首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
惰性材料表面细菌生物膜构建的研究   总被引:3,自引:0,他引:3  
目的构建惰性材料塑料输液管内壁细菌生物膜体外模型,观察细菌生物膜的结构,探讨输液管内壁细菌生物膜形成影响因素。方法建立铜绿假单胞菌生物膜和铜绿假单胞菌、肺炎克雷伯菌混合生物膜,分别于培养1、3和7d用扫描电镜动态观察生物膜形成过程。结果混合菌生物膜的生长速度高于铜绿假单胞菌单独成膜。结论输液管是形成细菌生物膜的良好支持材料,混合细菌培养可以加速细菌形成生物膜。  相似文献   

2.
Bacterial cell attachment, the beginning of a biofilm   总被引:3,自引:0,他引:3  
The ability of bacteria to attach to surfaces and develop into a biofilm has been of considerable interest to many groups in numerous industries, including the medical and food industry. However, little is understood in the critical initial step seen in all biofilm development, the initial bacterial cell attachment to a surface. This initial attachment is critical for the formation of a bacterial biofilm, as all other cells within a biofilm structure rely on the interaction between surface and bacterial cell for their survival. This review examines what are believed to be some of the most important aspects involved in bacterial attachment to a surface.  相似文献   

3.
Streptococcus pneumoniae (pneumococcus) is able to form biofilms in vivo and previous studies propose that pneumococcal biofilms play a relevant role both in colonization and infection. Additionally, pneumococci recovered from human infections are characterized by a high prevalence of lysogenic bacteriophages (phages) residing quiescently in their host chromosome. We investigated a possible link between lysogeny and biofilm formation. Considering that extracellular DNA (eDNA) is a key factor in the biofilm matrix, we reasoned that prophage spontaneous activation with the consequent bacterial host lysis could provide a source of eDNA, enhancing pneumococcal biofilm development. Monitoring biofilm growth of lysogenic and non-lysogenic pneumococcal strains indicated that phage-infected bacteria are more proficient at forming biofilms, that is their biofilms are characterized by a higher biomass and cell viability. The presence of phage particles throughout the lysogenic strains biofilm development implicated prophage spontaneous induction in this effect. Analysis of lysogens deficient for phage lysin and the bacterial major autolysin revealed that the absence of either lytic activity impaired biofilm development and the addition of DNA restored the ability of mutant strains to form robust biofilms. These findings establish that limited phage-mediated host lysis of a fraction of the bacterial population, due to spontaneous phage induction, constitutes an important source of eDNA for the S. pneumoniae biofilm matrix and that this localized release of eDNA favors biofilm formation by the remaining bacterial population.  相似文献   

4.
Bacterial attachment on various surfaces mostly takes place in the form of specialised bacterial communities, referred to as biofilm. The biofilm is formed through series of interactions between cells and adherence to surface, resulting in an organised structure. In this review we have been using Pseudomonas aeruginosa as a model microorganism to describe the series of events that occurred during this developmental process. P. aeruginosa is an opportunistic pathogen that has a wide variety of hosts and infectious sites. In addition to biofilm formation in certain tissues, inert surfaces, such as catheters, are also target for bacterial biofilm development. The use of convenient genetic screens has made possible the identification of numerous biofilm-defective mutants, which have been characterised further. These studies have allowed the proposal for a global model, in which key events are described for the different stages of biofilm formation. Briefly, flagellar mobility is crucial for approaching the surface, whereas type IV pili motility is preponderant for surface colonisation and microcolonies formation. These microcolonies are finally packed together and buried in an exopolysaccharide matrix to form the differentiated bio-film. It is obvious that the different stages of biofilm formation also involved perception of environmental stimuli. These stimuli, and their associated complex regulatory networks, have still to be fully characterised to understand the bacterial strategy, which initiates biofilm formation. One such regulatory system, called Quorum sensing, is one of the key player in the initial differentiation of biofilm. Finally, a better understanding, at the molecular level, of biofilm establishment and persistence should help for the design of antimicrobials that prevent bacterial infections.  相似文献   

5.
细菌生物膜导致的细菌耐药性增加受到了广泛关注。抗生物膜肽是一类具有抑制和杀灭细菌生物膜独特优势的抗微生物肽,有望成为理想的抗细菌生物膜的新型抗菌药物。就抗生物膜肽与生物膜各组分间的相互作用、抗生物膜肽对生物膜形成的干预作用及其调控、抗生物膜肽目前存在的问题及其解决思路以及抗生物膜肽未来的应用领域等展开综述。  相似文献   

6.
Biofilm is bacterial population adherent to each other and to surfaces or interfaces, often enclosed by a matrix. Various biomolecules contribute to the establishment of biofilms, yet the process of building a biofilm is still under active investigation. Indole is known as a metabolite of amino acid tryptophan, which, however, has recently been proved to participate in various aspects of bacterial life including virulence induction, cell cycle regulation, acid resistance, and especially, signaling biofilm formation. Moreover, indole is also proposed to be a novel signal involved in quorum sensing, a bacterial cooperation behavior sometimes concerning the biofilm formation. Here the signaling role and molecular mechanism of indole on bacterial biofilm formation are reviewed, as well discussed is its relation to bacterial living adaptivity.  相似文献   

7.
Bacterial biofilms are assemblages of bacterial cells and extracellular matrix that result in the creation of surface-associated macrocolony formation. Most bacteria are capable of forming biofilms under suitable conditions. Biofilm formation by pathogenic bacteria on medical implant devices has been linked to implant rejection in up to 10% of cases, due to biofilm-related secondary infections. In addition, biofilm formation has been implicated in both bacterial persistence and antibiotic resistance. In this study, a method has been developed for the discovery of small molecule inhibitors of biofilm formation in Vibrio cholerae, through the use of high-throughput epifluorescence microscopy imaging. Adaptation of a strategy for the growth of bacterial biofilms in wellplates, and the subsequent quantification of biofilm coverage within these wells, provides the first example of an image-based 384-well format system for the evaluation of biofilm inhibition in V. cholerae. Application of this method to the high-throughput screening of small molecule libraries has lead to the discovery of 29 biofilm lead structures, many of which eliminate biofilm formation without altering bacterial cell viability.  相似文献   

8.
Biofilms, or surface-attached communities of cells encapsulated in an extracellular matrix, represent a common lifestyle for many bacteria. Within a biofilm, bacterial cells often exhibit altered physiology, including enhanced resistance to antibiotics and other environmental stresses. Additionally, biofilms can play important roles in host-microbe interactions. Biofilms develop when bacteria transition from individual, planktonic cells to form complex, multi-cellular communities. In the laboratory, biofilms are studied by assessing the development of specific biofilm phenotypes. A common biofilm phenotype involves the formation of wrinkled or rugose bacterial colonies on solid agar media. Wrinkled colony formation provides a particularly simple and useful means to identify and characterize bacterial strains exhibiting altered biofilm phenotypes, and to investigate environmental conditions that impact biofilm formation. Wrinkled colony formation serves as an indicator of biofilm formation in a variety of bacteria, including both Gram-positive bacteria, such as Bacillus subtilis, and Gram-negative bacteria, such as Vibrio cholerae, Vibrio parahaemolyticus, Pseudomonas aeruginosa, and Vibrio fischeri. The marine bacterium V. fischeri has become a model for biofilm formation due to the critical role of biofilms during host colonization: biofilms produced by V. fischeri promote its colonization of the Hawaiian bobtail squid Euprymna scolopes. Importantly, biofilm phenotypes observed in vitro correlate with the ability of V. fischeri cells to effectively colonize host animals: strains impaired for biofilm formation in vitro possess a colonization defect, while strains exhibiting increased biofilm phenotypes are enhanced for colonization. V. fischeri therefore provides a simple model system to assess the mechanisms by which bacteria regulate biofilm formation and how biofilms impact host colonization. In this report, we describe a semi-quantitative method to assess biofilm formation using V. fischeri as a model system. This method involves the careful spotting of bacterial cultures at defined concentrations and volumes onto solid agar media; a spotted culture is synonymous to a single bacterial colony. This 'spotted culture' technique can be utilized to compare gross biofilm phenotypes at single, specified time-points (end-point assays), or to identify and characterize subtle biofilm phenotypes through time-course assays of biofilm development and measurements of the colony diameter, which is influenced by biofilm formation. Thus, this technique provides a semi-quantitative analysis of biofilm formation, permitting evaluation of the timing and patterning of wrinkled colony development and the relative size of the developing structure, characteristics that extend beyond the simple overall morphology.  相似文献   

9.
Bacterial biofilms are highly resistant to antibiotics and pose a great threat to human and animal health. The control and removal of bacterial biofilms have become an important topic in the field of bacterial infectious diseases. Nanocarriers show great anti-biofilm potential because of their small particle size and strong permeability. In this review, the advantages of nanocarriers for combating biofilms are analysed. Nanocarriers can act on all stages of bacterial biofilm formation and diffusion. They can improve the scavenging effect of biofilm by targeting biofilm, destroying extracellular polymeric substances and enhancing the biofilm permeability of antimicrobial substances. Nanocarriers can also improve the antibacterial ability of antimicrobial drugs against bacteria in biofilm by protecting the loaded drugs and controlling the release of antimicrobial substances. Additionally, we emphasize the challenges faced in using nanocarrier formulations and translating them from a preclinical level to a clinical setting.  相似文献   

10.
Antimicrobial resistance of Pseudomonas aeruginosa biofilms   总被引:10,自引:0,他引:10  
Resistance to antimicrobial agents is the most important feature of biofilm infections. As a result, infections caused by bacterial biofilms are persistent and very difficult to eradicate. Although several mechanisms have been postulated to explain reduced susceptibility to antimicrobials in bacterial biofilms, it is becoming evident that biofilm resistance is multifactorial. The contribution of each of the different mechanisms involved in biofilm resistance is now beginning to emerge.  相似文献   

11.
An important role has been recently reported for bacterial biofilm in the pathophysiology of chronic diseases, such as chronic rhinosinusitis (CRS). CRS, affecting sinonasal mucosa, is a persistent inflammatory condition with a high prevalence around the world. Although the exact pathological mechanism of this disease has not been elicited yet, biofilm formation is known to lead to a more significant symptom burden and major objective clinical indicators. The high prevalence of multidrug-resistant bacteria has severely restricted the application of antibiotics in recent years. Furthermore, systemic antibiotic therapy, on top of its insufficient concentration to eradicate bacteria in the sinonasal biofilm, often causes toxicity, antibiotic resistance, and an effect on the natural microbiota, in patients. Thus, coming up with alternative therapeutic options instead of systemic antibiotic therapy is emphasized in the treatment of bacterial biofilm in CRS patients. The use of topical antibiotic therapy and antibiotic eluting sinus stents that induce higher antibiotic concentration, and decrease side effects could be helpful. Besides, recent research recognized that various natural products, nitric oxide, and bacteriophage therapy, in addition to the hindered biofilm formation, could degrade the established bacterial biofilm. However, despite these improvements, new antibacterial agents and CRS biofilm interactions are complicated and need extensive research. Finally, most studies were performed in vitro, and more preclinical animal models and human studies are required to confirm the collected data. The present review is specifically discussing potential therapeutic strategies for the treatment of bacterial biofilm in CRS patients.  相似文献   

12.
群体感应抑制剂对海洋生态功能菌生物膜形成的影响   总被引:3,自引:0,他引:3  
[目的]研究天然群体感应抑制剂(Quorum sensing inhibitors,QSI)分子对海洋生态功能菌生物膜形成的影响.[方法]以对污损生物幼虫附着具有诱导作用的海洋细菌为目标菌,通过在其生物膜的形成过程中添加天然群体感应抑制剂,研究其对目标菌成膜细菌数和浮游细菌数、生物膜形态以及生物膜表面胞外多糖含量的影响.[结果]呋喃酮和吡啶在50 mg/L时,对8株目标菌的成膜有显著的抑制作用,抑制率在80%左右,吲哚、青霉烷酸和香豆素在较高浓度800 mg/L才有比较好的抑制活性.生长抑制实验结果显示,同等浓度下,QSI分子对目标菌成膜的抑制活性明显高于其对浮游细菌生长的抑制活性.结果表明,QSI分子主要通过干扰目标菌群体感应系统以抑制生物膜的形成.[结论]研究证实QSI分子在海洋菌生物膜形成过程中具有一定的调控作用.通过添加QSI可能能够间接抑制由生物膜诱导的污损生物附着,从而以新的角度研制新型抗污损物质.  相似文献   

13.
It is well accepted that bacterial pathogens growing in a biofilm are recalcitrant to the action of most antibiotics and are resistant to the innate immune system. New treatment modalities are greatly warranted to effectively eradicate these infections. However, bacteria growing in a biofilm are metabolically unique in comparison to the bacteria growing in a planktonic state. Unfortunately, most antibiotics have been developed to inhibit the growth of bacteria in a planktonic mode of growth. This review focuses on the metabolism and physiology of biofilm growth with special emphasis on staphylococci. Future treatment options should include targeting unique metabolic niches found within bacterial biofilms in addition to the enzymes or compounds that inhibit biofilm accumulation molecules and/or interact with quorum sensing and intercellular bacterial communication.  相似文献   

14.
Bacterial infection of implants and prosthetic devices is one of the most common causes of implant failure. The nanostructured surface of biocompatible materials strongly influences the adhesion and proliferation of mammalian cells on solid substrates. The observation of this phenomenon has led to an increased effort to develop new strategies to prevent bacterial adhesion and biofilm formation, primarily through nanoengineering the topology of the materials used in implantable devices. While several studies have demonstrated the influence of nanoscale surface morphology on prokaryotic cell attachment, none have provided a quantitative understanding of this phenomenon. Using supersonic cluster beam deposition, we produced nanostructured titania thin films with controlled and reproducible nanoscale morphology respectively. We characterized the surface morphology; composition and wettability by means of atomic force microscopy, X-ray photoemission spectroscopy and contact angle measurements. We studied how protein adsorption is influenced by the physico-chemical surface parameters. Lastly, we characterized Escherichia coli and Staphylococcus aureus adhesion on nanostructured titania surfaces. Our results show that the increase in surface pore aspect ratio and volume, related to the increase of surface roughness, improves protein adsorption, which in turn downplays bacterial adhesion and biofilm formation. As roughness increases up to about 20 nm, bacterial adhesion and biofilm formation are enhanced; the further increase of roughness causes a significant decrease of bacterial adhesion and inhibits biofilm formation. We interpret the observed trend in bacterial adhesion as the combined effect of passivation and flattening effects induced by morphology-dependent protein adsorption. Our findings demonstrate that bacterial adhesion and biofilm formation on nanostructured titanium oxide surfaces are significantly influenced by nanoscale morphological features. The quantitative information, provided by this study about the relation between surface nanoscale morphology and bacterial adhesion points towards the rational design of implant surfaces that control or inhibit bacterial adhesion and biofilm formation.  相似文献   

15.
A system consisting of a connected mixed and tubular bioreactor was designed to study bacterial biofilm formation and the effect of its exposure to bacteriophages under different experimental conditions. The bacterial biofilm inside silicone tubular bioreactor was formed during the continuous pumping of bacterial cells at a constant physiological state for 2 h and subsequent washing with a buffer for 24 h. Monitoring bacterial and bacteriophage concentration along the tubular bioreactor was performed via a piercing method. The presence of biofilm and planktonic cells was demonstrated by combining the piercing method, measurement of planktonic cell concentration at the tubular bioreactor outlet, and optical microscopy. The planktonic cell formation rate was found to be 8.95 × 10−3 h−1 and increased approximately four-fold (4×) after biofilm exposure to an LB medium. Exposure of bacterial biofilm to bacteriophages in the LB medium resulted in a rapid decrease of biofilm and planktonic cell concentration, to below the detection limit within < 2 h. When bacteriophages were supplied in the buffer, only a moderate decrease in the concentration of both bacterial cell types was observed. After biofilm washing with buffer to remove unadsorbed bacteriophages, its exposure to the LB medium (without bacteriophages) resulted in a rapid decrease in bacterial concentration: again below the detection limit in < 2 h.  相似文献   

16.
菌膜是细菌群落发展的一种高度组织化的群体状态。在菌膜形成过程中,细菌胞外物质EPS(Exopolysaccharides)、eDNA(Extracellular DNA)、胞外蛋白等都参与菌膜的形成,它们为菌膜提供机械稳定性,帮助细菌粘附到物体表面,促进菌膜中不同细菌间物质的循环及基因的水平转移。菌膜形成涉及到群体感应、C-di-GMP(Cyclic diguanylate monophosphate)和sRNA等一系列调控机制。土壤环境中栖息着大量的微生物,许多土壤微生物定殖于植物根际,从而与植物发生着密切的相互作用;菌膜的形成是细菌稳定定殖于植物根际的关键因素,有助于植物促生菌或致病菌在根际更好的生存。本文就菌膜的成分、调控及其与植物的关系等三个方面的内容进行综述。  相似文献   

17.
Interactions among bacterial populations can have a profound influence on the structure and physiology of microbial communities. Interspecies microbial interactions begin to influence a biofilm during the initial stages of formation, bacterial attachment and surface colonization, and continue to influence the structure and physiology of the biofilm as it develops. Although the majority of research on bacterial interactions has utilized planktonic communities, the characteristics of biofilm growth (cell positions that are relatively stable and local areas of hindered diffusion) suggest that interspecies interactions may be more significant in biofilms.  相似文献   

18.
19.
Conover MS  Mishra M  Deora R 《PloS one》2011,6(2):e16861
Bacteria form complex and highly elaborate surface adherent communities known as biofilms which are held together by a self-produced extracellular matrix. We have previously shown that by adopting a biofilm mode of existence in vivo, the gram negative bacterial pathogens Bordetella bronchiseptica and Bordetella pertussis are able to efficiently colonize and persist in the mammalian respiratory tract. In general, the bacterial biofilm matrix includes polysaccharides, proteins and extracellular DNA (eDNA). In this report, we investigated the function of DNA in Bordetella biofilm development. We show that DNA is a significant component of Bordetella biofilm matrix. Addition of DNase I at the initiation of biofilm growth inhibited biofilm formation. Treatment of pre-established mature biofilms formed under both static and flow conditions with DNase I led to a disruption of the biofilm biomass. We next investigated whether eDNA played a role in biofilms formed in the mouse respiratory tract. DNase I treatment of nasal biofilms caused considerable dissolution of the biofilm biomass. In conclusion, these results suggest that eDNA is a crucial structural matrix component of both in vitro and in vivo formed Bordetella biofilms. This is the first evidence for the ability of DNase I to disrupt bacterial biofilms formed on host organs.  相似文献   

20.
Bacteria form surface attached biofilm communities as one of the most important survival strategies in nature. Biofilms consist of water, bacterial cells and a wide range of self-generated extracellular polymeric substances (EPS). Biofilm formation is a dynamic self-assembly process and several distinguishable stages are observed during bacterial biofilm development. Biofilm formation is shown to be coordinated by EPS production, cell migration, subpopulation differentiation and interactions. However, the ways these different factors affect each other and contribute to community structural differentiation remain largely unknown. The distinct roles of different EPS have been addressed in the present report. Both Pel and Psl polysaccharides are required for type IV pilus-independent microcolony formation in the initial stages of biofilm formation by Pseudomonas aeruginosa PAO1. Both Pel and Psl polysaccharides are also essential for subpopulation interactions and macrocolony formation in the later stages of P. aeruginosa PAO1 biofilm formation. Pel and Psl polysaccharides have different impacts on Pseudomonas quinolone signal-mediated extracellular DNA release in P. aeruginosa PAO1 biofilms. Psl polysaccharide is more important than Pel polysaccharide in P. aeruginosa PAO1 biofilm formation and antibiotic resistance. Our study thus suggests that different EPS materials play distinct roles during bacterial biofilm formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号