首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Local signals in stem cell-based bone marrow regeneration   总被引:9,自引:0,他引:9  
Han W  Yu Y  Liu XY 《Cell research》2006,16(2):189-195
The cellular basis of bone marrow (BM) tissue development and regeneration is mediated through hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs). Local interplays between hematopoietic cells and BM stromal cells (BMSCs) determine the reconstitution of hematopoiesis after myelosuppression. Here we review the BM local signals in control of BM regeneration after insults. Hematopoietic growth factors (HGFs) and cytokines produced by BMSCs are primary factors in regulation ofBM hematopoiesis. Morphogens which are critical to early embryo development in multiple species have been added to the family of HSCs regulators, including families of Wnt proteins, Notch ligands, BMPs, and Hedgehogs. Global gene expression analysis of HSCs and BMSCs has begun to reveal signature groups of genes for both cell types. More importantly, analysis of global gene expression coupled with biochemical and biological studies of local signals during BM regeneration have strongly suggested that HGFs and cytokines may not be the primary local regulators for BM recovery, rather chemokines (SDF- 1, FGF-4) and angiogenic growth factors (VEGF-A, Ang- 1) play instructive roles in BM reconstitution after myelosuppression. A new direction of management of BM toxicity is emerging from the identification of BM regenerative regulators.  相似文献   

2.
3.
The effects of exogenous histone H1 on estrogen receptor status of human breast cancer MCF 7 cells were investigated in presence and absence of estrogen. Exogenous histone H1 was significantly cytotoxic in a dose- and time-dependent manner. Cell cycle analysis revealed a significant increase in the percentage of cell accumulation in G0/G1 phase. In histone H1-treated cells, a significant decrease in the estrogen receptor content and an increase in the dissociation constant (KD) of ER was observed compared to control.  相似文献   

4.
5.
Conventional therapies for severe ischemic heart disease are limited in applicability. While several angiogenesis researches have shown novel efficacy, safety and feasibility for clinical use, recently we have started the clinical trial of a sole cell therapy using autologous bone marrow mononuclear cells transplantation targeted into ischemic hibernating myocardium. Here, we review the background of bone marrow cell research and introduce therapeutic angiogenesis for severe ischemic heart disease by autologous bone marrow cells transplantation.  相似文献   

6.
Cell-based therapy has emerged to be a promising strategy for alleviating the heavy burden of ischemic cardiovascular disease for nearly two decades, despite a variety of pending questions about its availability and efficacy. One question is whether and how the cells behave for regeneration in vivo, which could be limited or potentiated by the inflammatory microenvironment following myocardial infarction or critical limb ischemia. To this end, we hypothesize that the “adaptive inflammatory microenvironment” is pertinent to the cell-based regeneration, and make a brief comment on it based upon recent evidence.  相似文献   

7.
From 20 patients with solid tumors or acute nonlymphocytic leukemia in remission, hemopoietic progenitor cells were taken and stored in liquid nitrogen, for use in autologous bone marrow transplantation. Bone marrow aspiration resulted in a volume of 920(+/- 170) ml containing 16.8(+/-6.0) x 10(9) nucleated bone marrow cells and 7.2(+/-4.4) x 10(6) myeloid progenitor cells (CFUc). With use of the Haemonetics blood cell separator a progenitor cell-enriched fraction is obtained. This fraction is depleted of 90(+/-6)% of the erythrocytes and 59(+/-15)% of the neutrophils contained in the original. The original aspirate volume is reduced to one-fifth (21 +/- 3%) while containing 88(+/-38)% of the original CFUc's and 52(+/-11)% of the nucleated bone marrow cells. This technique of bone marrow enrichment has the advantage of a minimum of open-air contact, being independent of extensive laboratory facilities and manpower. The enriched fraction is frozen in autologous plasma and a final concentration of 10% (v/v) DMSO, using a program-controlled freezer (L'Air Liquide). Materials are stored at liquid nitrogen temperature in bags (Gambro) and test vials. Total CFUc recovery in test vials after thawing was 81(+/-32)%.  相似文献   

8.
A prospective study with mild general analgesia and sedation together with local anesthesia during bone marrow harvest was performed. Thirty-one patients underwent 33 bone marrow collections. Pretreatment consisted of 100 mg meperidine i.m. and 20 mg diazepam i.m. 1 h before start of procedure. Eight patients got additional meperidine and diazepam during the procedure, all patients got lidocaine 1% locally. A mean volume of 1.321 was obtained with 42.5 punctures. Twenty-two patients had no complications, 4 vomited, 4 had easily correctable hypotension of short duration, one got oxygen for cyanosis of short duration. Acceptance was good in 23 patients, in 6 reasonably well, in two bad. Only one patient experienced pain problems, due to suction. Anxiety was no major problem due to good information before the procedure and mild sedation. This form of anesthesia for bone marrow collection is a safe procedure, it is generally well accepted by the patient and it can be performed on an out-patient basis.  相似文献   

9.
Articular cartilage defects that do not repair spontaneously induce osteoarthritic changes in joints over a long period of observation. In this study, we examined the usefulness of transplanting culture‐expanded bone marrow mesenchymal cells into osteochondral defects of joints with cartilage defects. First, we performed experiments on rabbits and up on obtaining good results proceeded to perform the experiments on humans. Macroscopic and histological repair with this method was good, and good clinical results were obtained although there was no significant difference with the control group. Recent reports have indicated that this procedure is comparable to autologous chondrocyte implantation, and concluded that it was a good procedure because it required one step less than that required by surgery, reduced costs for patients, and minimized donor site morbidity. Although some reports have previously shown that progenitor cells formed a tumor when implanted into immune‐deficient mice after long term in vitro culture, the safety of the cell transplantation was confirmed by our clinical experience. Thus, this procedure is useful, effective, and safe, but the repaired tissues were not always hyaline cartilage. To obtain better repair with this procedure, treatment approaches using some growth factors during in vitro culture or gene transfection are being explored. J. Cell. Physiol. 225: 291–295, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

10.
It has been suggested that some adult bone marrow cells (BMC) can localize to the lung and develop tissue-specific characteristics including those of pulmonary epithelial cells. Here, we show that the combination of mild airway injury (naphthalene-induced) as a conditioning regimen to direct the site of BMC localization and transtracheal delivery of short-term cultured BMC enhances airway localization and adoption of an epithelial-like phenotype. Confocal analysis of airway and alveolar-localized BMC (fluorescently labeled) with epithelial markers shows expression of the pulmonary epithelial proteins, Clara cell secretory protein, and surfactant protein C. To confirm epithelial gene expression by BMC, we generated transgenic mice expressing green fluorescent protein (GFP) driven by the epithelial-specific cytokeratin-18 promoter and injected BMC from these mice transtracheally into wild-type recipients after naphthalene-induced airway injury. BMC retention in the lung was observed for at least 120 days following cell delivery with increasing GFP transgene expression over time. Some BMC cultured in vitro over time also expressed GFP transgene, suggesting epithelial transdifferentiation of the BMC. The results indicate that targeted delivery of BMC can promote airway regeneration.  相似文献   

11.
12.
Bone marrow stromal cells (BMSCs) are a rich source of osteogenic progenitor cells. A fundamental question is whether systemically transplanted BMSCs participate in bone regeneration. Luciferase and GFP double-labeled BMSCs were transplanted into irradiated mice. Five weeks after transplantation, artificial bone wounds were created in the mandibles and calvaria of the recipients. Animals were sacrificed at weeks 2, 4, and 6 after surgery and the expressions of luciferase and GFP were determined using Xenogen IVIS Imaging System, immunohistochemical staining and RT-PCR. The results demonstrated that transplanted BMSCs can be detected in wound sites as early as 2 weeks and lasted the whole experimental period. Luciferase expression peaked at 2 weeks after surgery and decreased thereafter, exhibiting a similar expression pattern as that of BSP, while GFP expression was relatively stable during the experimental period. In conclusion, BMSCs can migrate to bone wound sites and participate in bone regeneration in orocraniofacial region.  相似文献   

13.
Bone marrow contains mesenchymal stem cells that form many tissues. Various scaffolds are available for bone reconstruction by tissue engineering. Osteoblastic differentiated bone marrow stromal cells (BMSC) promote osteogenesis on scaffolds and stimulate bone regeneration. We investigated the use of cultured autologous BMSC on different scaffolds for healing defects in tibias of adult male canines. BMSC were isolated from canine humerus bone marrow, differentiated into osteoblasts in culture and loaded onto porous ceramic scaffolds including hydroxyapatite 1, hydroxyapatite gel and calcium phosphate. Osteoblast differentiation was verified by osteonectine and osteocalcine immunocytochemistry. The scaffolds with stromal cells were implanted in the tibial defect. Scaffolds without stromal cells were used as controls. Sections from the defects were processed for histological, ultrastructural, immunohistochemical and histomorphometric analyses to analyze the healing of the defects. BMSC were spread, allowed to proliferate and differentiate to osteoblasts as shown by alizarin red histochemistry, and osteocalcine and osteonectine immunostaining. Scanning electron microscopy showed that BMSC on the scaffolds were more active and adhesive to the calcium phosphate scaffold compared to the others. Macroscopic bone formation was observed in all groups, but scaffolds with stromal cells produced significantly better results. Bone healing occurred earlier and faster with stromal cells on the calcium phosphate scaffold and produced more callus compared to other scaffolds. Tissue healing and osteoblastic marker expression also were better with stromal cells on the scaffolds. Increased trabecula formation, cell density and decreased fibrosis were observed in the calcium phosphate scaffold with stromal cells. Autologous cultured stromal cells on the scaffolds were useful for healing of canine tibial bone defects. The calcium phosphate scaffold was the best for both cell differentiation in vitro and bone regeneration in vivo. It may be possible to improve healing of bone defects in humans using stem cells from bone marrow.  相似文献   

14.
Jiang  Dapeng  Gao  Peng  Zhang  Yubo  Yang  Shulong 《Biotechnology letters》2016,38(5):885-892
Objectives

To examine whether an engineered tendon matrix (ETM) environment and growth and differentiation factor-6 (GDF-6) have synergistic effects on the tenogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and the quality of tendon repair.

Results

ETM and GDF-6 promote tenogenic differentiation of BMSCs in vitro. Implantation of GDF-6-incorporated ETM containing BMSCs into a tendon injury model significantly improved the histological and mechanical properties of the repaired tendon.

Conclusions

GDF-6-incorporated ETM containing BMSCs represents a promising strategy for tendon injury repair.

  相似文献   

15.
Hematopoietic stem cells (HSCs) are widely used in transplantation therapy to treat a variety of blood diseases. The success of hematopoietic recovery is of high importance and closely related to the patient’s morbidity and mortality after Hematopoietic stem cell transplantation (HSCT). We have previously shown that SALL4 is a potent stimulator for the expansion of human hematopoietic stem/progenitor cells in vitro. In these studies, we demonstrated that systemic administration with TAT-SALL4B resulted in expediting auto-reconstitution and inducing a 30-fold expansion of endogenous HSCs/HPCs in mice exposed to a high dose of irradiation. Most importantly, TAT-SALL4B treatment markedly prevented death in mice receiving lethal irradiation. Our studies also showed that TAT-SALL4B treatment was able to enhance both the short-term and long-term engraftment of human cord blood (CB) cells in NOD/SCID mice and the mechanism was likely related to the in vivo expansion of donor cells in a recipient. This robust expansion was required for the association of SALL4B with DNA methyltransferase complex, an epigenetic regulator critical in maintaining HSC pools and in normal lineage progression. Our results may provide a useful strategy to enhance hematopoietic recovery and reconstitution in cord blood transplantation with a recombinant TAT-SALL4B fusion protein.  相似文献   

16.
New bone for the repair or the restoration of the function of traumatized, damaged, or lost bone is a major clinical need, and bone tissue engineering has been heralded as an alternative strategy for regenerating bone. A novel web-like structured biodegradable hybrid sheet has been developed for bone tissue engineering by preparing knitted poly(DL-lactic-co-glycolic acid) sheets (PLGA sheets) with collagen microsponges in their openings. The PLGA skeleton facilitates the formation of the hybrid sheets into desired shapes, and the collagen microsponges in the pores of the PLGA sheet promote cell adhesion and uniform cell distribution throughout the sheet. A large number of osteoblasts established from marrow stroma adhere to the scaffolds and generate the desired-shaped bone in combination with these novel sheets. These results indicate that the web-like structured novel sheet shows promise for use as a tool for custom-shaped bone regeneration in basic research on osteogenesis and for the development of therapeutic applications.This work was supported in part by a grant from the Ministry of Education, Culture, Sports, Science, and Technology of Japan, Health and Labour Sciences Research Grants (translational research), and the Organization for Pharmaceutical Safety and Research (to A.U.)  相似文献   

17.
18.
Background aimsLong-bone pseudoarthrosis is a major orthopedic concern because of numerous factors such as difficulty of the treatment, high recurrence, high costs and the devastating effects on the patients' quality of life, which sometimes ends in amputation. Although the “gold standard” for the treatment of this pathology is autologous bone grafting, which has high osteogenic, osteoconductive and osteoinductive properties, this treatment presents some restrictions such as the limited amount of bone that can be taken from the patient and donor site morbidity. Bone marrow mononuclear cells (BM-MNCs) comprise progenitor and stem cells with pro-angiogenic and pro-osteogenic properties. Allogenic cancellous bone graft is a natural and biodegradable osteoconductive and osteoinductive scaffold. Combination of these two components could mimic the advantages of autologous bone grafting while avoiding its main limitations.MethodsLong-bone pseudoarthrosis was treated in seven patients with autologous BM-MNCs from iliac crest combined with frozen allogenic cancellous bone graft obtained from the tissue bank.ResultsAll patients showed complete bone consolidation 5.3 ± 0.9 months (range, 2–9 months) after cell transplantation. Moreover, limb pain disappeared in all of them. The mean follow-up was 35.8 ± 4.6 months after transplantation (range, 24–51 months) without pseudoarthrosis recurrence or pain reappearing.ConclusionsCombination of autologous BM-MNCs and allogenic bone graft could constitute an easy, safe, inexpensive and efficacious attempt to treat long-bone pseudoarthrosis and non-union by reproducing the beneficial properties of autologous bone grafting while restricting its disadvantages.  相似文献   

19.
It is still unclear whether the timing of intracoronary stem cell therapy affects the therapeutic response in patients with myocardial infarction.The natural course of healing the infarction and the presence of putative homing signals within the damaged myocardium appear to favor cell engraftment during the transendothelial passage in the early days after reperfusion.However,the adverse inflammatory environment,with its high oxidative stress,might be deleterious if cells are administered too early after reperfusion.Here we highlight several aspects of the timing of intracoronary stem cell therapy.Our results showed that transplantation of bone marrow mesenchymal stem cells at 2 4 weeks after myocardial infarction is more favorable for reduction of the scar area,inhibition of left ventricular remodeling,and recovery of heart function.Coronary injection of autologous bone marrow mesenchymal stem cells at 2 4 weeks after acute myocardial infarction is safe and does not increase the incidence of complications.  相似文献   

20.
The nucleus pulposus is an avascular and aneural tissue that has significant influence on the homeostasis and overall function of the intervertebral disc. The nucleus pulposus is comprised of a heterogeneous population of cells including large notochord cells and smaller chondrocyte-like cells. Loss of notochord cells has been correlated with the pathogenesis of disc degeneration and consequently, it has been hypothesized that regeneration of the disc could be mediated by notochord cells. Attempts to grow and expand notochord cells in vitro have thus far been limited by cell availability and ineffective culturing methodologies. As a result, co-culturing techniques have been developed in order to exploit notochord-derived signals for the differentiation of proliferative mesenchymal stem cells. A recent study by Korecki et al. has demonstrated that notochord cell conditioned medium has the ability to differentiate mesenchymal stem cells toward a nucleus pulposus-like fate, producing high levels of glycosaminoglycans and type III collagen. These findings suggest that growth factors and other soluble proteins may be able to stimulate endogenous IVD tissue maintenance in vivo. While this study advances our understanding of intervertebral disc cell-cell interactions, limitations remain in our ability to determine the phenotype of terminally differentiated cells within the nucleus pulposus (ie mature notochord cells) and therefore assess the relevance of differentiated mesenchymal stem cells for disc regeneration. In order for the field to progress, elucidation of the notochord phenotype remains of utmost importance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号