首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies have shown that hematopoietic progenitor cells can be isolated from human or nonhuman primate bone marrow (BM) cells. In the present study, we studied the cross-reactivity of 13 anti-human CD34, two anti-human c-Kit, and one anti-human CD133 monoclonal antibodies (mAbs) with cynomolgus macaque (Macaca fascicularis) BM cells, using flow cytometric analysis, cell enrichment, and clonogenic assay. Among the 13 anti-human CD34 mAbs assessed, six cross-reacted as previously reported by other groups. However, only three of these six mAbs (clones 561, 563, and 12.8) recognized cynomolgus CD34+ cells that formed progenitor colonies when grown in methylcellulose culture. Similarly, of the two anti-human c-Kit mAbs (clones NU-c-kit and 95C3) that were previously reported to cross-react with cynomolgus BM cells, only one (clone NU-c-kit) resulted in a similar outcome. The anti-human CD133 mAb (clone AC133) also cross-reacted with cynomolgus BM cells, although these cells did not give rise to colonies when grown in culture. These results suggest that antibodies that cross-react with nonhuman primate cells may not identify the hematopoietic cells of interest. In addition, while the CD34 mAb (clone 561) results in the selection of hematopoietic progenitor cells of all lineages when assessed in methylcellulose culture, the c-Kit(high) fraction (NU-c-kit) exclusively identifies erythroid-specific progenitor cells after growth in culture. It is important to consider these findings when selecting cross-reacting mAbs to identify cells of hematopoietic lineages in macaque species.  相似文献   

2.
Ex vivo expansion of cord blood mononuclear cells on mesenchymal stem cells   总被引:8,自引:0,他引:8  
BACKGROUND: Cord blood (CB) cells are being used increasingly as a source of hematopoietic cells to support high dose chemotherapy. However, CB units contain low numbers of cells, including CD34+ cells, and thus their use is associated with significant delays in engraftment of neutrophils and platelets. Exvivo expansion of CB has been proposed to increase the numbers of cells available. We and others have reported the requirement of CD34 selection for optimal expansion of CB products'; however, the selection of frozen CB products in clinical trials results in significant loss of CD34+ cells, with a median recovery of 50, but less than 40% recovery in more than one-third of products. In the present studies we evaluated the potential of mesenchymal stem cells (MSC) to support ex vivo expansion of unselected CB products. METHODS: Mononuclear cells (MNC) from CB products were isolated and cultured on preformed MSC layers in T150 flasks containing 50 mL Stemline II media plus hematopoietic growth factors. Various culture conditions were compared for optimal expansion of the CB MNC. RESULTS: Ex vivo expansion of CB MNC on MSC resulted in 10- to 20-fold expansion of total nucleated cells, seven- to 18-fold expansion of committed progenitor cells, two- to five-fold expansion of primitive progenitor cells and 16- to 37-fold expansion of CD34+ cells. DISCUSSION: These studies demonstrated significant expansion of CB products without CD34 cell selection using culture conditions that are clinically applicable. Our current focus is to initiate clinical trials to evaluate the in vivo potential of CB cells expanded with these conditions.  相似文献   

3.
Enrichment of bone marrow (BM) aspirates is an important prerequisite prior to in vitro treatment or cryopreservation. In this regard, we have analyzed the results obtained on 190 BM processed by the following 5 techniques: HES sedimentation with centrifugation; COBE 2991 blood cell processor; Ficoll/hypaque (F/H) gradient centrifugation; Continuous flow cell separator (CS 3000 Fenwal); Semicontinuous blood cell separator (Dideco T 90). Each procedure was evaluated by measuring the recovery of nucleated marrow cells (NC), mononuclear cells (MNC), committed progenitor cells (CFU-GM), the reduction of BM volume and the removal of red blood cells (RBC) and polymorphonuclear cells (PMN). The results of this comparative study show that F/H gradient on a COBE 2991 cell washer provides the most efficient system for purifying a MNC fraction (89% recovery) from unwanted cells (RBC less than 2% and PMN less than 2%) in a very small volume (98% reduction) with a good recovery of CFU-GM (80%).  相似文献   

4.
Many studies have drawn attention to the emerging role of MSC (mesenchymal stem cells) as a promising population supporting new clinical concepts in cellular therapy. However, the sources from which these cells can be isolated are still under discussion. Whereas BM (bone marrow) is presented as the main source of MSC, despite the invasive procedure related to this source, the possibility of isolating sufficient numbers of these cells from UCB (umbilical cord blood) remains controversial. Here, we present the results of experiments aimed at isolating MSC from UCB, BM and UCM (umbilical cord matrix) using different methods of isolation and various culture media that summarize the main procedures and criteria reported in the literature. Whereas isolation of MSC were successful from BM (10:10) and (UCM) (8:8), only one cord blood sample (1:15) gave rise to MSC using various culture media [DMEM (Dulbecco's modified Eagle's medium) +5% platelet lysate, DMEM+10% FBS (fetal bovine serum), DMEM+10% human UCB serum, MSCGM®] and different isolation methods [plastic adherence of total MNC (mononuclear cells), CD3+/CD19+/CD14+/CD38+‐depleted MNC and CD133+‐ or LNGFR+‐enriched MNC]. MSC from UCM and BM were able to differentiate into adipocytes, osteocytes and hepatocytes. The expansion potential was highest for MSC from UCM. The two cell populations had CD90+/CD73+/CD105+ phenotype with the additional expression of SSEA4 and LNGFR for BM MSC. These results clearly exclude UCB from the list of MSC sources for clinical use and propose instead UCM as a rich, non‐invasive and abundant source of MSC.  相似文献   

5.
The ability to culture hematopoietic cells in readily characterizable and scalable stirred systems, combined with the capability to utilize serum-free medium, will aid the development of clinically attractive bioreactor systems for transplantation therapies. We thus examined the proliferation and differentiation characteristics of peripheral blood (PB) mononuclear cells (MNC), cord blood (CB) MNC, and PB CD34(+) cells in spinner flasks and (control) T-flask cultures in both serum-containing and serum-free media. Hematopoietic cultures initiated from all sources examined (PB MNC, CB MNC, and PB CD34(+) cells) grew well in spinner vessels with either serum-containing or serum-free medium. Culture proliferation in spinner flasks was dependent on both agitator design and RPM as well as on the establishment of critical inoculum densities (ID) in both serum-containing (2 x 10(5) MNC/mL) and serum-free (3 x 10(5) MNC/mL) media. Spinner flask culture of PB MNC in serum-containing medium provided superior expansion of total cells and colony-forming cells (CFC) at high ID (1.2 x 10(6) cells/mL) as compared to T-flask controls. Serum-free spinner culture was comparable, if not superior, to that observed in serum-containing medium. This is the first report of stirred culture of PB or CB MNC, as well as the first report of stirred CD34(+) cell culture. Additionally, this is the first account of serum-free stirred culture of hematopoietic cells from any source.  相似文献   

6.
Background aimsMultiple cell-therapy products require density separation as a part of manufacturing. The traditional method for Ficoll separation, layering cell suspensions over Ficoll in tubes, followed by centrifugation and collection of cells from the interface, is too cumbersome and poses too high a risk of contamination for clinical-scale use. Recently, a system for clinical-scale Ficoll gradient applications has been introduced (Sepax?) but this system has limited availability and is costly.MethodsFor preparations of mononuclear cells (MNC) for dendritic cell (DC) production, we developed a Ficoll separation protocol that employs the Haemonetics? Cell Saver5? surgical blood salvage and wash instrument. This system uses standard blood bags and tubing, has single-use components, and is effectively closed. We analyzed 37 recent separation processes using this instrument and protocol. We measured depletion of red blood cells (RBC) and polymorphonuclear leukocytes (PMN), and recovery of CD14+ monocytes and MNC.ResultsStarting cell counts were 14.6 ± 8.0 (×109). Total cell recovery was 49.2 ± 15.2%, RBC depletion was 88.4 ± 2.8%, PMN depletion was 86.9 ± 6.1%, MNC recovery was 63.6 ± 5.0% and CD14+ monocyte recovery was 75.3 ± 9.9%.ConclusionsThe Cell Saver5? is relatively inexpensive to purchase and use. The instrument and its disposables are licensed by the United States Food and Drug Administration (FDA) for intra-operative blood salvage, and we have obtained approval for investigational use. Our method with this instrument has proven to be simple and efficient for clinical-scale Ficoll separations.  相似文献   

7.
8.
目的:比较骨髓间充质细胞(Bone Marrow Mesenchymal Stem Cells,BM/MSC)和骨髓源内皮祖细胞(Bone Marrow Endothelialprogenitor cells,BM/EPC)移植促进血流重建的效果,为进一步优化骨髓干细胞移植治疗肢体缺血提供理论基础。方法:获取Lewis大鼠骨髓单个核细胞,在体外培养分化为MSC和EPC。采用Lewis大鼠建立单侧后肢缺血模型。在模型建立后3天,将0.8mlD-Hanks液注入大鼠缺血侧后肢,为对照组(n=6);将8×106个骨髓MSC植入大鼠缺血侧后肢,为MSC组(n=6);将体外培养的8×106个EPC植入大鼠缺血侧后肢,为EPC组(n=6)。细胞移植后3周行缺血大鼠后肢动脉造影,检测缺血侧后肢侧支血管数;获取缺血侧后肢腓肠肌,分别行CD31和α-SMA免疫组化染色,计算毛细血管密度和小动脉密度。结果:MSC组与EPC组侧支血管数无显著性差异,二者均高于对照组;EPC组毛细血管密度明显高于MSC组,二者均高于对照组;MSC组与EPC组小动脉密度无显著性差异,二者均高于对照组。结论:骨髓间充质干细胞移植和内皮祖细胞移植均能够明显促进血流重建,而且骨髓间充质干细胞在治疗肢体缺血性疾病中的优势应该受到重视。  相似文献   

9.
BACKGROUND: ALDH(br) cells express high aldehyde dehydrogenase (ALDH) activity and have progenitor cell activity in several contexts. We characterized human BM ALDH(br) cells to determine whether cell sorting based on ALDH activity isolates potentially useful populations for cell therapy. METHOD: We measured the expression of ALDH and cell-surface Ag by flow cytometry and compared the ability of sorted ALDH(br), and BM populations remaining after ALDH(br) cells were removed (ALDH(dim) populations), to develop into several cell lineages in culture. RESULTS: The ALDH(br) population comprised 1.2+/-0.8% (mean+/-SD, n=30) nucleated cells and was enriched in cells expressing CD34, CD117, CD105, CD127, CD133 and CD166, and in primitive CD34(+) CD38(-) and CD34(+) CD133(+) progenitors. Most of the CD34(+) and CD133(+) cells were ALDH(dim). ALDH(br) populations had 144-fold more hematopoietic colony-forming activity than ALDH(dim) cells and included all megakaryocyte progenitors. ALDH(br) populations readily established endothelial cell monolayers in cultures. Cells generating endothelial colonies in 7 days were 435-fold more frequent in ALDH(br) than ALDH(dim) populations. CFU-F were 9.5-fold more frequent in ALDH(br) than ALDH(dim) cells, and ALDH(br) cells gave rise to multipotential mesenchymal cell cultures that could be driven to develop into adipocytes, osteoblasts and chondrocytes. DISCUSSION: Hematopoietic, endothelial and mesenchymal progenitor cells can be isolated simultaneously from human BM by cell sorting based on ALDH activity. BM ALDH(br) populations may be useful in several cell therapy applications.  相似文献   

10.
Background aimsThe aim was to investigate the therapeutic effect of granulocyte–colony-stimulating factor (G-CSF) administration following implantation of autologous bone marrow mononuclear cells (BM MNC) for patients with lower limb ischemia.MethodsThe design was a randomized controlled trial. Fifteen patients with severe chronic limb ischemia were treated with autologous BM MNC [without G-CSF (MNC–G-CSF) or combined with G-CSF administration for 5 days following transplantation (MNC+G-CSF)].ResultsAll clinical parameters, including ankle brachial index, visual analog scale and pain-free walking distance, showed a mean improvement from baseline, which was measured at 4 and 24 weeks after transplantation in both groups. However, in three (20%) patients, the clinical course did not improve and limb salvage was not achieved. No significant difference was observed among the patients treated in the MNC–G-CSF and MNC+G-CSF groups. No severe adverse reactions were reported during the study period. No relationship was observed between both the numbers of viable MNC or CD34+ cells and the clinical outcome.ConclusionsAutologous transplantation of BM MNC into ischemic lower limbs is safe, feasible and efficient for patients with severe peripheral artery disease. However, the administration of G-CSF following cell transplantation does not improve the effect of BM MNC implantation and therefore would not have any beneficial value in clinical applications of such cases.  相似文献   

11.
The CD133 cell-surface protein expresses the AC133 epitope that is associated with cancer progenitor cells and cancer resistance to traditional anticancer therapies. We report that the endoplasmic reticulum Golgi intermediate compartment residing acetyltransferases, ATase1 (NAT8B) and ATase2 (NAT8), can physically interact with CD133 to acetylate the protein on three lysine residues predicted to reside on the first extracellular loop of CD133. Site-directed mutagenesis of these residues mimicking a loss of acetylation and downregulation or inhibition of ATase1/ATase2 resulted in near-complete abolishment of CD133 protein expression. We also demonstrate that targeting ATase1/ATase2 results in apoptosis of CD133 expressing acute lymphoblastic leukemia cells. Taken together, we suggest that lysine acetylation on predicted extracellular residues plays a key role in expression and trafficking of CD133 protein to the cell surface and can be targeted to disrupt CD133 regulation and function.  相似文献   

12.
BACKGROUND: Harvesting of hemopoietic stem cells (HSC) from G-CSF-primed BM for autologous transplantation is an alternative to collection of unprimed BM or G-CSF-primed peripheral blood (PB). However, the optimum number of days of G-CSF administration for this purpose is unknown. We set out to determine whether cell yields could be optimized by varying the number of days of G-CSF administration prior to BM stem cell harvesting. METHODS: We conducted a randomized controlled single-center trial of 6 days (the standard) vs. 4 days of G-CSF administration and compared yields of total nucleated cells (TNC), CD34(+) HSC and CFU-GM cells per kilogram patient body weight. Statistical analysis was by Student's t-test. RESULTS: Twenty-four patients were enrolled; 13 received 6 days and 11 received 4 days of G-CSF administration. Analysis of the first harvest aspirate showed higher proportions of CD34(+) HSC (P=0.02) and CFU-GM (P=0.03) in the 4-day group. For the 6-day and 4-day groups, respectively, the median yield of TNC/kg was 6.5 x 10(8) and 5.4 x 10(8) (P=0.28), of CD34(+) cells/kg 0.56 x 10(6) and 0.98 x 10(6) (P=0.04) and of CFU-GM cells/kg 1.66 x 10(5) and 1.55 x 10(5) (P=0.75). DISCUSSION: These results suggest that by 6 days the HSC-stimulating effect of G-CSF has passed its peak and that 4 days should be adopted as the standard for G-CSF priming prior to BM stem cell harvesting for autologous transplantation.  相似文献   

13.
The identification in murine bone marrow (BM) of very small embryonic-like (VSEL) stem cells, possessing several features of pluripotent stem cells, encouraged us to investigate if similar population of cells could be also isolated from the human umbilical cord blood (UCB). Here our approach to purify VSEL from human UCB is described by employing a two step isolation strategy based on i) hypotonic lysis of erythrocytes followed ii) by multi-parameter FACS sorting. Accordingly, first, erythrocytes are removed from the UCB samples by hypotonic ammonium chloride solution and next, the UCB mononuclear cells (UCB MNC) are stained with monoclonal antibodies against all hematopoietic lineages including the common leukocyte antigen CD45. The cells carrying these markers (lin+CD45+) are eliminated from the sort by electronic gating. At the same time the antibodies against CXCR4, CD34 and CD133 are employed as positive markers to enrich the UCB MNC for VSEL. This combined two step approach enables to purify VSEL stem cells, which are small and express mRNA for pluripotent stem cells (PSC) (Oct-4 and Nanog) and tissue-committed stem cells (TCSC) (Nkx2.5/Csx, VE-cadherin and GFAP) similarly to those isolated from the adult BM (3-5 microm cells with large nuclei).  相似文献   

14.
Zeng H  Li L  Chen JX 《PloS one》2012,7(4):e35905
Hematopoietic progenitor CD133(+)/c-kit(+) cells have been shown to be involved in myocardial healing following myocardial infarction (MI). Previously we demonstrated that angiopoietin-1(Ang-1) is beneficial in the repair of diabetic infarcted hearts. We now investigate whether Ang-1 affects CD133(+)/c-kit(+) cell recruitment to the infarcted myocardium thereby mediating cardiac repair in type II (db/db) diabetic mice. db/db mice were administered either adenovirus Ang-1 (Ad-Ang-1) or Ad-β-gal systemically immediately after ligation of the left anterior descending coronary artery (LAD). Overexpression of Ang-1 resulted in a significant increase in CXCR-4/SDF-1α expression and promoted CD133(+)/c-kit(+), CD133(+)/CXCR-4(+) and CD133(+)/SDF-1α(+) cell recruitment into ischemic hearts. Overexpression of Ang-1 led to significant increases in number of CD31(+) and smooth muscle-like cells and VEGF expression in bone marrow (BM). This was accompanied by significant decreases in cardiac apoptosis and fibrosis and an increase in myocardial capillary density. Ang-1 also upregulated Jagged-1, Notch3 and apelin expression followed by increases in arteriole formation in the infarcted myocardium. Furthermore, overexpression of Ang-1 resulted in a significant improvement of cardiac functional recovery after 14 days of ischemia. Our data strongly suggest that Ang-1 attenuates cardiac apoptosis and promotes cardiac repair by a mechanism involving in promoting CD133(+)/c-kit(+) cells and angiogenesis in diabetic db/db mouse infarcted hearts.  相似文献   

15.
Background aimsBone marrow (BM)-derived progenitor cells are under investigation for cardiovascular repair but may be altered by disease. Our aim was to identify differences in gene expression in CD133+ cells of patients with coronary artery disease (CAD) and healthy controls, and determine whether exercise modifies gene expression.MethodsCD133+ cells were flow-sorted from 10 CAD patients and four controls, and total RNA was isolated for microarray-based gene expression profiling. Genes that were found to be differentially regulated in patients were analyzed further to investigate whether exercise had any normalizing effect on CD133+ cells in CAD patients following 3 months of an exercise program.ResultsImprovement in effort tolerance and increases in the number of CD133+ cells were observed in CAD patients after 3 months of exercise. Gene expression analysis of the CD133+ cells identified 82 differentially expressed genes (2-fold cut-off, 25% false-discovery rate and % present calls) in patients compared with controls, of which 59 were found to be up-regulated and 23 down-regulated. These genes were found to be involved in carbohydrate metabolism, cell cycle, cellular development and signaling, and molecular transport. Following completion of the exercise program, gene expression patterns resembled those of controls in seven of 10 patients.ConclusionsAlterations in gene expression of BM-derived CD133+ progenitor cells were found in CAD patients, which in part may be normalized by exercise.  相似文献   

16.
We present a patient with critical limb ischemia who was successfully treated with the injection of autologous peripheral blood (PB) CD133+ purified stem cells (SC) into the gastrocnemius muscle. No serious adverse events related to G-CSF administration, mononuclear cells harvest or CD133+ SC administration was observed. After 17 months of follow-up, our patient has experienced limb salvage, symptomatic relief and functional improvement. Moreover, we have observed the appearance of flow in the right posterior tibial artery that was absent before the procedure. To our knowledge, this is the first case of critical limb ischemia treated with PB CD133+ SC.  相似文献   

17.
The CD133 antigen, identified as a hematopoietic stem cell marker, appears in various human embryonic epithelia including the neural tube, gut, and kidney. We herein investigated whether CD133(+) cells isolated from human hepatocellular carcinoma cell lines possess cancer stem/progenitor cell-like properties. Among the three cell lines studied, the CD133 antigen was found to be expressed only on the surface of Huh-7 cells. CD133(+) cells from Huh-7 performed a higher in vitro proliferative potential and lower mRNA expressions of mature hepatocyte markers, glutamine synthetase and cytochrome P450 3A4, than CD133(-) population of Huh-7 cells. When either CD133(+) or CD133(-) cells were subcutaneously injected into SCID mice, CD133(+) cells formed tumors, whereas CD133(-) cells induced either a very small number of tumors or none at all. Taken together, the identification of CD133(+) cells could thus be a potentially powerful tool to investigate the tumorigenic process in the hepatoma system and to also develop effective therapies targeted against hepatocellular carcinoma.  相似文献   

18.
Each year millions of people suffer tissue loss or end-stage organ failure. While allogeneic therapies have saved and improved countless lives, they remain imperfect solutions. These therapies are limited by critical donor shortages, long-term morbidity, and mortality. A wide variety of transplants, congenital malformations, elective surgeries, and genetic disorders have the potential for treatment with autologous stem cells as a source of HLA-matched donor tissue. Our current research is aimed at characterizing cell surface cluster differentiation (CD) markers on human progenitor and pluripotent cells to aid in isolating comparatively purified populations of these cells. This study examined human pluripotent and progenitor cells isolated from fetal, mature, and geriatric individuals for the possible presence of 15 CD markers. The response to insulin and dexamethasone revealed that the cell isolates were composed of lineage-committed progenitor cells and lineage-uncommitted pluripotent cells. Flow cytometry showed cell populations positive for CD10, CD13, CD56, and MHC Class-I markers and negative for CD3, CD5, CD7, CD11b, CD14, CD15, CD16, CD19, CD25, CD45, and CD65 markers. Northern analysis revealed that CD13 and CD56 were actively transcribed at time of cell harvest. We report the first identification of CD10, CD13, CD56, and MHC Class-I cell surface antigens on these human cells.  相似文献   

19.
BACKGROUND: Umbilical cord blood (UCB) is an important source of hematopoietic stem and progenitor cells (HSC/HPC) for the reconstitution of the hematopoietic system after clinical transplantation. Cryopreservation of these cells is critical for UCB banking and transplantation as well as for research applications by providing readily available specimens. The objective of this study was to optimize cryopreservation conditions for CD34+ HSC/HPC from UCB. METHODS: Cryopreservation of CD34+ HSC/HPC from UCB after mononuclear cell (MNC) preparation was tested in a research-scale setup. Experimental variations were concentration of the cryoprotectant, the protein additive and cell concentration. In addition, protocols involving slow, serial addition and removal of DMSO were compared with standard protocols (fast addition and removal of DMSO) in order to avoid osmotic stress for the cryopreserved cells. Viability and recoveries of MNC, CD34+ cells and total colony-forming units (CFU) were calculated as read-outs. In addition, sterility testing of the collected UCB units before further processing was performed. RESULTS: The optimal conditions for cryopreservation of CD34+ HPC in MNC preparations were 10% DMSO and 2% human albumin at high cell concentrations (5 x 10(7) MNC/mL) with fast addition and removal of DMSO. After cryopreservation using a computer-controlled freezer, high viabilities (89%) and recoveries for CD34+ cells (89%) as well as for CFU (88%) were observed. Microbial contamination of the collected UCB samples was reduced to a rate of 6.4%. DISCUSSION: Optimized cryopreservation conditions were developed for UCB MNC in respect of the composition of the cryosolution. In addition, our results showed that fast addition of DMSO is essential for improved cryopreservation and post-thaw quality assessment results, whereas the speed of DMSO removal after thawing has little influence on the recoveries of CD34+ cells and CFU.  相似文献   

20.
Endothelial progenitor cells (EPCs) play a role in endogenous neovascularization of ischaemic tissues. Isolation and characterization of EPCs from circulating mononuclear cells are important for developing targeted cellular therapies and reproducibility of data are the major scientific goals. Here we compared two currently employed isolation methods, i.e. from total peripheral blood mononuclear cells (PBMCs) and from enriched CD133(+) cells, by defining the cell morphology and functional activities. We show that EPCs from cultured PBMCs resulted in an adherent population of 23% +/- 4% merged cells positive for Dil-Ac-LDL and lectin, whereas the percentage of double positive cells in cultured CD133(+) enriched cells was 50% +/- 7% (P < 0.01). These data were obtained through a novel and a more complete method of analysis of cell calculations (specifically by dividing each microscope field into 120 subfields). When stimulated with tumour necrosis factor alpha (TNF)-alpha and glucose, cell number was reduced in EPCs from total PBMCs and, more consistently, in CD133(+) enriched cells. However, both cultured total PBMCs and CD133(+) enriched cells respond similarly to TNF-alpha or glucose-induced p38-phosphorylation. EPCs from both procedures show similar results in terms of phenotype and response to modulators of their functional activities. However, when the cell phenotype of CD133(+) enrichment-derived cells was compared with that of cells from the total PBMC, a significant increase in CD133(+) expression was observed (P < 0.01) This may have relevance during intervention studies using cultured EPCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号