首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biosorption is a surface-dependent phenomenon. Surface modifications by chemical treatment methods could either improve or reduce the biosorption capacity of potential biosorbents. In the present work, pristine Pteris vittata L. pinnae (PPV) powder was treated separately with sodium hydroxide (NaOH), calcium chloride (CaCl2), and nitric acid (HNO3). The pristine and treated biosorbents were used to assess the biosorption of Pb(II), Cd(II), and Cr(VI) as a function of pH. Kinetics and adsorption isotherms were studied. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy and scanning electron microscope combined with energy dispersive x-ray (SEM-EDX) spectroscopic techniques were used to characterize the biosorbents before and after chemical treatments. The possible functional groups contributing to the metal sorption were identified. Results revealed favorable biosorption of Pb(II), Cd(II), and Cr(VI) described by pseudo-second order kinetics. NaOH-treated P. vittata (NPV) showed higher biosorption capacity for Pb(II) and Cd(II) compared to that of PPV. ATR-FTIR studies indicated that -OH, -COOH, and -NH2 groups were mainly involved in Cr(VI) and -OH in Pb(II) and Cd(II) biosorption. The enhanced efficiency of NPV and CaCl2 treated P. vittata (CPV) in the uptake of Pb(II) and Cd(II) compared to PPV can be associated with their altered physicochemical characters.  相似文献   

2.
Multiple microorganisms directly or treated with NaOH were immobilized by using Ca-alginate embedding to form biosorbents I and II, successively. The biosorption behaviors of biosorbents I and II for Pb(II) from aqueous solution were investigated in a batch system. Effects of solution pH, initial metal concentration, biosorbent dosage, contact time, temperature, and ionic strength on the adsorption process were considered to study the biosorption equilibrium, kinetics, thermodynamics, and mechanism of Pb(II) ion adsorption on the 2 types of biosorbents. The results showed that the adsorption capacity of biosorbent II for Pb(II) was higher than that of biosorbent I, and biosorbent II had a faster adsorption rate for Pb(II) ions. According to FTIR spectra, the carboxyl, amine, and hydroxyl groups on the biomass surface were involved in the biosorption of Pb(II). EDX analysis showed that ion exchange may be involved in the biosorption process, and the morphology observed by SEM micrograph of biosorbent I was completely different from that of biosorbent II. Desorption and regeneration experiments showed that the 2 types of biosorbents could be reused for 3 biosorption-desorption cycles without significant loss of their initial biosorption capacities.  相似文献   

3.
The present work deals with the biosorption performance of raw and chemically modified biomass of the brown seaweed Lobophora variegata for removal of Cd(II) and Pb(II) from aqueous solution. The biosorption capacity was significantly altered by pH of the solution delineating that the higher the pH, the higher the Cd(II) and Pb(II) removal. Kinetic and isotherm experiments were carried out at the optimal pH 5.0. The metal removal rates were conspicuously rapid wherein 90% of the total sorption occurred within 90 min. Biomass treated with CaCl2 demonstrated the highest potential for the sorption of the metal ions with the maximum uptake capacities i.e. 1.71 and 1.79 mmol g−1 for Cd(II) and Pb(II), respectively. Kinetic data were satisfactorily manifested by a pseudo-second order chemical sorption process. The process mechanism consisting of both surface adsorption and pore diffusion was found to be complex. The sorption data have been analyzed and fitted to sorption isotherm of the Freundlich, Langmuir, and Redlich–Peterson models. The regression coefficient for both Langmuir and Redlich–Peterson isotherms were higher than those secured for Freundlich isotherm implying that the biosorption system is possibly monolayer coverage of the L. variegata surface by the cadmium and lead ions. FT-IR studies revealed that Cd(II) and Pb(II) binding to L. variegata occurred primarily through biomass carboxyl groups accompanied by momentous interactions of the biomass amino and amide groups. In this study, we have observed that Lvariegata had maximum biosorption capacity for Cd(II) and Pb(II) reported so far for any marine algae. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
Biomass of Oryza sativa (OS) was tested for the removal of Cd(II) ions from synthetic and real wastewater samples. Batch experiments were conducted to investigate the effects of operating parameters on Cd(II) biosorption. Fourier transform infrared spectroscopy, scanning electron microscopy, and energy-dispersive x-ray spectroscopy were used to examine the surface characteristics of the Cd(II)-loaded biomass. The maximum removal efficiency of Cd(II) was 89.4% at optimum pH 6.0, biosorbent dose 10.0 g L?1, initial Cd(II) 50 mg L?1, and biosorbent particle size 0.5 mm. The applicability of Langmuir and Freundlich isotherms to the sorbent system implied the existence of both monolayer and heterogeneous surface conditions. Kinetic studies revealed that the adsorption process of Cd(II) followed the pseudo-second-order model (r2: 0.99). On the theoretical side, an adaptive neuro-fuzzy inference system (ANFIS) was applied to select the operating parameter that mostly influences the Cd(II) biosorption process. Results from ANFIS indicated that pH was the most influential parameter affecting Cd(II) removal efficiency, indicating that the biomass of OS was strongly pH sensitive. Finally, the biomass was confirmed to adsorb Cd(II) from real wastewater samples with removal efficiency close to 100%. However, feasibility studies of such systems on a large-scale application remain to be investigated.  相似文献   

5.
Competitive biosorption of Cd(II), Cr(III) and Ni(II) on unmodified shelled Moringa oleifera seeds (SMOS) present in ternary mixture were compared with the single metal solution. The extent of adsorption capacity of the ternary metal ions tested on unmodified SMOS was low (10-20%) as compared to single metal ions. SMOS removed the target metal ions in the selectivity order of Cd(II) > Cr(III) > Ni(II). Sorption equilibria, calculated from adsorption data, explained favorable performance of biosorption system. Regeneration of exhausted biomass was also attempted for several cycles with a view to restore the sorbent to its original state.  相似文献   

6.
Sorption of Cu(II) and Cd(II) onto the extracellular polymeric substances (EPS) produced by Aspergillus fumigatus was investigated for the initial pH of the solution, EPS concentrations, contact time, NaCl concentration, initial metal ion concentration and the presence of other ions in the solution. The results showed that the adsorption of metal ions was significantly affected by pH, EPS concentrations, initial metal concentration, NaCl concentration and co-ions. The sorption of Cu(II) and Cd(II) increased with increasing pH and initial metal ion concentration but decreased with an increase in the NaCl concentration. The maximum sorption capacities of A. fumigatus EPS calculated from the Langmuir model were 40 mg g−1 EPS and 85.5 mg g−1 EPS for Cu(II) and Cd(II), respectively. The binary metal sorption experiments showed a selective metal binding affinity in the order of Cu(II) > Pb(II) > Cd(II). Both the Freundlich and Langmuir adsorption models described the sorption of Cu(II) and Cd(II) by the EPS of Afumigatus adequately. Fourier transform infrared spectroscopy (FTIR) analysis revealed that carboxyl, amide and hydroxyl functional groups were mainly correlated with the sorption of Cu(II) and Cd(II). Energy dispersive X-ray (EDX) system analysis revealed that the ion-exchange was an important mechanism involved in the Cu(II) and Cd(II) sorption process taking place on EPS.  相似文献   

7.
The technique of differential pulse polarography is shown here to be applicable to the monitoring directly the biosorption of metal ions from solution by live bacteria from mixed metal solutions. Biosorption of Cd(II), Zn(II) and Ni(II) by P. cepacia was followed using data obtained at the potential which is characteristic of the metal ion in the absence and presence of cells. Hepes buffer (pH 7.4, 50 mM) was used as a supporting electrolyte in the polarographic chamber and metal ion peaks in the presence of cells of lower amplitude were obtained due to metal-binding by the cells. Well defined polarographic peaks were obtained in experiments involving mixtures of metal ions of Cd(II)-Zn(II), Cu(II)-Zn(II), Cu(II)-Cd(II) and Cd(II)-Ni(II). Biosorption of Cd(II), Zn(II) increased with solution pH. The method was also tested as a rapid technique for assessing removal of metal ions by live bacteria and the ability of the polarographic technique in measuring biosorption of metal ions from mixed metal solutions is demonstrated. Cu(II) was preferentially bound and removal of metals was in the order Cu(II) > Ni(II) > Zn(II), Cd(II) by intact cells of P. cepacia. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
In this study Beauveria bassiana and Metarhizium anisopliae were used as inexpensive and efficient biosorbents for Pb(II) and Cd(II) from aqueous metal solutions. The effects of various physicochemical factors on Pb(II) and Cd(II) biosorption by B. bassiana and M. anisopliae were studied. The optimum pH for Cd(II) and Pb(II) biosorption by two fungal species was achieved at pH 6.0 for Pb(II) and 5.0 Cd(II) at a constant time of 30 min. The nature of fungal biomass and metal ion interactions was evaluated by Fourier transform infrared. The maximum adsorption capacities (q(max)) calculated from Langmuir isotherms for Pb(II), and Cd(II) uptake by B. bassiana were 83.33±0.85, and 46.27±0.12 mg/g, respectively. However, the q(max) obtained for Pb(II) uptake by M. anisopliae was 66.66±0.28 mg/g, and 44.22±0.13 mg/g for Cd(II). B. bassiana showed higher adsorption capacity compared to M. anisopliae. The data obtained imply the potential role of B. bassiana and M. anisopliae for heavy metal removal from aqueous solutions.  相似文献   

9.
Cadmium, zinc and copper biosorption mediated by Pseudomonas veronii 2E   总被引:1,自引:0,他引:1  
Adsorption properties of bacterial biomass were tested for Cd removal from liquid effluents. Experimental conditions (pH, time, cellular mass, volume, metal concentration) were studied to develop an efficient biosorption process with free or immobilised cells of Pseudomonas veronii 2E. Surface fixation was chosen to immobilise cells on inert surfaces including teflon membranes, silicone rubber and polyurethane foam. Biosorption experiments were carried out at 32 °C and controlled pH; maximal Cd(II) retention was observed at pH 7.5. The isotherm followed the Langmuir model (Kd = 0.17 mM and qmax = 0.48 mmol/g cell dry weight). Small changes in the surface negative charge of cells were observed by electrophoretic mobility experiments in presence of Cd(II). In addition, biosorption of 40% Cu(II) (pH 5 and 6.2) and 50% Zn(II) and 50% Cd(II) (pH 7.5) was observed from mixtures of Cu(II), Zn(II) and Cd(II) 0.5 mM each.  相似文献   

10.
The biosorption of cadmium ions onto entrapped Trametes versicolor mycelia has been studied in a batch system. The maximum experimental biosorption capacities for entrapped live and dead fungal mycelia of T. versicolor were found as 102.3 +/- 3.2 mg Cd(II) g(-1) and 120.6 +/- 3.8 mg Cd(II) g(-1), respectively. Biosorption equilibrium was established in about 1 h and biosorption was well described by the Langmuir and Freundlich biosorption isotherms. The change in the biosorption capacity with time was found to fit the pseudo-second-order equation. Since the biosorption capacities were relatively high for both entrapped live and dead forms, those fungal forms could be considered as suitable biosorbents for the removal of cadmium in wastewater-treatment systems. The biosorbents were reused in three consecutive adsorption/desorption cycles without a significant loss in the biosorption capacity.  相似文献   

11.
The cells of psychrotrophic Pseudomonas fluorescens BM07 were found to secrete large amounts of exobiopolymer (EBP) composed of mainly hydrophobic (water insoluble) polypeptide(s) (as contain approximately 50 mol% hydrophobic amino acids, lacking cysteine residue) when grown on fructose containing limited M1 medium at the temperatures as low as 0-10 degrees C but trace amount at high (30 degrees C, optimum growth) temperature. Two types of nonliving BM07 cells (i.e., cells grown at 30 degrees C and 10 degrees C) as well as the freeze-dried EBP were compared for biosorption of mercury (Hg(II)) and cadmium (Cd(II)). The optimum adsorption pH was found 7 for Hg(II) but 6 for Cd(II), irrespective of the type of biomass. Equilibrium adsorption data well fitted the Langmuir adsorption model. The maximum adsorption (Q (max)) was 72.3, 97.4, and 286.2 mg Hg(II)/g dry biomass and 18.9, 27.0, and 61.5 mg Cd(II)/g dry biomass for cells grown at 30 degrees C and 10 degrees C and EBP, respectively, indicating major contribution of heavy metal adsorption by cold-induced EBP. Mercury(II) binding induced a significant shift of infrared (IR) amide I and II absorption of EBP whereas cadmium(II) binding showed only a very little shift. These IR shifts demonstrate that mercury(II) and cadmium(II) might have different binding sites in EBP, which was supported by X-ray diffraction and differential scanning calorimetric analysis and sorption results of chemically modified biomasses. This study implies that the psychrotrophs like BM07 strain may play an important role in the bioremediation of heavy metals in the temperate regions especially in the inactive cold season.  相似文献   

12.
The present study reports the influence of different factors on the sorption of Pb and Cd by Nostoc muscorum. The results showed that extent of Pb and Cd removal by N. muscorum cells increased with increasing biosorbent dose, but exhibited decline in the adsorption capacity. The maximum sorption of Cd (85.2%) and Pb (93.3%) was achieved at 60 and 80 μg/ml concentrations of respective metal, within 30 and 15 min, respectively. The result revealed that optimum biosorption of Pb and Cd occurred at pH 5 and 6, respectively, at 40°C temperature. Presence of binary metals (both Pb and Cd) in a solution showed that the presence of one metal ion resulted into decreased sorption of other metal ion. The presence of Ca and EDTA showed significant decrease in the sorption of Pb and Cd, while other anions and cations did not show significant effect on the biosorption of both the metals. Maximum desorption of Pb and Cd was achieved in the presence of EDTA and HNO3, respectively. Results also showed that the test biosorbent could be repeatedly used up to six biosorption/desorption cycles without significant loss of its initial metal adsorption capacity.  相似文献   

13.
Oscillatoria sp. H1 (Cyanobacteria, microalgae) isolated from Mogan Lake was used for the removal of cadmium ions from aqueous solutions as its dry biomass, alive and heat-inactivated immobilized form on Ca-alginate. Particularly, the effect of physicochemical parameters like pH, initial concentration and contact time were investigated. The sorption of Cd(II) ions on the sorbent used was examined for the cadmium concentrations within the range of 25-250 mg/L. The biosorption of Cd(II) increased as the initial concentration of Cd(II) ions increased in the medium up to 100 mg/L. Maximum biosorption capacities for plain alginate beads, dry biomass, immobilized live Oscillatoria sp. H1 and immobilized heat-inactivated Oscillatoria sp. H1 were 21.2, 30.1, 32.2 and 27.5 mg/g, respectively. Biosorption equilibrium was established in about 1 h for the biosorption processes. The biosorption was well described by Langmuir and Freundlich adsorption isotherms. Maximum adsorption was observed at pH 6.0. The alginate-algae beads could be regenerated using 50 mL of 0.1 mol/L HCl solution with about 85% recovery.  相似文献   

14.
The biosorption of Cu(II), Cd(II), and Pb(II) by a dried green macroalga Caulerpa lentillifera was investigated. The sorption kinetic data could be fitted to the pseudo second order kinetic model. The governing transport mechanisms in the sorption process were both external mass transfer and intra-particle diffusion. Isotherm data followed the Sips isotherm model with the exponent of approximately unity suggesting that these biosorption could be described reasonably well with the Langmuir isotherm. The maximum sorption capacities of the various metal components on C. lentillifera biomass could be prioritized in order from high to low as: Pb(II)>Cu(II)>Cd(II). The sorption energies obtained from the Dubinin-Radushkevich model for all sorption systems were in the range of 4-6 kJ mol(-1) indicating that a physical electrostatic force was potentially involved in the sorption process. Thomas model could well describe the breakthrough data from column experiments. Ca(II), Mg(II), and Mn(II) were the major ions released from the algal biomass during the sorption which revealed that ion exchange was one of the main sorption mechanisms.  相似文献   

15.
This paper describes modification of a natural adsorbent with Fenton reagent and determines the removal of Cd(II) ions from aqueous solution. Changes of the surface properties of adsorbent materials were determined by the FT-IR analysis after the modification of pine bark. The effect of Fe2+/H2O2 ratio, ORP, pH, and contact time were determined. Different adsorption isotherms were also obtained using concentrations of Cd(II) ions ranging from 0.1 to 100 mg L(-1). The adsorption process follows pseudo-first-order reaction kinetics and follows the Langmuir adsorption isotherm. The paper discusses thermodynamic parameters, including changes in Gibbs free energy, entropy, and enthalpy, for the adsorption of Cd(II) on modified bark, and revealed that the adsorption process was spontaneous and exothermic under natural conditions. The maximum removal efficiency obtained was 97% at pH 7 and with a 90-min contact time (for 35 mg L(-1) initial concentration and a 2.5 g L(-1) solid-to-liquid ratio).  相似文献   

16.
This paper describes activation of pine cone with Fenton reagent and determines the removal of Cd(II) and Pb(II) ions from aqueous solution. Changes of the surface properties of adsorbent materials were determined by the FT-IR and SEM analysis after activation of pine cone. The effect of Fe(2+)/H(2)O(2) ratio, ORP, pH and contact time were determined. Different adsorption isotherms were also obtained using concentrations of heavy metal ions ranging from 0.1 to 150mgL(-1). The adsorption process follows pseudo-first-order reaction kinetics and follows the Langmuir adsorption isotherm. The study discusses thermodynamic parameters, including changes in Gibbs free energy, entropy, and enthalpy, for the adsorption of Cd(II) and Pb(II) on activated cone, and revealed that the adsorption process was spontaneous and exothermic under natural conditions. The maximum removal efficiencies were obtained as 91% and 89% at pH 7 with 90 and 105-min contact time for Cd(II) and Pb(II), respectively.  相似文献   

17.
Agricultural soil irrigated with industrial wastewater (more than two decades) analysed for heavy metals revealed high levels of Fe, Cr, Cu, Zn, Ni and Cd. Out of a total of 40 bacterial isolates obtained from these soils, 17 belonged to the family enterobacteriaceae and 10 were Pseudomonas spp. A maximum MIC of 200 for Cd, 400 for Zn and Cu, 800 for Ni, and 1600 microg/ml for Pb was observed. Biosorption of Ni and Cd studies over a range of metal ion concentrations with Escherichia coli WS11 both in single and bi-metal systems showed that the adsorption of Cd and Ni was dependent on the concentrations and followed the Freundlich adsorption isotherm. The biosorption of Ni increased from 6.96 to 55.31 mg/g of cells, and Cd from 4.96 to 45.37 mg/g of cells at a concentration ranging from 50 to 400 microg/ml after 2h of incubation in a single metal solution. A further increase in incubation time had no significant effect on the biosorption of metals.  相似文献   

18.
The cadmium removing capacity of a biosorbent Calotropis procera, a perennial wild plant, is reported here. The biomass was found to possess high uptake capacity of Cd(II). Adsorption was pH dependent and the maximum removal was obtained at two different pH i.e. pH 5.0 and 8.0. Maximum biosorption capacity in batch and column mode was found to be 40 and 50.5 mg/g. The adsorption equilibrium (> or =90% removal) was attained within 5 min irrespective of the cadmium ion concentration. Interfering ions viz. Zn(II), As(III), Fe(II), Ni(II) interfered only when their concentration was higher than the equimolar ratio. The Freundlich isotherm best explained the adsorption, yet the monolayer adsorption was also noted at lower concentrations of Cd(II). The FTIR analysis indicates the involvement of hydroxyl (-OH), alkanes (-CH), nitrite (-NO(2)), and carboxyl group (-COO) chelates in metal binding. The complete desorption of the cadmium was achieved by 0.1M H(2)SO(4) and 0.1M HCl. The C. procera based Cd(II) removal technology appears feasible.  相似文献   

19.
Many kinds of biomass are being tested as a biosorption material for metal removal from the contaminated waters. In the present study the biosorption capacity of an organic solvent tolerant (OST) bacterium was investigated against Cr(VI) and Ni(II). The OST strain of Pseudomonas fluorescens TEM08 was isolated from an oil contaminated soil sample and grown in normal culture conditions (type I) and in the presence of the cyclohexane (type II). Two types of cells were used in the biosorption experiments to compare the organic solvent effect on the biosorption capacity. The biosorption equilibrium was described by Langmuir and Freundlich adsorption isotherms. The value of Q(0) was higher for type I cells (40.8 for Cr(VI); 12.4 for Ni(II)) then the type II (40.7 for Cr(VI); 11.2 for Ni(II)). The adsorption capacity constants (K(F)) of Freundlich model for type I cells and for type II cells were 10.87 and 8.78 for Ni(II) and 13.60 and 10.99 for Cr(VI), respectively.  相似文献   

20.
Effective bio-removal of heavy metals is important for water treatment. Although a number of microorganism species demonstrated the ability of living cells to remove cadmium, most of them were tested at fixed concentration of metals, salinity, and temperature. This paper reported a research on the screening and performance of a newly developed deep-sea bacterium, Pseudoalteromonas sp. SCSE709-6, for Cd(II) removal by growing cells under a range of experimental conditions: 0–50 mg/L of Cd(II), 15–30 °C of incubation temperatures, 6.5–8.0 of initial pH, and 1.5–5.0 % of salinity. Study results revealed that Pseudoalteromonas sp. SCSE709-6 could remove more than 96 % of Cd(II) on growth. The Cd(II) bioremoval was in correlation but not in accordance with biomass. As cadmium concentrations increased, the Cd(II) removal by cell adsorption played an increasingly important role compared with that of intracellular accumulation. For the removal mechanism, Fourier transform infrared spectroscopy revealed that carboxyl, amido and hydroxyl of saccharides, and proteins in the extracellular polymeric substances are the most active groups for Cd(II) absorption. The bacterium reported in this study offers a new microbe strain for Cd(II) bioremediation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号