首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ERD14 protein (early response to dehydration) is a member of the dehydrin family of proteins which accumulate in response to dehydration-related environmental stresses. Here we show the Arabidopsis dehydrin, ERD14, possesses ion binding properties. ERD14 is an in vitro substrate of casein kinase II; the phosphorylation resulting both in a shift in apparent molecular mass on SDS-PAGE gels and increased calcium binding activity. The phosphorylated protein bound significantly more calcium than the nonphosphorylated protein, with a dissociation constant of 120 microm and 2.86 mol of calcium bound per mol of protein. ERD14 is phosphorylated by extracts of cold-treated tissues, suggesting that the phosphorylation status of this protein might be modulated by cold-regulated kinases or phosphatases. Calcium binding properties of ERD14 purified from Arabidopsis extracts were comparable with phosphorylated Escherichia coli-expressed ERD14. Approximately 2 mol of phosphate were incorporated per mol of ERD14, indicating a minimum of two phosphorylation sites. Western blot analyses confirmed that threonine and serine are possible phosphorylation sites on ERD14. Utilizing matrix assisted laser desorption ionization-time of flight/mass spectrometry we identified five phosphorylated peptides that were present in both in vivo and in vitro phosphorylated ERD14. Our results suggest that the polyserine (S) domain is most likely the site of phosphorylation in ERD14 responsible for the activation of calcium binding.  相似文献   

2.
3.
The effect of biotin binding on the thermal stability of streptavidin (STV) and avidin (AVD) was evaluated using differential scanning calorimetry. Biotin binding increases the midpoint of temperature Tm of thermally induced denaturation of STV and AVD in phosphate buffer from 75 and 83 degrees C to 112 and 117 degrees C at full biotin saturation, respectively. This thermostability is the highest reported for proteins coming from either mesophilic or thermophilic organisms. In both proteins, biotin also increases the calorimetric enthalpy and the cooperativity of the unfolding. Thermal stability of STV was also evaluated in the presence of high concentrations of urea or guanidinium hydrochloride (GuHCl). In 6 M GuHCl, STV remains as a tetramer and the Tm of the STV-biotin complex is centered at 108 degrees C, a few degrees below the value obtained in phosphate buffer. On the contrary, STV under fully saturating condition remains mainly in its dimeric form in 8 M urea and the thermogram shows two endotherms. The main endotherm at a lower temperature has been ascribed to the dimeric liganded state with a Tm of 87 degrees C, and the higher temperature endotherm to the tetrameric liganded form with a Tm of 106 degrees C. As the thermostability of unliganded protein in the presence of urea is unchanged upon binding we related the extremely high thermal stability of this protein to both an increase in structural ordering and compactness with the preservation of the tetramer integrity.  相似文献   

4.
Protein MobM, the relaxase involved in conjugative transfer of the streptococcal plasmid pMV158, is the prototype of the MOBV superfamily of relaxases. To characterize the DNA-binding and nicking domain of MobM, a truncated version of the protein (MobMN199) encompassing its N-terminal region was designed and the protein was purified. MobMN199 was monomeric in contrast to the dimeric form of the full-length protein, but it kept its nicking activity on pMV158 DNA. The optimal relaxase activity was dependent on Mn2+ or Mg2+ cations in a dosage-dependent manner. However, whereas Mn2+ strongly stabilized MobMN199 against thermal denaturation, no protective effect was observed for Mg2+. Furthermore, MobMN199 exhibited a high affinity binding for Mn2+ but not for Mg2+. We also examined the binding-specificity and affinity of MobMN199 for several substrates of single-stranded DNA encompassing the pMV158 origin of transfer (oriT). The minimal oriT was delimited to a stretch of 26 nt which included an inverted repeat located eight bases upstream of the nick site. The structure of MobMN199 was strongly stabilized by binding to the defined target DNA, indicating the formation of a tight protein–DNA complex. We demonstrate that the oriT recognition by MobMN199 was highly specific and suggest that this protein most probably employs Mn2+ during pMV158 transfer.  相似文献   

5.
The signalling pathway leading, for example, to actin cytoskeletal reorganisation, secretion or superoxide generation involves phospholipase D (PLD)-catalysed hydrolysis of phosphatidylcholine to generate phosphatidic acid, which appears to mediate the messenger functions of this pathway. Two PLD genes (PLD1 and PLD2) with similar domain structures have been doned and progress has been made in identifying the protein regulators of PLD1 activation, for example Arf and Rho family members. The activities of both PLD isoforms are dependent on phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and our sequence analysis suggested the presence of a pleckstrin homology (PH) domain in PLD1, although its absence has also been daimed. Investigation of the inositide dependence showed that a bis-phosphorylated lipid with a vicinal pair of phosphates was required for PLD1 activity. Furthermore, PLD1 bound specifically and with high affinity to lipid surfaces containing PI(4,5)P2 independently of the substrate phosphatidylcholine, suggesting a key role for the PH domain in PLD function. Importantly, a glutathione-S-transferase (GST) fusion protein comprising GST and the PH domain of PLD1 (GST-PLD1-PH) also bound specifically to supported lipid monolayers containing PI(4,5)P2. Point mutations within the PLD1 PH domain inhibited enzyme activity, whereas deletion of the domain both inhibited enzyme activity and disrupted normal PLD1 localisation. Thus, the functional PH domain regulates PLD by mediating its interaction with polyphosphoinositide-containing membranes; this might also induce a conformational change, thereby regulating catalytic activity.  相似文献   

6.
The regulation of glycogen synthase kinase-3 (GSK-3) by phosphorylation at inhibitory sites has been well documented. In many, but not all, cases, the phosphatidylinositol 3-kinase pathway, and particularly the downstream kinase protein kinase B (PKB)/akt, have been shown to be responsible for GSK-3 phosphorylation. Given that no studies have ever reported cytokine-mediated phosphorylation of GSK-3, we investigated the phosphorylation of this kinase in several hemopoietic cell types in response to either interleukin (IL)-3, IL-4 or granulocyte-macrophage colony stimulating factor (GM-CSF). Each of the cytokines was able to stimulate phosphorylation of the isoforms GSK-3alpha and GSK-3beta. However, only in the case of IL-4 stimulation was there any dependence on PKB for this phosphorylation. We were clearly able to show that PKB was capable of phosphorylating GSK-3 in these cells, but studies using inhibitors of the protein kinase C (PKC) family of kinases have shown that these enzymes are more likely to play a key role in GSK-3 phosphorylation. Cytokine-mediated generation of diacylglycerol was demonstrated, supporting the possible activation of PKC family members. Thus, cytokine-dependent GSK-3 phosphorylation in hemopoietic cells proceeds primarily through PKB independent pathways.  相似文献   

7.
Unlike mammalian lysosomal cysteine proteases, the trypanosomal cysteine protease cruzipain contains a 130-amino acid residue C-terminal domain, in addition to the catalytic domain, and it is stable at neutral pH. The endogenous (with C-terminal domain) and recombinant (without C-terminal domain) cruzipains exhibit similar stabilities at both acid (k(inac)=3.1x10(-3) s(-1) and 4.4x10(-3) s(-1) at pH 2.75 for endogenous and recombinant cruzipain, respectively) and alkaline pH (k(inac)=3.0x10(-3) s(-1) and 3. 7x10(-3) s(-1) at pH 9.15 for endogenous and recombinant cruzipain, respectively). The pH-induced inactivation, which is a highly pH dependent first order process, is irreversible and accompanied by significant changes of secondary and tertiary structure as revealed by circular dichroism measurements. The different stability of cruzipain as compared to related proteases, is therefore due mainly to the different number, nature and distribution of charged residues within the catalytic domain and not due to addition of the C-terminal domain.  相似文献   

8.
PTTH stimulates ecdysteroid secretion by the insect prothoracic glands. The peptide activates cAMP synthesis in a calcium-dependent manner, ultimately enhancing ecdysteroid synthesis. We have found that PTTH stimulates a rapid increase in tyrosine phosphorylation of at least four proteins in the prothoracic glands of larval Manduca sexta, as seen on Western blots of glandular lysates probed with antibody directed against phosphotyrosine. PTTH-stimulated tyrosine phosphorylation is blocked by an inhibitor of Src family tyrosine kinases, 4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo[3,4-d]-pyrimidine (PP1). The inhibitor also blocks PTTH-stimulated ecdysone secretion, as well as PTTH-stimulated cAMP synthesis. Direct activation of the catalytic subunit of adenylyl cyclase by forskolin is not affected by PP1. In addition, ecdysteroid secretion stimulated by the cAMP analog dbcAMP is not blocked by PP1. These findings point to an important role for a Src-family tyrosine kinase at a very early step in the PTTH signaling pathway, prior to the activation of adenylyl cyclase.  相似文献   

9.
10.
The objective of this work is to identify the elements of the human transferrin receptor that are involved in receptor internalization, intracellular sorting, and recycling. We have found that an aromatic side chain at position 20 on the cytoplasmic portion of the human transferrin receptor is required for efficient internalization. The wild-type human transferrin receptor has a tyrosine at this position. Replacement of the Tyr-20 with an aromatic amino acid does not alter the rate constant of internalization, whereas substitution with the nonaromatic amino acids serine, leucine, or cysteine reduces the internalization rate constant approximately three-fold. These results are consistent with similar studies of other receptor systems that have also documented the requirement for a tyrosine in rapid internalization. The amino terminus of the transferrin receptor is cytoplasmic, with the tyrosine 41 amino acids from the membrane. These two features distinguish the transferrin receptor from the other membrane proteins for which the role of tyrosine in internalization has been examined, because these proteins have the opposite polarity with respect to the membrane and because the tyrosines are located closer to the membrane (within 25 amino acids). The externalization rate for the recycling of the transferrin receptor is not altered by any of these substitutions, demonstrating that the aromatic amino acid internalization signal is not required for the efficient exocytosis of internalized receptor.  相似文献   

11.
12.
13.
Bacterial infection induces apoptotic cell death in human monoblastic U937 cells that have been pretreated with interferon gamma (U937IFN). Apoptosis occurs in a manner that is independent of bacterial virulence proteins. In the present study, we show that lipopolysaccharide (LPS), a membrane constituent of gram-negative bacteria, also induces apoptosis in U937IFN cells. LPS treatment led to the appearance of characteristic markers of apoptosis such as nuclear fragmentation and activation of caspases. While the caspase inhibitor Z-VAD-fmk prevented LPS-induced apoptosis as judged by its inhibition of nuclear fragmentation, it failed to inhibit cytochrome c release and loss of mitochondrial membrane potential. Transfection of peptides containing the BH4 (Bcl-2 homology 4) domain derived from the anti-apoptotic protein Bcl-XL blocked LPS-induced nuclear fragmentation and the limited digestion of PARP. These results suggest that LPS does not require caspase activation to induce mitochondrial dysfunction and that mitochondria play a crucial role in the regulation of LPS-mediated apoptosis in U937IFN cells.  相似文献   

14.
Ras guanine-releasing factor 1 (RasGrf1), a guanine nucleotide exchange factor for members of the Ras and Rho family of GTPases, is highly expressed in the brain. It is regulated by two separate mechanisms, calcium regulation through interaction with its calcium/calmodulin-binding IQ domain and serine and tyrosine phosphorylation. RasGrf1 is activated downstream of G-protein-coupled receptors and the non-receptor tyrosine kinases, Src and Ack1. Previously, we demonstrated a novel interaction between the intracellular domain of the nerve growth factor-regulated TrkA receptor tyrosine kinase and an N-terminal fragment of RasGrf1. We now show that RasGrf1 is phosphorylated and interacts with TrkA, -B, and -C in co-transfection studies. This interaction and phosphorylation of RasGrf1 is dependent on the HIKE domain of TrkA (a region shown to interact with pleckstrin homology domains) but not on any of the phosphotyrosine residues that act as docking sites for intracellular signaling molecules such as Shc and FRS-2. The PH1 domain alone of RasGrf1 is sufficient for phosphorylation by the TrkA receptor. A potential role for Trk activation of RasGrf1 is suggested through transfection studies in PC12 cells in which RasGrf1 significantly increases neurite outgrowth at low doses of neurotrophin stimulation. Notably, this neurite outgrowth is dependent on an intact HIKE domain, as nnr5-S10 cells expressing a TrkA HIKE domain mutant do not exhibit potentiated neurite outgrowth in the presence of RasGrf1. These studies identify RasGrf1 as a novel target of neurotrophin activation and suggest an additional pathway whereby neurotrophin-stimulated neurite outgrowth may be regulated.  相似文献   

15.
16.
Gel shift assays were employed to distinguish between the contribution of 17 beta-estradiol (E2) and a short heating step to the ability of the rat uterine cytosolic estrogen receptor (ER) to bind to the estrogen response element (ERE) from the vitellogenin A2 gene (vitERE). Despite the popularity of models in which the ER is a ligand-activated DNA-binding protein, these studies find that estrogen does not significantly contribute to receptor-DNA complex formation. An avidin-biotin complex with DNA (ABCD) assay was utilized to obtain quantitative measurement of the affinities of the ER for the vitERE and a mutant sequence. Scatchard analysis gave a dissociation constant of 390 +/- 40 pM for the E2-occupied, heated ER to the vitERE. The data fit a one-site model and evidence for cooperatively was not observed. A dissociation constant of 450 +/- 170 pM was obtained for the unoccupied, heated ER, leading to the conclusion that estrogen was not necessary for specific binding to DNA. The percentage of ER capable of binding vitERE varied with each cytosol preparation, ranging from 60 to 100% and estrogen did not appear to affect this variation. Competition against the vitERE with a 2-bp mutant sequence showed a 250-fold lower relative binding affinity of the receptor for the mutant over the vitERE sequence. This ability of the ER to discriminate between target and nonspecific DNA sequences was also not dependent on the presence of estrogen.  相似文献   

17.
Cold shock proteins (CSPs) are ancient nucleic acid-binding proteins and well conserved from bacteria to animals as well as plants. In prokaryotes, CSPs possess a single cold shock domain (CSD) while animal CSPs, flanked by N- and C-terminal domains, are commonly named Y-box proteins. Interestingly, the plants CSPs contain auxiliary C-terminal domains in addition to their N-terminal CSD. The CSPs have been shown to play important role in development and stress adaptation in various plant species. The objective of this study was to find out the possible nucleic acid-binding affinities of whole CSP as well as independent domains, so that role of each individual domain may be revealed in Arabidopsis thaliana, the model plant species. The structure of CSP 3 protein from A. thaliana was modeled by homology-based approach and docking was done with different nucleic acid types.  相似文献   

18.
In response to stress conditions, many mammalian mRNAs accumulate in stress granules (SGs) together with numerous RNA-binding proteins that control mRNA turnover and translation. However, the signaling cascades that modulate the presence of ribonucleoprotein (RNP) complexes in SGs are poorly understood. Here, we investigated the localization of human antigen R (HuR), an mRNA-stabilizing RNA-binding protein, in SGs following exposure to the stress agent arsenite. Unexpectedly, the mobilization of HuR to SGs was prevented through the activation of Janus kinase 3 (JAK3) by the vitamin K3 analog menadione. JAK3 phosphorylated HuR at tyrosine 200, in turn inhibiting HuR localization in SGs, reducing HuR interaction with targets SIRT1 and VHL mRNAs, and accelerating target mRNA decay. Our findings indicate that HuR is tyrosine-phosphorylated by JAK3, and link this modification to HuR subcytoplasmic localization and to the fate of HuR target mRNAs.  相似文献   

19.
Human leucine-rich repeat kinase 1 (LRRK1) is a multi-domain protein of unknown function belonging to the ROCO family of complex proteins. Here, we report the molecular characterization of human LRRK1 and show, for the first time, that LRRK1 is both a functional protein kinase and a GDP/GTP-binding protein. Binding of GTP to LRRK1 is specific, requires the GTPase-like Roc domain, and leads to a stimulation of LRRK1 kinase activity. LRRK1 is the first example of a GTP-regulated protein kinase harboring both the kinase effector domain and the GTP-binding regulatory domain. Hence, we propose a model in which LRRK1 cycles between a GTP-bound active and a GDP-bound inactive state. Moreover, we mutated LRRK1 to mimic mutations previously identified in LRRK2/dardarin, the only human paralogue of LRRK1, that have been linked to autosomal-dominant parkinsonism. We demonstrate that three of four mutations analyzed significantly downregulate LRRK1 kinase activity. Ultimately, the results presented for LRRK1 may contribute to the elucidation of LRRK2's role in the pathogenesis of Parkinson's disease.  相似文献   

20.
In the present work, we study the effect of odorant binding on the thermal stability of honey bee (Apis mellifera L.) odorant-binding protein 14. Thermal denaturation of the protein in the absence and presence of different odorant molecules was monitored by Fourier transform infrared spectroscopy (FT-IR) and circular dichroism (CD). FT-IR spectra show characteristic bands for intermolecular aggregation through the formation of intermolecular β-sheets during the heating process. Transition temperatures in the FT-IR spectra were evaluated using moving-window 2D correlation maps and confirmed by CD measurements. The obtained results reveal an increase of the denaturation temperature of the protein when bound to an odorant molecule. We could also discriminate between high- and low-affinity odorants by determining transition temperatures, as demonstrated independently by the two applied methodologies. The increased thermal stability in the presence of ligands is attributed to a stabilizing effect of non-covalent interactions between odorant-binding protein 14 and the odorant molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号