首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The levels of soluble nucleotides in wheat aleurone tissue   总被引:3,自引:2,他引:1       下载免费PDF全文
The content of soluble nucleotides in aleurone layers isolated from mature wheat (Triticum aestivum var. Olympic) grain was investigated. The most abundant nucleotides were adenosine triphosphate, uridine triphosphate, and uridine diphosphoglucose. Smaller amounts of guanosine triphosphate, cytidine triphosphate, adenosine diphosphate, and nicotinamide adenine dinucleotide were also identified. The levels of some of these nucleotides were increased after incubation of the tissue under certain conditions.  相似文献   

2.
Alkaline phosphatase (APase) activity was detected in aquatic microbial assemblages from the subtropics to Antarctica. The occurrence of APase in environmental nucleotide extracts was shown to significantly affect the measured concentrations of cellular nucleotides (adenosine triphosphate, adenosine diphosphate, adenosine monophosphate, guanosine triphosphate, uridine triphosphate, and cytidine triphosphate), adenylate energy charge, and guanosine triphosphate/adenosine triphosphate ratios, when conventional methods of nucleotide extraction were employed. Under the reaction conditions specified in this report, the initial rate of hydrolysis of adenosine triphosphate was directly proportional to the activity of APase in the sample extracts and consequently can be used as a sensitive measure of APase activity. A method was devised for obtaining reliable nucleotide measurements in naturally occurring microbial populations containing elevated levels of APase activity. The metabolic significance of APase activity in microbial cells is discussed, and it is concluded that the occurrence and regulation of APase in nature is dependent upon microscale inorganic phosphate limitation of the autochthonous microbial communities.  相似文献   

3.
灵芝孢子粉中核苷类成分分析   总被引:4,自引:3,他引:1  
本文利用高效液相色谱方法(HPLC)同时对灵芝孢子粉中的15种核苷类成分的含量进行测定。采用Ultimate AQ-C18(4.6mm×250mm,5μm)色谱柱,以甲醇和水为流动相进行梯度洗脱,流速1.0mL/min,检测波长259nm,柱温30℃,进样量10μL。方法学考察结果表明,该方法准确度高,稳定性、精密度、重现性好,适用于灵芝孢子粉中核苷类成分的测定分析。运用建立的方法对不同破壁时间、不同采收时期龙泉、奉化、大别山、黄山4个产区的灵芝孢子粉中的15种核苷类成分的含量进行测定。结果表明破壁处理对灵芝孢子粉中核苷类成分提取率的影响不大,不同产地的灵芝孢子粉中核苷类成分的组成和含量具有显著差异,且孢子粉中的核苷含量随着产粉时间的延长有所增加。各待测样品中均含有胞嘧啶、尿苷、腺嘌呤、鸟苷、腺苷等成分,其中尿苷、鸟苷、腺苷3种核苷的含量占总量的比例在待测样品中均达到70%以上,为灵芝孢子粉中的主要核苷类成分。  相似文献   

4.
The role of dolichol monophosphate in sugar transfer   总被引:11,自引:0,他引:11  
The specificity of the transfer of monosaccharides from sugar nucleotides to dolichol monophosphate catalyzed by liver microsomes was studied. Besides uridine diphosphate glucose, uridine diphosphate-N-acetylglucosamine and guanosine diphosphate mannose were found to act as donors for the formation of the respective dolichol monophosphate sugars. Uridine diphosphate galactose and uridine diphosphate-N-acetylgalactosamine gave negative results.  相似文献   

5.
Giardia lamblia, an aerotolerant anaerobe, respires in the presence of oxygen by a flavin, iron-sulfur protein-mediated electron transport system. Glucose appears to be the only sugar catabolized by the Embden-Meyerhof-Parnas and hexose monophosphate pathways, and energy is produced by substrate level phosphorylation. Substrates are incompletely oxidized to CO2, ethanol and acetate by nonsedimentable enzymes. The lack of incorporation of inosine, hypoxanthine, xanthine, formate or glycine into nucleotides indicates an absence of de novo purine synthesis. Only adenine, adenosine, guanine and guanosine are salvaged, and no interconversion of these purines was detected. Salvage of these purines and their nucleosides is accomplished by adenine phosphoribosyltransferase, adenosine hydrolase, guanosine phosphoribosyltransferase and guanine hydrolase. The absence of de novo pyrimidine synthesis was confirmed by the lack of incorporation of bicarbonate, orotate and aspartate into nucleotides, and by the lack of detectable levels of the enzymes of de novo pyrimidine synthesis. Salvage appears to be accomplished by the action of uracil phosphoribosyltransferase, uridine hydrolase, uridine phosphotransferase, cytidine deaminase, cytidine hydrolase, cytosine phosphoribosyltransferase and thymidine phosphotransferase. Nucleotides of uracil may be converted to nucleotides of cytosine by cytidine triphosphate synthetase, but thymidylate synthetase and dihydrofolate reductase activities were not detected. Uptake of pyrmidine nucleosides, and perhaps pyrimidines, appears to be accomplished by carrier-mediated transport, and the common site for uptake of uridine and cytidine is distinct from the site for thymidine. Thymine does not appear to be incorporated into nucleotide pools. Giardia trophozoites appear to rely on preformed lipids rather than synthesizing them de novo.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
We have examined the phosphorylation of the cyclic adenosine 3':5' monophosphate (cAMP) cell surface chemotactic receptor and a 36 kDa membrane-associated protein (p36) in Dictyostelium discoideum. The activity of CAR-kinase, the enzyme responsible for the phosphorylation of the cAMP receptor, was studied in plasma membrane preparations. It was found that, as in intact cells, the receptor was rapidly phosphorylated in membranes incubated with [gamma 32P] adenosine triphosphate (ATP) but only in the presence of cAMP. This phosphorylation was not observed in membranes prepared from cells which did not display significant cAMP binding activity. cAMP could induce receptor phosphorylation at low concentrations, while cyclic guanosine 3':5' monophosphate (cGMP) could elicit receptor phosphorylation only at high concentrations. Neither ConA, Ca2+, or guanine nucleotides had an effect on CAR-kinase. It was also observed that 2-deoxy cAMP but not dibutyryl cAMP induced receptor phosphorylation. The data suggest that the ligand occupied form of the cAMP receptor is required for CAR-kinase activity. Although the receptor is rapidly dephosphorylated in vivo, we were unable to observe its dephosphorylation in vitro. In contrast, p36 was rapidly dephosphorylated. Also, unlike the cAMP receptor, the phosphorylation of p36 was found to be regulated by the addition of guanine nucleotides. Guanosine diphosphate (GDP) enhanced the phosphorylation while guanosine triphosphate (GTP) decreased the radiolabeling of p36 indicating that GTP can compete with ATP for the nucleotide triphosphate binding site of p36 kinase. Thus was verified using radiolabeled GTP as the phosphate donor. Competition experiments with GTP gamma S, ATP, GTP, CTP, and uridine triphosphate (UTP) indicated that the phosphate donor site of p36 kinase is relatively non-specific.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
ATP and adenosine are well-known neuroactive compounds. Other nucleotides and nucleosides may also be involved in different brain functions. This paper reports on extracellular concentrations of nucleobases and nucleosides (uracil, hypoxanthine, xanthine, uridine, 2'-deoxycytidine, 2'-deoxyuridine, inosine, guanosine, thymidine, adenosine) in response to sustained depolarisation, using in vivo brain microdialysis technique in the rat thalamus. High-potassium solution, the glutamate agonist kainate, and the Na(+)/K(+) ATPase blocker ouabain were applied in the perfusate of microdialysis probes and induced release of various purine and pyrimidine nucleosides. All three types of depolarisation increased the level of hypoxanthine, uridine, inosine, guanosine and adenosine. The levels of measured deoxynucleosides (2'-deoxycytidine, 2'-deoxyuridine and thymidine) decreased or did not change, depending on the type of depolarisation. Kainate-induced changes were TTX insensitive, and ouabain-induced changes for inosine, guanosine, 2'-deoxycytidine and 2'-deoxyuridine were TTX sensitive. In contrast, TTX application without depolarisation decreased the extracellular concentrations of hypoxanthine, uridine, inosine, guanosine and adenosine.Our data suggest that various nucleosides may be released from cells exposed to excessive activity and, thus, support several different lines of research concerning the regulatory roles of nucleosides.  相似文献   

8.
Extracellular nucleotides play an important role in lung defense, but the release mechanism and relative abundance of different nucleotide species secreted by lung epithelia are not well defined. In this study, to minimize cell surface hydrolysis, we used a low-volume, flow-through chamber and examined adenosine and uridine nucleotide concentrations in perfusate aliquots of human lung A549 cells challenged by 50% hypotonic shock. Adenosine triphosphate (ATP), adenosine diphosphate (ADP), adenosine monophosphate (AMP), and adenosine (Ado) were quantified in high-performance liquid chromatography (HPLC) analysis of fluorescent etheno derivatives, and uridine triphosphate (UTP) and uridine diphosphate (UDP) were measured using HPLC-coupled radioenzymatic assays. After the onset of hypotonic shock, ATP, ADP, UTP, and UDP in the perfusates increased markedly and peaked at approximately 2.5 min, followed by a gradual decay in the next 15–20 min; peak changes in Ado and AMP were relatively minor. The peak concentrations and fold increment (in parentheses) were: 34±13 nM ATP (5.6), 11±5 nM ADP (3.7), 3.3±1.2 nM AMP (1.4), 23±7 nM Ado (2.1), 21 nM UTP (>7), and 11 nM UDP (27). Nucleotide release was almost completely abolished from cells loaded with the calcium chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA). Under isotonic conditions, elevation of intracellular calcium with the calcium ionophore ionomycin (5 μM, 3 min) also released nucleotides with kinetics and relative abundance as above, albeit less robust. ADP:ATP (1:3) and UDP:UTP (1:2) ratios in perfusates from stimulated cells were markedly higher than the cytosolic ratios of these species, suggesting that a nucleotide diphosphate (NDP)-rich compartment, e.g., the secretory pathway, contributed to nucleotide release. Laser confocal microscopy experiments illustrated increased FM1-43 uptake into the plasma membrane upon hypotonic shock or ionomycin treatment, consistent with enhanced vesicular exocytosis under these conditions. In summary, our results strongly suggest that calcium-dependent exocytosis is responsible, at least in most part, for adenosine and uridine nucleotide release from A549 cells.  相似文献   

9.
Whereas the chemotactic peptide, N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMet-Leu-Phe), induced NADPH-oxidase-catalyzed superoxide (O2-) formation in human neutrophils, purine and pyrimidine nucleotides per se did not stimulate NADPH oxidase but enhanced O2- formation induced by submaximally and maximally stimulatory concentrations of fMet-Leu-Phe up to fivefold. On the other hand, FMet-Leu-Phe primed neutrophils to generate O2- upon exposure to nucleotides. At a concentration of 100 microM, purine nucleotides enhanced O2- formation in the effectiveness order adenosine 5'-O-[3-thio]triphosphate (ATP[gamma S]) greater than ITP greater than guanosine 5'-O-[3-thio]triphosphate (GTP[gamma S]) greater than ATP = adenosine 5'-O-[2-thio]triphosphate (Sp-diastereomer) = GTP = guanosine 5'-O-[2-thio]diphosphate (GDP[beta S] = ADP greater than adenosine 5'-[beta, gamma-imido]triphosphate = adenosine 5'-O-[2-thio]triphosphate] (Rp-diastereomer). Pyrimidine nucleotides stimulated fMet-Leu-Phe-induced O2- formation in the effectiveness order uridine 5'-O-[3-thio]triphosphate (UTP[gamma S]) = UTP greater than CTP. Uracil (UDP[beta S]) = uridine 5'-O[2-thio]triphosphate (Rp-diastereomer) (Rp)-UTP[beta S]) = UTP greater than CTP. Uracil nucleotides were similarly effective potentiators of O2- formation as the corresponding adenine nucleotides. GDP[beta S] and UDP[beta S] synergistically enhanced the stimulatory effects of ATP[gamma S], GTP[gamma S] and UTP[gamma S]. Purine and pyrimidine nucleotides did not induce degranulation in neutrophils but potentiated fMet-Leu-Phe-induced release of beta-glucuronidase with similar nucleotide specificities as for O2- formation. In contrast, nucleotides per se induced aggregation of neutrophils. Treatment with pertussis toxin prevented aggregation induced by both nucleotides and fMet-Leu-Phe. Our results suggest that purine and pyrimidine nucleotides act via nucleotide receptors, the nucleotide specificity of which is different from nucleotide receptors in other cell types. Neutrophil nucleotide receptors are coupled to guanine-nucleotide-binding proteins. As nucleotides are released from cells under physiological and pathological conditions, they may play roles as intercellular signal molecules in neutrophil activation.  相似文献   

10.
Syntheses and biological activities of imidazo-, pyrimido- and diazepino[2,1-f]purinediones containing N-alkyl substituents (with straight, branched or unsaturated chains) are described. Tricyclic derivatives were synthesized by the cyclization of 8-bromo-substituted 7-(2-bromoethyl)-, 7-(3-chloropropyl)- or 7-(4-bromobutyl)-theophylline with primary amines under various conditions. Compound 22 with an ethenyl substituent was synthesized by dehydrohalogenation of 9-(2-bromoethyl)-1,3-dimethyltetrahydropyrimido[2,1-f]purinedione. The obtained derivatives (5–35) were initially evaluated for their affinity at rat A1 and A2A adenosine receptors (AR), showing moderate affinity for both adenosine receptor subtypes. The best ligands were diazepinopurinedione 28 (Ki = 0.28 μM) with fivefold A2A selectivity and the non-selective A1/A2A AR ligand pyrimidopurinedione 35 (Ki A1 = 0.28 μM and Ki A2A = 0.30 μM). The compounds were also evaluated for their affinity at human A1, A2A, A2B and A3 ARs. All of the obtained compounds were docked to the A2A AR X-ray structure in complex with the xanthine-based, potent adenosine receptor antagonist—XAC. The likely interactions of imidazo-, pyrimido- and diazepino[2,1-f]purinediones with the residues forming the A2A binding pocket were discussed. Furthermore, the new compounds were tested in vivo as anticonvulsants in maximal electroshock, subcutaneous pentylenetetrazole (ScMet) and TOX tests in mice (i.p.). Pyrimidopurinediones showed anticonvulsant activity mainly in the ScMet test. The best derivative was compound 11, showing 100 % protection at a dose of 100 mg/kg without symptoms of neurotoxicity. Compounds 6, 7, 8 and 14 with short substituents showed neurotoxicity and caused death. In rat tests (p.o.), 9 was characterized by a high protection index (>13.3). AR affinity did not apparently correlate with the antiepileptic potency of the compounds.

Electronic supplementary material

The online version of this article (doi:10.1007/s11302-013-9358-3) contains supplementary material, which is available to authorized users.  相似文献   

11.

In corpus cavernosum (CC), guanosine triphosphate (GTP) is converted into cyclic guanosine monophosphate (cGMP) to induce erection. The action of cGMP is terminated by phosphodiesterases and efflux transporters, which pump cGMP out of the cell. The nucleotides, GTP, and cGMP were detected in the extracellular space, and their hydrolysis lead to the formation of intermediate products, among them guanosine. Therefore, our study aims to pharmacologically characterize the effect of guanosine in isolated CC from mice. The penis was isolated and functional and biochemical analyses were carried out. The guanine-based nucleotides GTP, guanosine diphosphate, guanosine monophosphate, and cGMP relaxed mice corpus cavernosum, but the relaxation (90.7?±?12.5%) induced by guanosine (0.000001–1 mM) was greater than that of the nucleotides (~?45%, P?<?0.05). Guanosine-induced relaxation was not altered in the presence of adenosine type 2A and 2B receptor antagonists. No augment was observed in the intracellular levels of cyclic adenosine monophosphate in tissues stimulated with guanosine. Inhibitors of nitric oxide synthase (L-NAME, 100 μM) and soluble guanylate cyclase (ODQ, 10 μM) produced a significant reduction in guanosine-induced relaxation in all concentrations studied, while in the presence of tadalafil (300 nM), a significant increase was observed. Pre-incubation of guanosine (100 μM) produced a 6.6-leftward shift in tadalafil-induced relaxation. The intracellular levels of cGMP were greater when CC was stimulated with guanosine. Inhibitors of ecto-nucleotidases and xanthine oxidase did not interfere in the response induced by guanosine. In conclusion, our study shows that guanosine relaxes mice CC and opens the possibility to test its role in models of erectile dysfunction.

  相似文献   

12.
13.
Extensive stalk elongation in Skl mutants of Caulobacter crescentus occurs when they are grown in complete medium. This stalk elongation is less pronounced in synthetic medium with glucose as the sole carbon source than in complex peptone yeast extract medium. Addition of exogenous nucleoside triphosphates (adenosine triphosphate [ATP], guanosine triphosphate [GTP], cytidine triphosphate, and uridine triphosphate) inhibits stalk elongation of the Skl mutants, whereas cyclic guanosine 3',5'-monophosphate (GMP) stimulates stalk elongation in the Skl strains grown in synthetic glucose medium. Cyclic GMP also produces stalk elongation in wild-type C. crescentus and concurrently produces a cell division defect resulting in cellular filament formation. Under conditions tested, cyclic adenosine 3',5'-monophosphate and dibutyryl cyclic adenosine monophosphate did not enhance stalk elongation. Endogenous ATP and GTP levels in the mutants are significantly lower than corresponding nucleotide concentrations of the parent wild-type strains. Control of syntheses resulting in stalk formation in C. crescentus appears to be related to intracellular concentrations of nucleotides, with cyclic GMP as a prominent candidate for an important regulatory role in this aspect of morphogenesis.  相似文献   

14.
Metabolism of cytidine and uridine in bean leaves   总被引:3,自引:3,他引:0       下载免费PDF全文
Ross C  Cole CV 《Plant physiology》1968,43(8):1227-1231
The metabolism of cytidine-2-14C and uridine-2-14C was studied in discs cut from leaflets of bean plants (Phaseolus vulgaris L.). Cytidine was degraded to carbon dioxide and incorporated into RNA at about the same rates as was uridine. Both nucleosides were converted into the same soluble nucleotides, principally uridine diphosphate glucose, suggesting that cytidine was rapidly deaminated to uridine and then metabolized along the same pathways. However, cytidine was converted to cytidine diphosphate and cytidine triphosphate more effectively than was uridine. Cytidine also was converted into cytidylic acid of RNA much more extensively and into RNA uridylic acid less extensively than was uridine. Azaserine, an antagonist of reactions involving glutamine (including the conversion of uridine triphosphate to cytidine triphosphate), inhibited the conversion of cytidine into RNA uridylic acid with less effect on its incorporation into cytidylic acid. On the other hand, it inhibited the conversion of orotic acid into RNA cytidylic acid much more than into uridylic acid. The results suggest that cytidine is in part metabolized by direct conversion to uridine and in part by conversion to cytidine triphosphate through reactions not involving uridine nucleotides.  相似文献   

15.
A cDNA encoding adenylate isopentenyltransferase (AIPT) was cloned and sequenced from cones of hop (Humulus lupulus L.) by RT-PCR using oligonucleotide primers based on the conserved sequences of Arabidopsis thaliana AIPT isozymes (AtIPT1, AtIPT3, AtIPT4, AtIPT5, AtIPT6, AtIPT7 and AtIPT8). A full-length cDNA contained a 990-bp open reading frame encoding a molecular mass of 36,603 Da protein with 329 amino acids. Further, DNA sequencing of genomic DNA revealed absence of introns in the frame. On Southern blot analysis, a single AIPT gene was detected in H. lupulus, while RT-PCR analyses demonstrated that the gene was equally expressed in almost all tissues in the plant including roots, stems, leaves and cones. The deduced amino acid sequence shares 38-51% identity to those of A. thaliana AtIPTs. A recombinant enzyme expressed in Escherichia coli catalyzed isopentenyl transfer reaction from dimethylallyldiphosphate (DMAPP) to the N6 amino group of adenosine monophosphate (AMP), adenosine diphosphate (ADP) and adenosine triphosphate (ATP), respectively. In contrast, other nucleotides; guanosine monophosphate (GMP), inosine monophosphate (IMP), cytosine monophosphate (CMP), uridine monophosphate (UMP), were not accepted as a substrate. Interestingly, steady-state kinetic analyses revealed that the isopentenylation of ADP and ATP were more efficient than that of AMP as previously reported for A. thaliana AtIPT4. Finally, H. lupulus AIPT contains the putative ATP/GTP binding motif at the N-terminal as in the case of other known isopentenyltransferases. Site-directed mutagenesis of a conserved Asp62, located right after the ATP/GTP binding motif, with Ala resulted in complete loss of enzyme activity.  相似文献   

16.
Long-term, 32-P-labeled L cells were infected with the obligately intracellular parasite Chlamydia psittaci (strain 6 BC). At 20 h postinfection, [3-H]uridine was added, and the infected cells were sampled at intervals for incorporation of the labels into the uridine triphosphate (UTP) and cytidine triphosphate (CTP) pools of the host L cell and the uridine monophosphate (UMP) and cytidine monophosphate (CMP) in 16S ribosomal ribonucleic acid (RNA) of the parasite. The specific activity of the nucleotides was calculated from the ratio of 3-H to 32-P counts in the nucleotides. The rate of approach to equilibrium labeling of UTP and CTP in L-cell pools and UMP and CMP in 16S RNA from the exogenous uridine label was determined from the increase in the ratios of the specific activities of CTP to UTP and CMP to UMP with time. The rate of approach to equilibrium CMP:UMP labeling of the 16S RNA of C. psittaci was consistent with the rate predicted from the kinetics of labeling of the CTP and UTP pools of the host L cell. In analogous experiments, the rate of approach to equilibrium guanosine monophosphate:adenosine monophosphate labeling of 16S RNA from an exogenous [14-C]adenine label was consistent with the rate predicted from the kinetics of labeling of the purine nucleoside triphosphate pool of the host cell. These results support the concept that members of the genus Chlamydia owe their obligate intracellular mode of reproduction to a requirement for energy intermediates which is fulfilled by the host cell. In addition, evidence was obtained that the total acid-soluble purine nucleoside triphosphate pool of L cells accurately represents the precursors of L-cell 18S ribosomal RNA.  相似文献   

17.
The interaction of dipalmitoylphosphatidylcholine, dipalmitoylphosphatidic acid and dipalmitoylphosphatidylethanolamine with some DNA substructures such as cytidine, uridine, adenosine 5'di- and triphosphate, guanosine 5'mono- and diphosphate, cytidine 5'mono- and triphosphate, uridine 5'mono- and triphosphate and inosine 5'monophosphate was studied with differential scanning calorimetry. The dependence of pretransition and main transition temperatures and the enthalpy of main transition on the molecular characteristics of the interacting molecular species was calculated by stepwise regression analysis. Nucleosides and nucleotides increased the main transition temperature and peak half width of phospholipids and they decreased the enthalpy of main transition proving the existence of interaction between phospholipids and DNA substructures. Calculation proved that the interaction is mainly of hydrophilic character but the involvement of hydrophobic forces or steric conditions cannot be ruled out.  相似文献   

18.
It was shown earlier that a variety of vertebrate cells could grow indefinitely in sugar-free medium supplemented with either uridine or cytidine at greater than or equal to 1 mM. In contrast, most purine nucleosides do not support sugar-free growth for one of the following reasons. The generation of ribose-1-P from nucleoside phosphorylase activity is necessary to provide all essential functions of sugar metabolism. Some nucleosides, e.g. xanthosine, did not support growth because they are poor substrates for this enzyme. De novo pyrimidine synthesis was inhibited greater than 80% by adenosine or high concentrations of inosine, e.g. 10 mM, which prevented growth on these nucleosides; in contrast, pyrimidine synthesis was inhibited only marginally on 1 mM inosine or guanosine, but normal growth was only seen on 1 mM inosine, not on guanosine. The inhibition of de novo adenine nucleotide synthesis prevented growth on guanosine, since guanine nucleotides could not be converted to adenine nucleotides. Guanine nucleotides were necessary for this inhibition of purine synthesis, since a mutant blocked in their synthesis grew normally on guanosine. De novo purine synthesis was severely inhibited by adenosine, inosine, or guanosine, but in contrast to guanosine, adenosine and inosine could provide all purine requirements by direct nucleotide conversions.  相似文献   

19.
Cape buffalo serum contains xanthine oxidase which generates trypanocidal H2O2 during the catabolism of hypoxanthine and xanthine. The present studies show that xanthine oxidase-dependent trypanocidal activity in Cape buffalo serum was also elicited by purine nucleotides, nucleosides, and bases even though xanthine oxidase did not catabolize those purines. The paradox was explained in part, by the presence in serum of purine nucleoside phosphorylase and adenosine deaminase, that, together with xanthine oxidase, catabolized adenosine, inosine, hypoxanthine, and xanthine to uric acid yielding trypanocidal H2O2. In addition, purine catabolism by trypanosomes provided substrates for serum xanthine oxidase and was implicated in the triggering of xanthine oxidase-dependent trypanocidal activity by purines that were not directly catabolized to uric acid in Cape buffalo serum, namely guanosine, guanine, adenine monophosphate, guanosine diphosphate, adenosine 3′:5-cyclic monophosphate, and 1-methylinosine. The concentrations of guanosine and guanine that elicited xanthine oxidase-dependent trypanocidal activity were 30–270-fold lower than those of other purines requiring trypanosome-processing which suggests differential processing by the parasites.  相似文献   

20.
1. Aerobic incubation at 37° of rat brain-cortex slices in Krebs–Ringer phosphate medium containing glucose and labelled thiamine results in accumulation in the tissue of labelled thiamine and labelled thiamine phosphates. The concentration of the labelled thiamine in the tissue cell water increases with increase of external labelled thiamine concentration in an approximately linear manner, the concentration ratio for labelled thiamine (tissue:medium) exceeding unity with low external thiamine concentrations (e.g. 0·2μm) and diminishing to about unity as the external thiamine concentration is increased to 1μm. The concentration of labelled phosphorylated thiamine in the tissue is at least double that of the labelled thiamine present and its amount increases with increase of external thiamine concentration. Labelled phosphorylated thiamine appears in the medium, its amount being about one-fifteenth of that in the tissue. Phosphorylation of thiamine in the tissue proceeds during incubation for 3hr. and, with an external labelled thiamine concentration of 0·2μm, about 48% conversion of thiamine takes place. 2. In the presence of ouabain (0·1mm), which does not inhibit thiamine phosphorylation in rat brain extract, there is a fall in the uptake of labelled thiamine by brain-cortex slices and the concentration ratio for the labelled thiamine (tissue:medium) falls to below unity. Anaerobiosis, lack of Na+ or the presence of Amprol (0·01mm) leads to marked inhibition of thiamine phosphorylation, and the concentration ratio for labelled thiamine (tissue:medium) falls to about unity. The facts lead to the conclusion that thiamine is conveyed into the brain cell against a concentration gradient by an energy-assisted process mediated by a membrane carrier. Pyri-thiamine is a marked inhibitor of thiamine phosphorylation in brain extract. 3. Thiamine monophosphate and thiamine diphosphate inhibit thiamine phosphorylation in brain extract. They diminish `total' thiamine (free and phosphorylated) uptake into brain-cortex slices and inhibit the transport of thiamine into the brain cell, possibly by competition for the carrier. 4. Phosphorylation of labelled thiamine in brain extract is brought about not only by adenosine triphosphate (in the presence of Mg2+) but apparently by adenosine diphosphate and uridine triphosphate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号