首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
IL-2 and IL-15 are lymphocyte growth factors produced by different cell types with overlapping functions in immune responses. Both cytokines costimulate lymphocyte proliferation and activation, while IL-15 additionally promotes the development and survival of NK cells, NKT cells, and intraepithelial lymphocytes. We have investigated the effects of IL-2 and IL-15 on proliferation, cytotoxicity, and cytokine secretion by human PBMC subpopulations in vitro. Both cytokines selectively induced the proliferation of NK cells and CD56(+) T cells, but not CD56(-) lymphocytes. All NK and CD56(+) T cell subpopulations tested (CD4(+), CD8(+), CD4(-)CD8(-), alphabetaTCR(+), gammadeltaTCR(+), CD16(+), CD161(+), CD158a(+), CD158b(+), KIR3DL1(+), and CD94(+)) expanded in response to both cytokines, whereas all CD56(-) cell subpopulations did not. Therefore, previously reported IL-15-induced gammadelta and CD8(+) T cell expansions reflect proliferations of NK and CD56(+) T cells that most frequently express these phenotypes. IL-15 also expanded CD8alpha(+)beta(-) and Valpha24Vbeta11 TCR(+) T cells. Both cytokines stimulated cytotoxicity by NK and CD56(+) T cells against K562 targets, but not the production of IFN-gamma, TNF-alpha, IL-2, or IL-4. However, they augmented cytokine production in response to phorbol ester stimulation or CD3 cross-linking by inducing the proliferation of NK cells and CD56(+) T cells that produce these cytokines at greater frequencies than other T cells. These results indicate that IL-2 and IL-15 act at different stages of the immune response by expanding and partially activating NK receptor-positive lymphocytes, but, on their own, do not influence the Th1/Th2 balance of adaptive immune responses.  相似文献   

2.
IL-15: targeting CD8+ T cells for immunotherapy   总被引:1,自引:0,他引:1  
IL-15 is a pleiotropic cytokine that plays an important role in both the innate and adaptive immune system. IL-15 promotes the activation of neutrophils and macrophages, and is critical to DC function. In addition, IL-15 is essential to the development, homeostasis, function and survival of natural killer (NK) cells, NK T (NKT) cells and CD8+ T cells. Based on these properties, IL-15 has been proposed as a useful cytokine for immunotherapy. It is currently being investigated in settings of immune deficiency, for the in vitro expansion of T and NK cells, as well as an adjuvant for vaccines. In this paper, we will review the targeting of IL-15 for immunotherapy, with a particular emphasis on its effects on CD8+ T cells.  相似文献   

3.
The kinetics of CD8 T cell IFN-gamma responses as they occur in situ are defined here during lymphocytic choriomeningitis virus (LCMV) infections, and a unique mechanism for the innate cytokines IFN-alphabeta and IL-18 in promoting these responses is defined. Infections of mice with Armstrong or WE strains of LCMV induced an unexpectedly early day 4 IFN-gamma response detectable in serum samples and spleen and liver homogenates. Production of IFN-gamma was MHC class I/CD8 dependent, but did not require IL-12, NK cells, TCR-gammadelta T cells, MHC class II, or CD4 T cells. Peak response required specific Ag recognition, as administration of antagonist peptide partially impaired day 4 IFN-gamma induction, and viral peptide stimulation enhanced CD8 T cell IFN-gamma expression in culture. The IFN-gamma response was associated with IL-18 and IFN-alphabeta expression. Furthermore, both factors augmented peptide-driven IFN-gamma production in culture, and mice lacking IL-18 or IFN-alphabeta functions had reduced day 4 IFN-gamma. Collectively, these results demonstrate that during viral infections, there is a dramatic in vivo CD8 T cell response preceding maximal expansion of these cells, and that the mechanism supporting this response is dependent on endogenous innate cytokines. Because stimulation by microbial products is linked to innate cytokine expression, the studies also suggest a pathway for precisely limiting T cell functions to times of need.  相似文献   

4.
The cytokines generated locally in response to infection play an important role in CD8 T cell trafficking, survival, and effector function, rendering these signals prime candidates for immune intervention. In this paper, we show that localized increases in the homeostatic cytokine IL-15 induced by influenza infection is responsible for the migration of CD8 effector T cells to the site of infection. Moreover, intranasal delivery of IL-15-IL-15Rα soluble complexes (IL-15c) specifically restores the frequency of effector T cells lost in the lung airways of IL-15-deficient animals after influenza infection. Exogenous IL-15c quantitatively augments the respiratory CD8 T cell response, and continued administration of IL-15c throughout the contraction phase of the anti-influenza CD8 T cell response magnifies the resultant CD8 T cell memory generated in situ. This treatment extends the ability of these cells to protect against heterologous infection, immunity that typically depreciates over time. Overall, our studies describe what to our knowledge is a new function for IL-15 in attracting effector CD8 T cells to the lung airways and suggest that adjuvanting IL-15 could be used to prolong anti-influenza CD8 T cell responses at mucosal surfaces to facilitate pathogen elimination.  相似文献   

5.
Following influenza infection, natural killer (NK) cells function as interim effectors by suppressing viral replication until CD8 T cells are activated, proliferate, and are mobilized within the respiratory tract. Thus, NK cells are an important first line of defense against influenza virus. Here, in a murine model of influenza, we show that virally-induced IL-15 facilitates the trafficking of NK cells into the lung airways. Blocking IL-15 delays NK cell entry to the site of infection and results in a disregulated control of early viral replication. By the same principle, viral control by NK cells can be therapeutically enhanced via intranasal administration of exogenous IL-15 in the early days post influenza infection. In addition to controlling early viral replication, this IL-15-induced mobilization of NK cells to the lung airways has important downstream consequences on adaptive responses. Primarily, depletion of responding NK1.1+ NK cells is associated with reduced immigration of influenza-specific CD8 T cells to the site of infection. Together this work suggests that local deposits of IL-15 in the lung airways regulate the coordinated innate and adaptive immune responses to influenza infection and may represent an important point of immune intervention.  相似文献   

6.
NK and T cell-derived IFN-gamma is a key cytokine that stimulates innate immune responses and directs adaptive T cell response toward Th1 type. IL-15, IL-18, and IL-21 have significant roles as activators of NK and T cell functions. We have previously shown that IL-15 and IL-21 induce the expression of IFN-gamma, T-bet, IL-12R beta 2, and IL-18R genes both in NK and T cells. Now we have studied the effect of IL-15, IL-18, and IL-21 on IFN-gamma gene expression in more detail in human NK and T cells. IL-15 clearly activated IFN-gamma mRNA expression and protein production in both cell types. IL-18 and IL-21 enhanced IL-15-induced IFN-gamma gene expression. IL-18 or IL-21 alone induced a modest expression of the IFN-gamma gene but a combination of IL-21 and IL-18 efficiently up-regulated IFN-gamma production. We also show that IL-15 activated the binding of STAT1, STAT3, STAT4, and STAT5 to the regulatory sites of the IFN-gamma gene. Similarly, IL-21 induced the binding of STAT1, STAT3, and STAT4 to these elements. IL-15- and IL-21-induced STAT1 and STAT4 activation was verified by immunoprecipitation with anti-phosphotyrosine Abs followed by Western blotting with anti-STAT1 and anti-STAT4 Abs. IL-18 was not able to induce the binding of STATs to IFN-gamma gene regulatory sites. IL-18, however, activated the binding of NF-kappa B to the IFN-gamma promoter NF-kappa B site. Our results suggest that both IL-15 and IL-21 have an important role in activating the NK cell-associated innate immune response.  相似文献   

7.
We studied the role of NK cells in regulating human CD8+ T cell effector function against mononuclear phagocytes infected with the intracellular pathogen Mycobacterium tuberculosis. Depletion of NK cells from PBMC of healthy tuberculin reactors reduced the frequency of M. tuberculosis-responsive CD8+IFN-gamma+ cells and decreased their capacity to lyse M. tuberculosis-infected monocytes. The frequency of CD8+ IFN-gamma+ cells was restored by soluble factors produced by activated NK cells and was dependent on IFN-gamma, IL-15, and IL-18. M. tuberculosis-activated NK cells produced IFN-gamma, activated NK cells stimulated infected monocytes to produce IL-15 and IL-18, and production of IL-15 and IL-18 were inhibited by anti-IFN-gamma. These findings suggest that NK cells maintain the frequency of M. tuberculosis-responsive CD8+IFN-gamma+ T cells by producing IFN-gamma, which elicits secretion of IL-15 and IL-18 by monocytes. These monokines in turn favor expansion of Tc1 CD8+ T cells. The capacity of NK cells to prime CD8+ T cells to lyse M. tuberculosis-infected target cells required cell-cell contact between NK cells and infected monocytes and depended on interactions between the CD40 ligand on NK cells and CD40 on infected monocytes. NK cells link the innate and the adaptive immune responses by optimizing the capacity of CD8+ T cells to produce IFN-gamma and to lyse infected cells, functions that are critical for protective immunity against M. tuberculosis and other intracellular pathogens.  相似文献   

8.
Both innate and adaptive immune responses play an important role in the recovery of the host from viral infections. In the present report, a subset of cells coexpressing CD8 and NKR-P1C (NK1.1) was found in the lungs of mice infected with influenza A virus. These cells were detected at low numbers in the lungs of uninfected mice, but represented up to 10% of the total CD8(+) T cell population at day 10 postinfection. Almost all of the CD8(+)NK1.1(+) cells were CD8alphabeta(+)CD3(+)TCRalphabeta(+) and a proportion of these cells also expressed the NK cell-associated Ly49 receptors. Interestingly, up to 30% of these cells were virus-specific T cells as determined by MHC class I tetramer staining and by intracellular staining of IFN-gamma after viral peptide stimulation. Moreover, these cells were distinct from conventional NKT cells as they were also found at increased numbers in influenza-infected CD1(-/-) mice. These results demonstrate that a significant proportion of CD8(+) T cells acquire NK1.1 and other NK cell-associated molecules, and suggests that these receptors may possibly regulate CD8(+) T cell effector functions during viral infection.  相似文献   

9.
IL-15 is known to be critical in the homeostasis of Ag-specific memory CD8(+) T cells following acute viral infection. However, little is known about the homeostatic requirements of memory CD8(+) T cells during a latent viral infection. We have used the murine gammaherpesvirus-68 (MHV-68) model system to investigate whether IL-15 is necessary for the maintenance of memory CD8(+) T cells during a latent viral infection. IL-15 is not essential either for the initial control of MHV-68 infection or for the maintenance of MHV-68-specific memory CD8(+) T cells. Even at 140 days postinfection, the proportion of CD8(+) T cells recognizing the MHV-68 epitopes were the same as in control mice. The maintenance of these memory CD8(+) T cells was attributable to their ability to turn over in vivo, probably in response to the presence of low levels of Ag. IL-15(-/-) mice had a significantly higher turnover rate within the virus-specific memory CD8(+) T cell population, which was the result of increased levels of viral gene expression rather than an increase in viral load. These cells did not accumulate in the spleens of the IL-15(-/-) mice due to an increased sensitivity to apoptosis as a result of decreased Bcl-2 levels. Intriguingly, memory CD8(+) T cells from latently infected mice failed to undergo homeostatic proliferation in a naive secondary host. These data highlight fundamental differences between memory CD8(+) T cells engaged in active immune surveillance of latent viral infections vs memory CD8(+) T cells found after acute viral infections.  相似文献   

10.
We previously reported the clinical phenotype of two siblings with a novel inherited developmental and immunodeficiency syndrome consisting of severe intrauterine growth retardation and the impaired development of specific lymphoid lineages, including transient CD8 alphabeta T lymphopenia and a persistent lack of blood NK cells. We describe here the elucidation of a plausible underlying pathogenic mechanism, with a cellular phenotype of impaired survival of both fresh and herpesvirus saimiri-transformed T cells, in the surviving child. Clearly, NK cells could not be studied. However, peripheral blood T lymphocytes displayed excessive apoptosis ex vivo. Moreover, the survival rates of CD4 and CD8 alphabeta T cell blasts generated in vitro, and herpesvirus saimiri-transformed T cells cultured in vitro, were low, but not nil, following treatment with IL-2 and IL-15. In contrast, Fas-mediated activation-induced cell death was not enhanced, indicating a selective excess of cytokine deprivation-mediated apoptosis. In keeping with the known roles of IL-2 and IL-15 in the development of NK and CD8 T cells in the mouse model, these data suggest that an impaired, but not abolished, survival response to IL-2 and IL-15 accounts for the persistent lack of NK cells and the transient CD8 alphabeta T lymphopenia documented in vivo. Impaired cytokine-mediated lymphocyte survival is likely to be the pathogenic mechanism underlying this novel form of inherited and selective NK deficiency in humans.  相似文献   

11.
12.
LD Johnson  SC Jameson 《PloS one》2012,7(8):e42268
The pleiotropic cytokine TGF-β has been implicated in the regulation of numerous aspects of the immune response, including naïve T cell homeostasis. Previous studies found that impairing TGF-β responsiveness (through expression of a dominant-negative TGF-β RII [DNRII] transgene) leads to accumulation of memory phenotype CD8 T cells, and it was proposed that this resulted from enhanced IL-15 sensitivity. Here we show naïve DNRII CD8 T cells exhibit enhanced lymphopenia-driven proliferation and generation of “homeostatic” memory cells. However, this enhanced response occurred in the absence of IL-15 and, unexpectedly, even in the combined absence of IL-7 and IL-15, which were thought essential for CD8 T cell homeostatic expansion. DNRII transgenic CD8 T cells still require access to self Class I MHC for homeostatic proliferation, arguing against generalized dysregulation of homeostatic cues. These findings suggest TGF-β responsiveness is critical for enforcing sensitivity to homeostatic cytokines that limit maintenance and composition of the CD8 T cell pool. (154 words).  相似文献   

13.
Wang B  Lohrengel B  Lu Y  Meng Z  Xu Y  Yang D  Roggendorf M  Lu M 《Cytokine》2005,32(6):296-303
Interleukin 15 (IL-15) is a member of the four-helix bundle cytokine family and has T cell growth factor activity. IL-15 plays a unique role in both innate and adaptive immune cell homeostasis, particularly for the development of NK cells and CD8+memory cells. It may be useful for stimulation of specific immune responses in chronic viral infection such as hepatitis B virus infection. The woodchuck model is an informative animal model for studies on hepadnavirus infection and therapeutic interventions. Here, the complete coding sequence of woodchuck IL-15 (wIL-15) was cloned and sequenced. wIL-15 shows a high homology (>70%) to its counterparts of other mammalian species. His-tagged recombinant wIL-15 protein was expressed and purified and showed the ability to promote the proliferation of activated mouse splenocytes and woodchuck peripheral blood lymphocytes. Further, examination of mRNA amounts in liver samples of woodchucks by semi-quantitative RT-PCR showed a slightly increased expression of wIL-15 in woodchuck livers during chronic woodchuck hepatitis virus infection. This available information will provide a basis for further studies on the function of IL-15 in the context of acute and chronic hepadnavirus infection and its potential therapeutic use for chronic hepatitis B virus infection in the woodchuck model.  相似文献   

14.
Effector cell functions are regulated by a number of positive signals for the mediation of antitumor immunity. The CD40 and CD40 ligand (CD40L) interaction has been implicated in the generation of effective cell-mediated and humoral immune responses, where cytokines have been shown to play a significant role in the expression of these molecules. Our earlier studies have shown that spontaneous regression of a rat histiocytoma transplanted s.c. is mediated by CD8+ CD3 NK cells. The CD40-CD40L mediation during tumor regression was of interest. Tumor-transplanted animals showed enhanced expression of CD40L on natural killer (NK) and T cells, when compared to cells from normal animals. CD40 expression on AK-5 tumor cells was also induced after s.c. transplantation. Administration of anti-(interleukin-12) (anti-IL-12) and anti-(interferon γ) (anti-IFNγ) antibodies in tumor-bearing animals showed down-regulation of the expression of CD40L on NK and T cells with simultaneous inhibition of cytotoxic acitivity of NK cells, cytokine release and the production of antitumor antibody. Naive NK cells, when co-cultured with fixed AK-5 cells, were induced to express CD40L. CD40L expression modulated the immune response exerted by NK cells, in part by the activation of nuclear factor kB (NF-kB). Furthermore, the signaling via CD40L through the use of anti-CD40L antibody promoted the in vitro activation of cytotoxic as well as NF-kB binding activity in NK cells from tumor-transplanted animals. These observations demonstrate that the expression of CD40L by the effector cells is regulated by IL-12 and IFNγ, and could effectively modulate the NK-cell-mediated immune response during the regression of AK-5 tumor. Received: 1 June 2000 / Accepted: 27 July 2000  相似文献   

15.
IL-2 is well described as a cytokine with two markedly distinct functionalities: as a necessary signal during CD4(+) and CD8(+) T cell activation/expansion and as an essential cytokine for the maintenance of CD4(+)CD25(+)FoxP3(+) T cells (regulatory T (T(REG)) cells) during homeostasis. In this study we demonstrate for the first time that, compared with the use of IL-2 alone, a complex of IL-2 and anti-IL-2 Ab (IL-2 complex) enhances the effectiveness of a viral vaccine in a mouse model with known Ag specificity. IL-2 complex led to an increase in the number of Ag-specific effector/memory CD8(+) T cells, cytokine production, and CTL lysis following Ag-specific restimulation in a vaccination setting. Our results further demonstrate that this effect is temporary and declines over the course of a few days after the IL-2 complex treatment cycle. Moreover, in contrast to the use of IL-2 alone, IL-2 complex greatly increased the ratio of effector/memory CD8(+) T cells to T(REG) cells. This phenomenon can thus potentially be used in the enhancement of immune responses to vaccination.  相似文献   

16.
17.
Natural killer (NK) cells belong to the innate immune system and protect against cancers and a variety of viruses including retroviruses by killing transformed or infected cells. They express activating and inhibitory receptors on their cell surface and often become activated after recognizing virus-infected cells. They have diverse antiviral effector functions like the release of cytotoxic granules, cytokine production and antibody dependent cellular cytotoxicity. The importance of NK cell activity in retroviral infections became evident due to the discovery of several viral strategies to escape recognition and elimination by NK cells. Mutational sequence polymorphisms as well as modulation of surface receptors and their ligands are mechanisms of the human immunodeficiency virus-1 to evade NK cell-mediated immune pressure. In Friend retrovirus infected mice the virus can manipulate molecular or cellular immune factors that in turn suppress the NK cell response. In this model NK cells lack cytokines for optimal activation and can be functionally suppressed by regulatory T cells. However, these inhibitory pathways can be overcome therapeutically to achieve full activation of NK cell responses and ultimately control dissemination of retroviral infection. One effective approach is to modulate the crosstalk between NK cells and dendritic cells, which produce NK cell-stimulating cytokines like type I interferons (IFN), IL-12, IL-15, and IL-18 upon retrovirus sensing or infection. Therapeutic administration of IFNα directly increases NK cell killing of retrovirus-infected cells. In addition, IL-2/anti-IL-2 complexes that direct IL-2 to NK cells have been shown to significantly improve control of retroviral infection by NK cells in vivo. In this review, we describe novel approaches to improve NK cell effector functions in retroviral infections. Immunotherapies that target NK cells of patients suffering from viral infections might be a promising treatment option for the future.  相似文献   

18.
The immune response to viral infection is ideally rapid and specific, resulting in viral clearance and establishment of immune memory. Some viruses such as HIV can evade such responses leading to chronic infection, while others like Influenza A can elicit a severe inflammatory response with immune-related complications including death. Cytokines play a major role in shaping the appropriate outcomes to infection. While Interleukin-7 (IL-7) has a critical role in T and B cell development, treatment with IL-7 has recently been shown to aid the adaptive T cell response in clearance of chronic viral infection. In contrast, the IL-7-related cytokine thymic stromal lymphopoietin (TSLP) has a limited role in lymphocyte development but is important in the immune response to parasitic worms and allergens. The role for these cytokines in the immune response to an acute viral infection is unclear. IL-7 and TSLP share IL-7Rα as part of their heterodimeric receptors with the gamma common chain (γc) and TSLPR, respectively. We investigated the role of IL-7 and TSLP in the primary immune response to influenza A infection using hypomorphic IL-7Rα (IL-7Rα449F) and TSLPR−/− mice. We found that IL-7, but not TSLP, plays an important role in control of influenza A virus. We also showed that IL-7 signaling was necessary for the generation of a robust influenza A-specific CD4 and CD8 T cell response and that this requirement is intrinsic to CD8 T cells. These findings demonstrate a significant role for IL-7 during acute viral infection.  相似文献   

19.
CD1d1-restricted NK T (NKT) cells rapidly secrete both Th1 and Th2 cytokines upon activation and are therefore thought to play a regulatory role during an immune response. In this study we examined the role of CD1d1 molecules and NKT cells in regulating virus-induced cytokine production. CD1d1-deficient (CD1KO) mice, which lack NKT cells, were infected with lymphocytic choriomeningitis virus, and spontaneous cytokine release from splenocytes was measured. We found that CD1KO mice produce significantly higher amounts of IL-2, IL-4, and IFN-gamma compared with wild-type controls postinfection. Depletion studies of individual lymphocyte subpopulations suggested that CD4+ T cells are required; however, isolation of specific lymphocyte populations indicated that CD4+ T cells alone are not sufficient for the increase in cytokine production in CD1KO mice. Splenocytes from lymphocytic choriomeningitis virus-infected CD1KO mice continued to produce enhanced cytokine levels long after viral clearance and cleared viral RNA faster than wild-type mice. There was no difference in the number of splenocytes between uninfected wild-type and CD1KO mice, whereas the latter knockout mice had an increased number of splenocytes after infection. Collectively, these data provide clear evidence that the expression of CD1d1 molecules controls the magnitude of the cell-mediated immune response to an acute viral infection.  相似文献   

20.
Understanding the mechanisms that help promote protective immune responses to pathogens is a major challenge in biomedical research and an important goal for the design of innovative therapeutic or vaccination strategies. While natural killer (NK) cells can directly contribute to the control of viral replication, whether, and how, they may help orchestrate global antiviral defense is largely unknown. To address this question, we took advantage of the well-defined molecular interactions involved in the recognition of mouse cytomegalovirus (MCMV) by NK cells. By using congenic or mutant mice and wild-type versus genetically engineered viruses, we examined the consequences on antiviral CD8 T cell responses of specific defects in the ability of the NK cells to control MCMV. This system allowed us to demonstrate, to our knowledge for the first time, that NK cells accelerate CD8 T cell responses against a viral infection in vivo. Moreover, we identify the underlying mechanism as the ability of NK cells to limit IFN-alpha/beta production to levels not immunosuppressive to the host. This is achieved through the early control of cytomegalovirus, which dramatically reduces the activation of plasmacytoid dendritic cells (pDCs) for cytokine production, preserves the conventional dendritic cell (cDC) compartment, and accelerates antiviral CD8 T cell responses. Conversely, exogenous IFN-alpha administration in resistant animals ablates cDCs and delays CD8 T cell activation in the face of NK cell control of viral replication. Collectively, our data demonstrate that the ability of NK cells to respond very early to cytomegalovirus infection critically contributes to balance the intensity of other innate immune responses, which dampens early immunopathology and promotes optimal initiation of antiviral CD8 T cell responses. Thus, the extent to which NK cell responses benefit the host goes beyond their direct antiviral effects and extends to the prevention of innate cytokine shock and to the promotion of adaptive immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号