首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The metabolic syndrome (MS) is characterized by insulin resistance, dyslipidemia and hypertension. It is associated with increased risk of cardiovascular diseases and type-2 diabetes. Consumption of fructose is linked to increased prevalence of MS. Ursodeoxycholic acid (UDCA) is a steroid bile acid with antioxidant, anti-inflammatory activities and has been shown to improve insulin resistance. The current study aims to investigate the effect of UDCA (150 mg/kg) on MS induced in rats by fructose administration (10%) in drinking water for 12 weeks. The effects of UDCA were compared to fenofibrate (100 mg/kg), an agonist of PPAR-α receptors. Treatment with UDCA or fenofibrate started from the 6th week after fructose administration once daily. Fructose administration resulted in significant increase in body weight, elevations of blood glucose, serum insulin, cholesterol, triglycerides, advanced glycation end products (AGEs), uric acid levels, insulin resistance index and blood pressure compared to control rats. Moreover, fructose increased oxidative stress in aortic tissues indicated by significant increases of malondialdehyde (MDA), expression of iNOS and reduction of reduced glutathione (GSH) content. These disturbances were associated with decreased eNOS expression, increased infiltration of leukocytes and loss of aortic vascular elasticity. Treatment with UDCA successfully ameliorated the deleterious effects of fructose. The protective effect of UDCA could be attributed to its ability to decrease uric acid level, improve insulin resistance and diminish oxidative stress in vascular tissues. These results might support possible clinical application of UDCA in MS patients especially those present with liver diseases, taking into account its tolerability and safety. However, further investigations on human subjects are needed before the clinical application of UDCA for this indication.  相似文献   

2.
BackgroundThe accumulation of advanced glycated end products (AGEs) in retinal blood vessels is one of the major etiological factors contributing to diabetic retinopathy. Aminoguanidine (AG) is one of the most extensively used inhibitors of AGEs formation. The aim of this study was to investigate whether AG could protect the development of diabetic retinopathy through inhibition of AGEs.MethodsRat diabetes was induced by intraperitoneal injection with streptozotocin (STZ). AG was given to rats in drinking water. Retina was extracted 3 and 6 months following STZ and AG administration. Immunochemistry and transmission electron microscope were used to detect the expression of AGEs and retina morphology.ResultsExtensive staining of AGEs was detected in retinal blood vessels of 3- and 6-month diabetic rats, while no significant staining was found in the control non-diabetic retina or AG treated groups. Pericyte loss, endothelial cell proliferation, increased ratio of endothelial cells/pericytes, acellular capillaries and capillary occlusion were observed in the retina of 6-month diabetic rats. The increased electron density of retinal capillary basement membrane, mitochondrial swelling in pericytes and endothelial cells were also found in 6-month diabetic rats. The 3-month diabetic rats and the AG-treated rats did not have similar morphological changes compared to control group. The AGEs staining in AG-treated rats was still weakly positive.ConclusionsAGEs plays pivotal roles in diabetic retinopathy. AGE deposition occurs prior to retinal microvasculature changes. AG could prevent the onset and development of diabetic retinopathy through inhibition of AGEs.  相似文献   

3.
Grape seed proanthocyanidin extracts (GSPEs) have been reported to be effective in treating arteriosclerosis, while little is known about therapeutic agents against diabetic macrovascular complications. We used streptozocin to induce diabetic rats. GSPEs (250 mg/kg of body weight) were administrated to diabetic rats for 24 weeks. Aortic blood pressure and pulse wave velocity (PWV) were determined in anesthetized rats. Serum glycated hemoglobin and advanced glycation end products (AGEs) were determined. An electronic microscope was used to observe the changes in aortic ultrastructure. Immunohistochemistry was used to evaluate the receptor of advanced glycation end product (RAGE) protein expression in aortic tissue. GSPEs significantly decreased aortic PWV, blood pressure, and aortic medial thickness (P<0.05), and inhibited the migration of vascular smooth muscle cells. GSPEs significantly reduced the AGEs (P<0.05) and the expression of RAGE in aortas of diabetic rats. GSPEs play an important role against diabetic macrovascular complications. This study may provide a new recognition of natural medicine for the treatment of diabetic macrovascular complications.  相似文献   

4.
We hypothesized that nitric oxide generated by inducible nitric oxide synthase (iNOS) may contribute to the homeostatic role of this agent in hyperthyroidism and may, therefore, participate in long-term control of blood pressure (BP). The effects of chronic iNOS inhibition by oral aminoguanidine (AG) administration on BP and morphological and renal variables in hyperthyroid rats were analyzed. The following four groups (n = 8 each) of male Wistar rats were used: control group and groups treated with AG (50 mg.kg(-1).day(-1), via drinking water), thyroxine (T4, 50 microg.rat(-1).day(-1)), or AG + T4. All treatments were maintained for 3 wk. Tail systolic BP and heart rate (HR) were recorded weekly. Finally, we measured BP (mmHg) and HR in conscious rats and morphological, plasma, and renal variables. T(4) administration produced a small BP (125 +/- 2, P < 0.05) increase vs. control (115 +/- 2) rats. AG administration to normal rats did not modify BP (109 +/- 3) or any other hemodynamic variable. However, coadministration of T4 and AG produced a marked increase in BP (140 +/- 3, P < 0.01 vs. T4). Pulse pressure and HR were increased in both T4- and T4 + AG -treated groups without differences between them. Plasma NOx (micromol/l) were increased in the T4 group (10.02 +/- 0.15, P < 0.05 vs. controls 6.1 +/- 0.10), and AG reduced this variable in T4-treated rats (6.81 +/- 0.14, P < 0.05 vs. T4) but not in normal rats (5.78 +/- 0.20). Renal and ventricular hypertrophy and proteinuria of hyperthyroid rats were unaffected by AG treatment. In conclusion, the results of the present paper indicate that iNOS activity may counterbalance the prohypertensive effects of T4.  相似文献   

5.
The goal of this study was to determine the role of renal medullary inducible nitric oxide synthase (iNOS) in the arterial pressure, renal hemodynamic, and renal excretory changes that occur in Dahl/Rapp salt-resistant (R) and salt-sensitive (S) rats during high Na intake. Forty R and S rats, equipped with indwelling arterial, venous, and renal medullary catheters, were subjected to high (8%) Na intake, and selective iNOS inhibition was achieved with continuous intravenous or renal medullary interstitial infusion of aminoguanidine (AG; 3.075 mg. kg(-1). h(-1)). After 5 days of AG, mean arterial pressure increased to 132 +/- 2% control in the S rats with high Na intake and intramedullary AG compared with 121 +/- 4% control (P < 0.05) in the S rats with high Na intake alone and 121 +/- 2% control (P < 0.05) in the S rats with high Na intake and intravenous AG. AG did not change arterial pressure in R rats. AG also caused little change in renal hemodynamics, urinary Na, or H(2)O excretion or ACh-induced aortic vasorelaxation in R or S rats. The data suggest that during high Na intake, nitric oxide produced by renal medullary iNOS helps to prevent excessive increases in arterial pressure in the Dahl S rat but not the R rat.  相似文献   

6.

Introduction

Glucocorticoids are commonly used as therapeutic agents in many acute and chronic inflammatory and auto-immune diseases. The current study investigated the effects of methylprednisolone (a synthetic glucocorticoid) on aortic distensibility and vascular resistance in lipopolysaccharide-induced chronic inflammation in male Wistar rats.

Methods

Chronic inflammation was induced by implanting a subcutaneous slow-release ALZET osmotic pump (1 mg kg−1 day−1 lipopolysaccharide) for either 2 or 4 weeks. Arterial wave transit time (τ) was derived to describe the elastic properties of aortas using the impulse response function of the filtered aortic input impedance spectra.

Results

Long-term lipopolysaccharide challenge enhanced the expression of advanced glycation end products (AGEs) in the aortas. Lipopolysaccharide also upregulated the inducible form of nitric oxide synthase to produce high levels of nitric oxide (NO), which resulted in vasodilation, as evidenced by the fall in total peripheral resistance (Rp). However, lipopolysaccharide challenge did not influence the elastic properties of aortas, as shown by the unaltered τ. The NO-mediated vascular relaxation may counterbalance the AGEs-induced arterial stiffening so that the aortic distensibility remained unaltered. Treating lipopolysaccharide-challenged rats with methylprednisolone prevented peripheral vasodilation because of its ability to increase Rp. However, methylprednisolone produced an increase in aorta stiffness, as manifested by the significant decline in τ. The diminished aortic distensibility by methylprednisolone paralleled a significant reduction in NO plasma levels, in the absence of any significant changes in AGEs content.

Conclusion

Methylprednisolone stiffens aortas and elastic arteries in lipopolysaccharide-induced chronic inflammation in rats, for NO activity may be dominant as a counteraction of AGEs.  相似文献   

7.
The JAK-STAT pathway is activated in the early and late phases of ischemic preconditioning (IPC) in normal myocardium. The role of this pathway and the efficacy of IPC in hypertrophied hearts remain largely unknown. We hypothesized that phosphorylated STAT-3 (pSTAT-3) is necessary for effective IPC in pressure-overload hypertrophy. Male Sprague-Dawley rats 8 wk after thoracic aortic constriction (TAC) or sham operation underwent echocardiography and Langendorff perfusion. Randomized hearts were subjected to 30 min of global ischemia and 120 min of reperfusion with or without IPC in the presence or absence of the JAK-2 inhibitor AG-490 (AG). Functional recovery and STAT activation were assessed. TAC rats had a 31% increase in left ventricular mass (1,347 +/- 58 vs. 1,028 +/- 43 mg, TAC vs. sham, P < 0.001), increased anterior and posterior wall thickness but no difference in ejection fraction compared with sham-operated rats. In TAC, IPC improved end-reperfusion maximum first derivative of developed pressure (+dP/dt(max); 4,648 +/- 309 vs. 2,737 +/- 343 mmHg/s, IPC vs. non-IPC, P < 0.05) and minimum -dP/dt (-dP/dt(min); -2,239 +/- 205 vs. -1,215 +/- 149 mmHg/s, IPC vs. non-IPC, P < 0.05). IPC increased nuclear pSTAT-1 and pSTAT-3 in sham-operated rats but only pSTAT-3 in TAC. AG in TAC significantly attenuated +dP/dt(max) (4,648 +/- 309 vs. 3,241 +/- 420 mmHg/s, IPC vs. IPC + AG, P < 0.05) and -dP/dt(min) (-2,239 +/- 205 vs. -1,323 +/- 85 mmHg/s, IPC vs. IPC + AG, P < 0.05) and decreased only nuclear pSTAT-3. In myocardial hypertrophy, JAK-STAT signaling is important in IPC and exhibits a pattern of STAT activation distinct from nonhypertrophied myocardium. Limiting STAT-3 activation attenuates the efficacy of IPC in hypertrophy.  相似文献   

8.
Objective: The suckling period is one potentially “critical” period during which nutritional intake may permanently “program” metabolism to promote increased adult body weight and insulin resistance in later life. This study determined whether fructose introduced during the suckling period altered body weight and induced changes in fatty acid transport leading to insulin resistance in adulthood in rats. Methods and Procedures: Pups were randomly assigned to one of four diets: suckle controls (SCs), rat milk substitute formula (Rat Milk Substitute), fructose‐containing formula (Fructose), or galactose‐containing formula (Galactose). Starting at weaning, all pups received the same diet; at 8 weeks of age, half of the SC rats began ingesting a diet containing 65% kcal fructose (SC‐Fructose). This continued until animals were 12 weeks old and the study ended. Results: At weeks 8, 10, and 11, the Fructose group weighed more than SC and SC‐Fructose groups (P < 0.05). At weeks 8 and 10 of age, the Fructose group had significantly higher insulin concentrations vs. rats in the SC‐Fructose group. 3H‐Palmitate transport into vesicles from hind limb skeletal muscle was higher in Fructose vs. SC rats (P < 0.05). CD36 expression was increased in the sarcolemma but not in whole tissue homogenates from skeletal muscle from Fructose rats (P < 0.05) suggesting a redistribution of this protein associated with fatty acid uptake across the plasma membrane. This change in subcellular localization of CD36 is associated with insulin resistance in muscle. Discussion: Consuming fructose during suckling may result in lifelong changes in body weight, insulin secretion, and fatty acid transport involving CD36 in muscle and ultimately promote insulin resistance.  相似文献   

9.
Accelerated glycoxidation takes part in the development of diabetic complications. We determined advanced glycation end-products (AGEs) and advanced oxidation protein products (AOPP) in the sera of 52 patients with diabetes mellitus (DM) - 18 with DM Type 1 and 34 with DM Type 2 and examined their relationship to the compensation of the disease. AGEs were estimated spectrofluorimetrically (350 nm/440 nm) whereas AOPP were determined spectro-photometrically (340 nm). AGEs were elevated only in DM Type 2 (DM2 5.11+/-1.15 x 10(3) AU/g vs controls 4.08+/-0.71 x 10(3) AU/g, p<0.001, vs DM1 4.14+/-0.86 x 10(3) AU/g, p<0.005, DM1 vs controls were not significant). AOPP were elevated significantly in both types of DM with higher levels in DM Type 2 (DM2 157.50+/-75.15 micromol/l vs healthy subjects 79.80+/-23.72 micromol/l, p<0.001, vs DM1 97.50+/-30.91 micromol/l, p<0.005, DM1 vs controls p<0.05). There was a tight correlation between AGEs and AOPP in both types of DM (DM1 r=0.75, DM2 r=0.47 (p<0.05)) and both AGEs and AOPP correlated with triglycerides. In DM Type 1 only, AGEs correlated with HbA1c r=0.47 (p<0.05) and with blood glucose. Slight but not significant differences in AGEs and AOPP levels were observed in patients with or without diabetic complications. Oxidative stress is increased in both types of DM, more in Type 2 where it contributes to the formation of glycoxidation products.  相似文献   

10.
ABSTRACT: BACKGROUND: It has been suggested that the antioxidant properties of olmesartan (OLM), an angiotensin II type 1 receptor (AT1R) blocker, contribute to renal protection rather than blood pressure lowering effects despite the fact that causal relationships between hypertension and renal artery disease exist. This study aimed to examine the hypothesis whether the antioxidative activities of OLM were correlated to arterial stiffness, reactive oxygen species and advanced glycation end products (AGEs) formation in rats with chronic renal failure (CRF). METHODS: CRF rats were induced by 5/6 nephrectomy and randomly assigned to an OLM (10 mg/day) group or a control group. Hemodynamic states, oxidative stress, renal function and AGEs were measured after 8 weeks of OLM treatment. RESULTS: All the hemodynamic derangements associated with renal and cardiovascular dysfunctions were abrogated in CRF rats receiving OLM. Decreased cardiac output was normalized compared to control (p <0.05). Mean aortic pressure, total peripheral resistance and left ventricular weight/body weight ratio were reduced by 21.6 % (p <0.05), 28.2 % (p <0.05) and 27.2 % ((p <0.05). OLM also showed beneficial effects on the oscillatory components of the ventricular after-load, including 39 % reduction in aortic characteristic impedance (p < 0.05), 75.3 % increase in aortic compliance (p <0.05) and 50.3 % increase in wave transit time (p < 0.05). These results implied that OLM attenuated the increased systolic load of the left ventricle and prevented cardiac hypertrophy in CRF rats. Improved renal function was also reflected by increases in the clearances of BUN (28.7 %) and serum creatinine (SCr, 38.8 %). In addition to these functional improvements, OLM specifically reduced the levels of malondialdehyde (MDA) equivalents in aorta and serum by 14.3 % and 25.1 %, as well as the amount of AGEs in the aortic wall by 32 % (p < 0.05) of CRF rats. CONCLUSION: OLM treatment could ameliorate arterial stiffness in CRF rats with concomitant inhibition of MDA and AGEs levels through the reduction of oxidative stress in aortic wall.  相似文献   

11.
The authors aimed to evaluate if the monitoring of serum advanced glycation end-products (s-AGEs) could help to predict a development of diabetic complications. Clinical and biochemical parameters including fructosamine (FAM), glycated hemoglobin (HbA1c) and serum AGEs were investigated in children and adolescents with 1 type diabetes with (+DC) and without (-DC) complications. FAM levels (in mmol/l) were significantly elevated in +DC diabetic group compared to -DC one (3.043+/-0.459 vs. 2.614+/-0.430; p<0.001) or to controls (3.043+/-0.459 vs. 1.620+/-0.340; p<0.001) as well as in -DC compared to controls (2.614+/-0.430 vs. 1.620+/-0.340; p<0.001). HbA1c (in %) were significantly elevated in +DC diabetic group compared to -DC one (10.48+/-1.83 vs. 8.41+/-1.19; p<0.001) or to controls (10.48+/-1.83 vs. 5.0+/-0.38, p<0.001) and also in -DC compared to controls (8.41+/-1.19 vs. 5.0+/-0.38; p<0.001). Serum AGEs levels (in A. U.) were significantly higher in +DC group than in -DC (73.0+/-14.09 vs. 65.8+/-9.05; p<0.05) and in group +DC than in controls (73.0+/-14.09 vs. 60.17+/-13.78; p<0.05), whereas there was no difference between -DC and controls. FAM correlated with HbA1c in both diabetic groups (+DC: r=0.374; p<0.05; -DC: r=0.719; p<0.001), but not in controls. Serum AGEs were correlated with HbA1c (r=0.478; p=0.003) in +DC, but not in -DC or controls. Enhanced serum AGEs levels show that they could be not only an attendant phenomenon of microangiopathies, but also a predictor of their development.  相似文献   

12.
This study is to explore the changes of arterial mechanical properties in streptozotocin (STZ)-diabetic rats, based on the exponentially tapered T-tube model. Rats given STZ 65 mg kg(-1)i.v. are compared with untreated weight- and age-matched controls. A high-fidelity pressure sensor and electromagnetic flow probe measured pulsatile pressure and flow waves in the ascending aorta, respectively. Diabetic rats exhibit isobaric vasodilatation that is characterized by an increase in cardiac output and no significant changes in aortic pressure. Total peripheral resistance of diabetic rats is lower than that of weight- and age-matched controls. Diabetic rats have higher total peripheral compliance (2.86+/-0.70 microl mm Hg(-1)) than do weight- (1.77+/-0.34 microl mm Hg(-1)) and age-matched (1.87+/-0.69 microl mm Hg(-1)) controls. Aortic characteristic impedance is reduced from 0.017+/-0.003 mm Hg min kg ml(-1)in weight- and 0.020+/-0.004 mm Hg min kg ml(-1)in age-matched controls to 0.010+/-0.004 mm Hg min kg ml(-1)in diabetic rats. Moreover, diabetic rats show shorter wave transit time in lower body circulation (17.86+/-1.91 ms) than do weight- (20.45+/-1.91) and age-matched (23.05+/-2.04 ms) controls. Under isobaric vasodilatation, the decreased resistance and increased compliance in peripheral circulation suggest that the contractile dysfunction of the smooth muscle cells may occur in resistance arterioles in diabetes. With unaltered aortic pressure, an impairment in aortic distensibility of STZ-diabetic rats is manifest on the reduced wave transit time rather than on the diminished aortic characteristic impedance.  相似文献   

13.
We determined the effects of diabetes and gender on the physical properties of the vasculature in streptozotocin (STZ)-treated rats based on the aortic input impedance analysis. Rats given STZ 65 mg/kg i.v. were compared with untreated age-matched controls. Pulsatile aortic pressure and flow signals were measured and were then subjected to Fourier transformation for the analysis of aortic input impedance. Wave transit time was determined using the impulse response function of the filtered aortic input impedance spectra. Male but not female diabetic rats exhibited an increase in cardiac output in the absence of any significant changes in arterial blood pressure, resulting in a decline in total peripheral resistance. However, in each gender group, diabetes contributed to an increase in wave reflection factor, from 0.47 +/- 0.04 to 0.84 +/- 0.03 in males and from 0.46 +/- 0.03 to 0.81 +/- 0.03 in females. Diabetic rats had reduced wave transit time, at 18.82 +/- 0.60 vs 21.34 +/- 0.51 msec in males and at 19.63 +/- 0.37 vs 22.74 +/- 0.57 msec in females. Changes in wave transit time and reflection factor indicate that diabetes can modify the timing and magnitude of the wave reflection in the rat arterial system. Meanwhile, diabetes produced a fall in aortic characteristic impedance from 0.023 +/- 0.002 to 0.009 +/- 0.001 mmHg/min/kg/ml in males and from 0.028 +/- 0.002 to 0.014 +/- 0.001 mmHg/min/kg/ml in females. With unaltered aortic pressure, both the diminished aortic characteristic impedance and wave transit time suggest that the muscle inactivation in diabetes may occur in aortas and large arteries and may cause a detriment to the aortic distensibility in rats with either sex. We conclude that only rats with male gender diabetes produce a detriment to the physical properties of the resistance arterioles. In spite of male or female gender, diabetes decreases the aortic distensibility and impairs the wave reflection phenomenon in the rat arterial system.  相似文献   

14.
Inducible nitric oxide synthase (iNOS) is associated with vascular hypocontractility in systemic vessels after endotoxin lipopolysaccharide (LPS) administration. Although lung iNOS is increased after LPS, its role in the pulmonary circulation is unclear. We hypothesized that whereas iNOS upregulation is responsible for LPS-induced vascular dysfunction in systemic vessels, iNOS does not play a significant role in the pulmonary artery (PA). Using isolated aorta (AO) and PA rings, we examined the effect of nonselective NOS inhibition [N(G)-monomethyl-L-arginine (L-NMMA); 100 micromol/l] and selective iNOS inhibition (aminoguanidine, AG; 100 micromol/l) on alpha(1)-adrenergic-mediated vasoconstriction (phenylephrine; 10(-9) to 10(-3) M) after LPS (Salmonella typhimurium, 20 mg/kg ip). We also determined the presence of iNOS using Western blot and immunohistochemistry. LPS markedly impaired AO contractility (maximal control tension 1,076 +/- 33 mg vs. LPS 412 +/- 39 mg, P < 0.05), but PA contractility was unchanged (control 466 +/- 29 mg vs. LPS 455 +/- 27 mg, P > 0.05). Selective iNOS inhibition restored the AO's response to vasoconstriction (LPS + AG 1,135 +/- 54 mg, P > 0.05 vs. control and P < 0.05 vs. LPS), but had no effect on the PA (LPS + AG 422 +/- 38 mg, P > 0.05 vs. control and LPS). Western blot and immunohistochemistry revealed increased iNOS expression in the AO after LPS, but iNOS was not detected in the PA. Our results suggest that differential iNOS expression after LPS in systemic and pulmonary vessels contributes to the phenomenon of sepsis/endotoxemia-induced systemic hypotension and pulmonary hypertension.  相似文献   

15.
Advanced glycation end products (AGEs) play a critical pathogenic role in the development of diabetic complications. Recent studies have shown that diabetes is associated with not only abnormal glucose metabolism but also abnormal ribose and fructose metabolism, although glucose is present at the highest concentration in humans. The glycation ability and contribution of ribose and fructose to diabetic complications remain unclear. Here, the glycation ability of ribose, fructose and glucose under a mimic physiological condition, in which the concentration of ribose or fructose was one-fiftieth that of glucose, was compared. Bovine serum albumin (BSA) was used as the working protein in our experiments. Ribose generated more AGEs and was markedly more cytotoxic to SH-SY5Y cells than fructose. The first-order rate constant of ribose glycation was found to be significantly greater than that of fructose glycation. LC-MS/MS analysis revealed 41 ribose-glycated Lys residues and 12 fructose-glycated residues. Except for the shared Lys residues, ribose reacted selectively with 17 Lys, while no selective Lys was found in fructose-glycated BSA. Protein conformational changes suggested that ribose glycation may induce BSA into amyloid-like monomers compared with fructose glycation. The levels of serum ribose were correlated positively with glycated serum protein (GSP) and diabetic duration in type 2 diabetes mellitus (T2DM), respectively. These results indicate that ribose has a greater glycation ability than fructose, while ribose largely contributes to the production of AGEs and provides a new insight to understand in the occurrence and development of diabetes complications.  相似文献   

16.
We assessed the myocardial susceptibility to ischemic-reperfusion injury in obese rat hearts in the absence and the presence of predicted circulating concentrations of insulin and fatty acids. Feeding rats a high-calorie diet resulted in increases in body weight, visceral fat content, cardiac hypertrophy, plasma insulin, nonesterified free fatty acid, and triglyceride concentrations. In the absence of both insulin and fatty acids in the coronary perfusate, the hearts of obese rats developed an increased infarct size (41.9 +/- 1.9% for obese vs. 22.9 +/- 2.3% for control, P < 0.05) and a reduced percent recovery of aortic output (4.2 +/- 4.2% for obese vs. 27.7 +/- 3.4% for controls, P < 0.05) after coronary artery occlusion and reperfusion. In the presence of insulin in the coronary perfusate, a cardioprotective effect was noted in both groups, an action that was greater in hearts from obese compared with control rats and which abolished the obesity-induced changes in infarct size (13.8 +/- 1.2% for controls vs. 21.0 +/- 1.6% for obese), and percent recovery of aortic output (60.2 +/- 4.7% for controls vs. 45.7 +/- 9.4% for obese). Fatty acids (0.7 mM, control; and 1.5 mM, obese) added to the coronary perfusate with in vivo concentrations of insulin dramatically increased infarct size (48.2 +/- 3.1% for obese, and 37.5 +/- 2.7% for control; P < 0.05 vs. without fatty acids) and decreased percent aortic output recovery (control, 10.4 +/- 5.2%, and obese 7.8 +/- 3.5%; P < 0.05 vs. without fatty acids) in both groups to similar values. In conclusion, in obesity, the impact of an increased susceptibility of the myocardium to ischemic-reperfusion injury on myocardial injury is likely to be overshadowed by the comparatively greater roles played by predicted increases in circulating insulin and fatty acids found in vivo. These data support the notion that adiposity per se is unlikely to be a valuable predictor of outcomes in ischemic-reperfusion injury.  相似文献   

17.
The role of estrogen in the maternal systemic cardiovascular adaptations during pregnancy is still controversial. Female Sprague-Dawley rats were implanted at day 14 of pregnancy with either a 50-mg tamoxifen pellet (estrogen receptor blocker, n = 10) or placebo pellet (n = 10). Virgin female rats were a nonpregnant control (n = 7). At days 20-22 of pregnancy, resistance-sized mesenteric arteries were mounted onto a dual-chamber arteriograph system. Pregnancy significantly blunted the pressor response to phenylephrine [measurement of the effective concentration that yielded 50% maximum response (EC(50)) values were 1.5 +/- 0.22 vs. 0.69 +/- 0.16 microM (P < 0.05)] and enhanced vasodilation to ACh [EC(50) = 1.13 +/- 2.53 vs. 3.13 +/- 6.04 nM (P < 0.05)] compared with nonpregnant rats. However, tamoxifen treatment during pregnancy reversed these effects. Inhibition of nitric oxide (NO) synthase with N(G)-monomethyl-L-arginine (250 microM) shifted only the responses of the placebo-treated pregnant group to both phenylephrine and ACh. Arterial distensibility in the placebo-treated pregnant group was also significantly increased (P < 0.05) compared with nonpregnant and tamoxifen-treated pregnant animals. In summary, endogenous estrogen during pregnancy increases NO-dependent modulation of vessel tone and arterial distensibility.  相似文献   

18.
Experiments were performed to determine the pathogenic contribution of the peripheral sympathetic nervous system to fructose-induced hypertriglyceridemia, hyperinsulinemia and hypertension in rats. Neonatal chemical sympathectomy was performed in neonatal Sprague-Dawley rats (1-week old) by administration of guanethidine (50 microg/g, i.p.) 5 times per week for consecutive 3 weeks and nerve-intact rats were served as controls. Both groups of rats were fed a fructose-enriched diet for 9 weeks. The systolic blood pressure (SBP) and body weight were measured weekly and arterial blood samples were taken weekly for determinations of plasma insulin, glucose and triglyceride levels. The results showed that fructose feeding for one week significantly increased SBP in intact rats and sympathectomized rats (116+/-1 to 119+/-1 mmHg and 116+/-1 to 120+/-1 mmHg, respectively). SBP further increased thereafter in both groups. However, the increased SBP levels were significantly higher in intact group than in sympathectomized group after 5 weeks of fructose feeding. Fructose feeding for one week concurrently produced hypertriglyceridemia that preceded the appearance of hyperinsulinemia in both groups. The elevated plasma triglyceride levels were significantly lower in sympathectomized rats than in intact rats after 3 weeks of fructose feeding, whereas the elevated plasma insulin concentrations were not different between groups throughout fructose feeding period. Plasma glucose concentrations of both groups were comparable and remained unchanged throughout the study. These data indicate that neonatal chemical sympathectomy attenuated, but did not prevent, fructose-induced elevations in blood pressure and plasma triglyceride levels, suggesting a partial dependency of fructose-induced hypertriglyceridemia and hypertension on the integrity of the peripheral sympathetic nervous system (SNS) in rats.  相似文献   

19.
We studied whether combined pressure and transesophageal ultrasound monitoring is feasible in the intensive care unit (ICU) setting for global cardiovascular hemodynamic monitoring [systemic vascular resistance (SVR) and total arterial compliance (C(PPM))] and direct estimation of local ascending and descending aortic mechanical properties, i.e., distensibility and compliance coefficients (DC and CC). Pressure-area data were fitted to the arctangent Langewouters model, with aortic cross-sectional area obtained via automated border detection. Data were measured in 19 subjects at baseline, during infusion of sodium nitroprusside (SNP), and after washout. SNP infusion lowered SVR from 1.15 +/- 0.40 to 0.80 +/- 0.32 mmHg.ml(-1).s (P < 0.05), whereas C(PPM) increased from 0.87 +/- 0.46 to 1.02 +/- 0.42 ml/mmHg (P < 0.05). DC and CC increased from 0.0018 +/- 0.0007 to 0.0025 +/- 0.0009 l/mmHg (P < 0.05) and from 0.0066 +/- 0.0028 to 0.0083 +/- 0.0026 cm2/mmHg (P < 0.05), respectively, at the descending, but not ascending, aorta. The Langewouters model fitted the descending aorta data reasonably well. Assessment of local mechanical properties of the human ascending aorta in a clinical setting by automated border detection remains technically challenging.  相似文献   

20.
Aortic stiffness is thought to affect coronary blood flow, but little is known about its influence on coronary flow reserve (CFR). The objective of the present study was to investigate the relationship between aortic stiffness and CFR in matched patients with and without increased aortic stiffness. Stress transoesophageal echocardiography (TEE) as the CFR measurement and coronary angiography were performed in all cases. Increased aortic stiffness was defined if elastic modulus Ep > 680 mmHg. The following patient populations free of coronary artery disease were compared: 36 subjects with normal aortic distensibility and 19 age-, sex-, and risk factor-matched patients with increased aortic stiffness. CFR was significantly reduced in patients with increased aortic stiffness as compared with cases with normal aortic distensibility (2.64 +/- 1.16 vs. 2.12 +/- 0.58, p <0.01). Hyperaemic diastolic flow velocities were reduced in patients with increased aortic stiffness (129.5 +/- 36.6 cm/s vs. 102.1 +/- 39.8 cm/s, p <0.05). Negative correlations were found between Ep and hyperaemic diastolic coronary flow velocity (r = -0.41, p < 0.01) and CFR (r = -0.21, p < 0.05). CFR is reduced in patients with increased aortic stiffness and negative correlations exist between these functional parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号