is highly enriched in acylated compounds, such as sterol esters and phospholipids. These acyl lipids are characterised by an unusually high degree of saturation. The fatty acids typically contain 70–90% saturated acyl residues such as myristate, palmitate, and stearate. The major sterol components of the pollen coat are saturated fatty acyl esters of stigmasterol, campesterol, and campestdienol. In addition to lipids, the second major component of the pollen coat is a specific group of proteins that is dominated by a family of proteins that we term pollenins. Although pollenins are by far the major protein components of the pollen coat of members of the Brassicaceae, proteomic analysis reveals that there are several additional protein components, including lipases, protein kinases, a pectin esterase, and a caleosin. The biosynthesis of these lipids and proteins and their significance for overall pollen function are reviewed and discussed. Correspondence and reprints: Biotechnology Unit, School of Applied Sciences, University of Glamorgan, Pontypridd CF37 1DL, Wales, United Kingdom.  相似文献   

5.
As part of the Brassicaceae self-incompatibility response, callose is deposited in the stigma papillar cells. To determine if callose plays an important role in the rejection of incompatible pollen by the stigma, transgenic Brassica napus. L. plants were produced which express the tobacco β-1,3-glucanase cDNA (the enzyme which degrades callose) in the stigma papillae. Using aniline blue fluorescence, little or no callose was detected in the papillar cells of transgenic stigmas. However, the self-incompatibility system appeared to be unaffected based on the lack of pollen tube growth and the subsequent lack of seed set. The transgene had no effect on compatible pollinations. Thus, while callose deposition is associated with the B. napus self-incompatibility response, it is not required for the rejection of incompatible pollen. Received: 14 March 1997 / Accepted: 15 April 1997  相似文献   

6.
Lipid accumulation during pollen and tapetal development was studied using cryostat sections of unfixed anthers from Brassica napus (rapeseed). Diamidino-2-henylindole (DAPI), a DNA fluorochrome, was used to stain the pollen nuclei in order to identify ten stages of pollen development in Brassica. Storage lipids (i.e. triacylglycerides) were stained using the fluorochrome Nile red. Pollen coat lipids are formed in tapetal plastids between the mid-vacuolate and early maturation pollen stages. The pollen coat components, including lipids and a proportion of the proteins, are derived from the remnants of the tapetum, after its rupture, during the second pollen mitosis. Quantitative microfluorometric analyses demonstrated four phases of lipid body accumulation or depletion in the developing pollen cytoplasm. The majority of storage lipids found in the cytoplasm of the mature pollen grain accumulated during the late vacuolate and early maturation stages when the pollen is bicellular. The level of acyl carrier protein, a protein integrally involved in lipid synthesis, was also found to be maximal in the developing pollen during the bicellular pollen stages of development. This coincided with the most active period of lipid accumulation. These data could indicate that the lipids of the pollen are synthesized in situ, by metabolic processes regulated by expression of genes in the haploid genome.To whom correspondence should be addressed  相似文献   

7.
The purpose of this study is to characterise the biosynthesis, targeting and processing of some of the major protein components of the pollen coat, or tryphine, of Brassica napus. The authors have N-terminally sequenced 11 of the most abundant pollen coat polypeptides, and nine of these sequences correspond to proteolytically cleaved products of seven oleosin-like genes, i.e. Oln B;1 to Oln B;6 and Oln B;11. The Oln B;11 gene product is co- or post-translationally targeted in vitro to canine microsomal membranes. This implies that the oleosin-like protein is targeted to the endoplasmic reticulum in tapetal cells in vivo. Affinity-purified antibodies raised against a 20-residue domain of Oln B;3 and B;4 gene products cross-reacted with full-length proteins of 45–48 kDa in early developing (< 2 mm to 5 mm) buds and anthers, but recognised truncated proteins of 32–38 kDa at later (4 mm to 7 mm) stages of development. The 45–48 kDa immunoreactive proteins were associated with a floating lipid body fraction obtained from a tapetal/locular fluid extract from maturing anthers and a major 48 kDa polypeptide from this fraction was confirmed by N-terminal sequencing to be a full length product of the Oln B;3 gene. Quantitative immunocytochemical studies showed that the full length 45–48 kDa oleosin-like proteins were specifically localised in the interior of tapetal cytoplasmic lipid bodies where they were associated with a regular hexagonal-like fibrous reticulum. No significant labelling of elaioplasts was observed. The same antibodies specifically labelled 32–38 kDa oleosin-like proteins on the extracellular pollen coat of maturing pollen grains. These results demonstrate for the first time that many of the major pollen coat proteins are derived from an endoproteolytic cleavage of precursor oleosin-like proteins that originally accumulate within the large cytoplasmic lipid bodies of tapetal cells.  相似文献   

8.
Immature tobacco (Nicotiana tabacum L.) pollen has been isolated from anthers in three distinct stages of development, including the microspore stage. In in-vitro cultures, fully functional, mature pollen was obtained. In a germination medium, this pollen produced pollen tubes. After application to stigmas in situ, the in-vitro-matured pollen fertilized ovules, and seeds were produced. Genetic tests with seedlings obtained from pollinations with in-vitro-matured pollen from a transgenic plant revealed normal Mendelian segregation of two marker genes, the neomycin-phosphotransferase II gene and the nopaline-synthase gene. These results are of interest with respect to the control of self-incompatibility, cytoplasmic male sterility and pollen-allergen formation, and it offers an alternative route for gene transfer in those plants which cannot be regenerated in vitro.Abbreviations cms cytoplasmic male sterility; AMGLU, MS, M2S, MR26 - GK culture media, see Material and methods  相似文献   

9.
In most plant species with abiotic pollination systems, pollen is dispersed in three dimensions. Theoretical considerations suggest, however, that there are significant advantages for two-dimensional pollination systems over three-dimensional systems, especially if pollen is dispersed in conveyances or aggregations of large diameter. We report that two-dimensional pollination systems occur in the genera Halodule, Halophila, Lepilaena, and Ruppia, where pollen grains are not transported through the water singly, but in rafts or search vehicles. These genera possess unusual pollen morphologies which facilitate assemblage of pollen grains into search vehicles. These floating search vehicles have large diameters, thus greatly increasing probability of encountering a stigma. The grains have a hydrophobic surface that appears to mediate adhesion by an external coating of proteins and carbohydrates. Similar adaptations to two-dimensional pollination are found in the target organs, the stigmas. The long filamentous stigmas of the marine genera float, as do the indusiate stigmas of the freshwater genera, creating small depressions in the water surface. Pollination occurs through the collision of a moving search vehicle with a floating stigma. The existence of similar pollen search vehicles, stigma morphologies, and flowering phenologies in these unrelated hydrophilous genera evidences convergent evolution towards efficient search strategies in surface-pollinated aquatic plants.  相似文献   

10.
Spatial features of pollen tube growth and the composition of the extracellular matrix (ECM) of transmitting tissue in carpels of Kadsura longipedunculata, a member of the basal angiosperm taxon Schisandraceae, were characterized to identify features of transmitting tissue that might have been important for pollen-carpel interactions during the early history of angiosperms. In addition to growing extracellularly along epidermal cells that make up stigmatic crests of individual carpels, pollen tubes grow on abaxial carpel epidermal cells between unfused carpels along an extragynoecial compitum to subsequently enter an adjacent carpel, a feature important for enhancing seed set in apocarpous species. Histo- and immunochemical data indicated that transmitting tissue ECM is not freely flowing as previously hypothesized. Rather, the ECM is similar to that of a dry-type stigma whereby a cuticular boundary with associated esterase activity confines a matrix containing methyl-esterified homogalacturonans. The Schisandraceae joins an increasing number of basal angiosperm taxa that have a transmitting tissue ECM similar to a dry-type stigma, thereby challenging traditional views that the ancestral pollen tube pathway was similar to a wet-type stigma covered with a freely flowing exudate. Dry-type stigmas are posited to provide tighter control over pollen capture, retention, and germination than wet-type stigmas.  相似文献   

11.
A large, heterogeneous, highly expressed gene family encoding oleosin-like proteins is described in the Brassicaceae. íeven related cDNA sequences were isolated from Brassica napus anther mRNA using RACE-PCR and compared with other recently described anther-specific oleosin-like genes from B. napus. The expression patterns of four representative members of this diverse gene family were analyzed by Northern blotting and in situ hybridization. In all cases, the genes were expressed specifically in the tapetum of 3–5 mm B. napus buds, which contained microspores at the late-vacuolate and bicellular stages of development. The predicted protein products are ordered into subclasses, each of which has a characteristic C-terminal domain, containing different amino acid motifs or repeated residues. Tryphine (pollen coat) fractions from mature B. napus pollen were found to be particularly enriched in polypeptides of apparent molecular weights 32–38 kDa, plus numerous less abundant polypeptides of less than 15 kDa. The N-terminal 15–20 residues of three of these polypeptides (12, 32 and 38 kDa) were found by microsequencing to be identical to parts of the predicted amino acid sequences of three of the tapetal-expressed oleosin-like genes. This indicates the possibility of post-translational modification of these proteins resulting in a cleavage of the primary translation products in order to generate the mature tryphine polypeptides. These data imply that a large and diverse group of oleosin-like proteins is synthesized in the tapeturn of B. napus anthers and that following tapetal degradation, these proteins, possibly in modified form, then relocate to the developing microspores where they eventually constitute some of the major components of the extracellular tryphine of mature pollen grains. These proteins share a conserved 70 amino acid residue hydrophobic domain and are related structurally to the seed-specific intracellular oleosins, although their biological function may be different.  相似文献   

12.
Summary In Primula obconica, a species with a heteromorphic self-incompatibility system, the distinction between compatible and incompatible pollen tubes takes place on the stigma surface in thrum flowers, self tubes growing randomly over the papillar cells. No differences were seen between self and cross tube behaviour on the pin stigma surface, but self tubes were inhibited within the stigmatic tissue with differences in tube length evident after 24 h. The stigma surface bears a proteinaceous pellicle and binds the lectin Concanavalin A. Removal of the stigma removes the incompatibility barrier in mature gynoecia. Bud pollination shows that pollen tubes cannot grow in a normal manner on immature stigmas; the random growth of tubes over the stigma surface resembles that of mature thrum selfs. Fewer compatible tubes reach the style base of young gynoecia and smaller numbers of seeds are set than in mature flowers. Pin and thrum pollen grains germinate and grow in aqueous media, thrum tubes growing longer than pin. The presence of H3BO4 and CaCl2 in the growth medium promotes tube elongation and lengths equivalent to compatible styles can be obtained. The pollen grains have proteinaceous materials in their walls which diffuse out on moistening. Prolonged washing in aqueous media removes these materials but the incompatibility reaction remains unchanged. Thus the incompatibility reaction is between pollen tubes and stigmatic tissue and differs from the homomorphic, sporophytic system where pollen wall proteins elicit the incompatibility response.  相似文献   

13.
DULBERGER  R. 《Annals of botany》1987,59(2):203-217
The receptive surface of the stigma in distylous Linum grandiflorumand L. pubescens was studied by electron microscopy and cytochemicaltechniques. In both floral morphs a proteinaceous-lipoidal coatingis present on the papilla surface. In thrum stigmas the cuticleis highly irregular and pitted at the papilla tip. The cuticleis dislodged and torn at anthesis and an osmiophilic secretionproduct is released within a pectinaceous matrix. The secretionproduct stains for proteins and lipids and contributes to adhesionof pollen. In the larger pin papillae the cuticle is wavy, continuous,thicker than in thrum papillae and adjoins the cell wall. Inboth species the surface of the two types of pollen grains iscoated with lipids and protein. A similar behaviour of the male gametophyte is observed in incompatiblepollinations of L. pubescens, L. mucronatum and L. grandiflorum.In intramorph thrum pollinations pollen tubes are arrested withinthe stigma. In intramorph pin pollinations the majority of pollengrains fail to adhere to the stigma. Low permeability to waterin pin papillae, as determined by the neutral red test, maybe a factor preventing imbibition of the few adhering grains.Tubes of the few germinated grains are inhibited inside thestigma. On the part of the stigma, the difference in the major siteof inhibition in the two intramorph incompatible combinationsmay be accounted for by the dissimilar properties of the papillae,i.e. the occurrence of wet thrum stigmas and dry pin stigmas.Functionally, the unusual association of sporophytic incompatibilitywith wet thrum stigmas is attributed to retention of the secretorymaterial on individual papillae. Stigmatic papillae, cuticle, pollen coat, distyly, incompatibility, Linum grandiflorum, L. pubescens, L. mucronatum  相似文献   

14.
Sang YL  Xu M  Ma FF  Chen H  Xu XH  Gao XQ  Zhang XS 《Proteomics》2012,12(12):1983-1998
Angiosperm stigma supports compatible pollen germination and tube growth, resulting in fertilization and seed production. Stigmas are mainly divided into two types, dry and wet, according to the absence or presence of exudates on their surfaces. Here, we used 2DE and MS to identify proteins specifically and preferentially expressed in the stigmas of maize (Zea Mays, dry stigma) and tobacco (Nicotiana tabacum, wet stigma), as well as proteins rinsed from the surface of the tobacco stigma. We found that the specifically and preferentially expressed proteins in maize and tobacco stigmas share similar distributions in functional categories. However, these proteins showed important difference between dry and wet stigmas in a few aspects, such as protein homology in "signal transduction" and "lipid metabolism," relative expression levels of proteins containing signal peptides and proteins in "defense and stress response." These different features might be related to the specific structures and functions of dry and wet stigmas. The possible roles of some stigma-expressed proteins were discussed. Our results provide important information on functions of proteins in dry and wet stigmas and reveal aspects of conservation and divergence between dry and wet stigmas at the proteomic level.  相似文献   

15.
The composition of the two major lipidic organelles of the tapetum of Brassica napus L. has been determined. Elaioplasts contained numerous small (0.2–0.6 μm) lipid bodies that were largely made up of sterol esters and triacylglycerols, with monogalactosyldiacylglycerol as the major polar lipid. This is the first report in any species of the presence of non-cytosolic, sterol ester-rich, lipid bodies. The elaioplast lipid bodies also contained 34- and 36-kDa proteins which were shown by N-terminal sequencing to be homologous to fibrillin and other plastid lipid-associated proteins. Tapetosomes contained mainly polyunsaturated triacylglycerols and associated phospholipids plus a diverse class of oleosin-like proteins. The pollen coat, which is derived from tapetosomes and elaioplasts, was largely made up of sterol esters and the C-terminal domains of the oleosin-like proteins, but contained virtually no galactolipids, triacylglycerols or plastid lipid-associated proteins. The sterol compositions of the elaioplast and pollen coat were almost identical, consisting of stigmasterol > campestdienol > campesterol > sitosterol ≫ cholesterol, which is consistent with the majority of the pollen coat lipids being derived from elaioplasts. These data demonstrate that there is substantial remodelling of both the lipid and protein components of elaioplasts and tapetosomes following their release into the anther locule from lysed tapetal cells, and that components of both organelles contribute to the formation of the lipidic coating of mature pollen grains. Received: 4 December 1998 / Accepted: 9 February 1999  相似文献   

16.
The S locus receptor kinase (SRK) gene is one of two S locus genes required for the self-incompatibility response in Brassica. We have identified the product of the SRK6 gene in B. oleracea stigmas and have shown that it has characteristics of an integral membrane protein. When expressed in transgenic tobacco, SRK6 is glycosylated and targeted to the plasma membrane. These results provide definitive biochemical evidence for the existence in plants of a plasma membrane-localized transmembrane protein kinase with a known cell-cell recognition function. The timing of SRK expression in stigmas follows a time course similar to that previously described for another S locus-linked gene, the S locus glycoprotein (SLG) gene, and correlates with the ability of stigmas to mount a self-incompatibility response. Based on SRK6 promoter studies, the site of gene expression overlaps with that of SLG and exhibits predominant expression in the stigmatic papillar cells. Although reporter gene studies indicated that the SRK promoter was active in pollen, SRK protein was not detected in pollen, suggesting that SRK functions as a cell surface receptor exclusively in the papillar cells of the stigma.  相似文献   

17.
18.
Very long chain lipids are important components of the plant cuticle that establishes the boundary surface of aerial organs. In addition, these lipids were detected in the extracellular pollen coat (tryphine), where they play a crucial role in appropriate pollen‐stigma communication. As such they are involved in the early interaction of pollen with the stigma. A substantial reduction in tryphine lipids was shown to compromise pollen germination and, consequently, resulted in male sterility. We investigated the role of two long‐chain acyl‐CoA synthetases (LACSs) in Arabidopsis with respect to their contribution to the production of tryphine lipids. LACS was shown to provide CoA‐activated very long chain fatty acids (VLCFA‐CoAs) to the pathways of wax biosynthesis. The allocation of sufficient quantities of VLCFA‐CoA precursors should therefore be relevant to the generation of tryphine lipids. Here, we report on the identification of lacs1 lacs4 double knock‐out mutant lines that were conditionally sterile and showed significant reductions in pollen coat lipids. Whereas the contributions of both LACS proteins to surface wax levels were roughly additive, their co‐operation in tryphine lipid biosynthesis was clearly more complex. The inactivation of LACS4 resulted in increased levels of tryphine lipids accompanied by morphological anomalies of the pollen grains. The additional inactivation of LACS1 neutralized the morphological defects, decreased the tryphine lipids far below wild‐type levels and resulted in conditionally sterile pollen.  相似文献   

19.
Summary Eluates of stigmas of Brassica oleracea that were known to contain S locus-specific glycoproteins (SLSG) discriminated between self and cross pollen in vitro in three different media. Discrimination was equally evident in experiments that were the in vitro equivalents of reciprocal pollinations. In a TAPS-buffered medium, self eluates depressed pollen germination in a dose-dependent manner. TAPS medium allowed a bioassay of the effects of SLSG in eluates because it optimized germination in a way that eliminated the complicating features of the stimulatory substances in the eluates. Stigma eluates affected percentage pollen germination and optimum calcium concentrations in vitro whether or not SLSG were present in the eluates, but differently in different media, and depending on whether the eluates were cross or self with respect to the pollen tested. Thus, the effect of stigma eluates on the in vitro germination of pollen in Brassica depends on the balance of stimulatory versus inhibitory substances in the eluates.  相似文献   

20.
Very long chain lipids contribute to the hydrophobic cuticle on the surface of all land plants and are an essential component of the extracellular pollen coat in the Brassicaceae. Mutations in Arabidopsis CER genes eliminate very long chain lipids from the cuticle surface and, in some cases, from the pollen coat. In Arabidopsis, the loss of pollen coat lipids can disrupt interactions with the stigma, inhibiting pollen hydration and causing sterility. We have positionally cloned CER6 and demonstrate that a wild-type copy complements the cer6-2 defect. In addition, we have identified a fertile, intragenic suppressor, cer6-2R, that partially restores pollen coat lipids but does not rescue the stem wax defect, suggesting an intriguing difference in the requirements for CER6 activity on stems and the pollen coat. Importantly, analysis of this suppressor demonstrates that low amounts of very long chain lipids are sufficient for pollen hydration and germination. The predicted CER6 amino acid sequence resembles that of fatty acid-condensing enzymes, consistent with its role in the production of epicuticular and pollen coat lipids >28 carbons long. DNA sequence analysis revealed the nature of the cer6-1, cer6-2, and cer6-2R mutations, and segregation analysis showed that CER6 is identical to CUT1, a cDNA previously mapped to a different chromosome arm. Instead, we have determined that a new gene, CER60, with a high degree of nucleotide and amino acid similarity to CER6, resides at the original CUT1 locus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号