首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have developed dissociable antibody microarray (DAMA) staining technology that provides a new approach to the global analysis of protein subcellular localization (SCL) in fixed cells. We have developed and optimized this technology for protein SCL profiling, generated ChipView, a program for management and analysis of molecular image database, and utilized the technique to identify proteins with unique SCL in breast cancer cell lines. We compared the SCL profiles of 325 proteins among nine different breast cell lines, and have identified one protein, Cyclin B1, with distinctively different SCLs between normal and cancer cell lines. With classic individual immunostaining, Cyclin B1 was confirmed to localize to the cytoplasm of seven breast cancer cell lines and in both cytoplasm and nuclei of two normal breast cell lines, and to have higher expression levels in the cancer cell lines tested.  相似文献   

2.
To identify potential biomarkers of lung cancer (LC), profiling of proteins in sera obtained from healthy and LC patients was determined using an antibody microarray. Based on our previous study on mRNA expression profiles between patients with LC and healthy persons, 19 proteins of interest were selected as targets for fabrication of an antibody microarray. Antibody to each protein and five nonspecific control antibodies were spotted onto a hydrogel‐coated glass slide and used for profiling of proteins in sera of LC patients in a two‐color fluorescence assay. Forty‐eight human sera samples were analyzed, and expression profiling of proteins were represented by the internally normalized ratio method. Six proteins were distinctly down‐regulated in sera of LC patients; this observation was validated by Wilcoxon test, false discovery rate, and Western blotting. Blind test of other 32 human sera using the antibody microarray followed by hierarchical clustering analysis revealed an approximate sensitivity of 88%, specificity of 80%, and an accuracy of 84%, respectively, in classifying the sera, which supports the potential of the six identified proteins as biomarkers for the prognosis of lung cancer.  相似文献   

3.
Commercially available high-content Ab380 and extensively validated DLM26 homemade protein microarrays were used to profile the effects of the pro-atherogenic molecule, oxidized low density lipoprotein (OxLDL), on human aortic smooth muscle cells. Protein microarrays detected 298 proteins in cell lysates and 54 of these were differentially regulated. Microarray data were validated by immunoblotting for a selected set of up- and down-regulated proteins. The protein microarray data sets were compared with our recent cDNA microarray-based gene expression results in order to characterize the global effect of OxLDL on smooth muscle cell functions. A group of cell-cell interaction molecules was classified as up-regulated by OxLDL, whereas nucleic acid/protein biosynthesis, structural and humoral response proteins/genes were under-expressed in cells treated by OxLDL. These findings reveal the major pattern of OxLDL-induced effects on the human aortic smooth muscle cells functions and also demonstrate that protein chip-based microarrays could be a useful proteomic tool to profile disease-related states of muscle cells.  相似文献   

4.

Background  

Previous data from our laboratory has indicated that a functional link exists between the G-protein-coupled inwardly rectifying potassium (GIRK) channel and the beta-adrenergic receptor pathway in breast cancer cell lines, and these pathways were involved in growth regulation of these cells. Alcohol is an established risk factor for breast cancer and has been found to open GIRK. In order to further investigate GIRK channels in breast cancer and possible alteration by ethanol, we identified GIRK channel protein expression in breast cancer cells.  相似文献   

5.
Mining microarray expression data by literature profiling   总被引:1,自引:1,他引:0  
Chaussabel D  Sher A 《Genome biology》2002,3(10):research0055.1-research005516

Background  

The rapidly expanding fields of genomics and proteomics have prompted the development of computational methods for managing, analyzing and visualizing expression data derived from microarray screening. Nevertheless, the lack of efficient techniques for assessing the biological implications of gene-expression data remains an important obstacle in exploiting this information.  相似文献   

6.
The correlation between diet and variation in gene-expression is an important field which could be considered to approach cancer pathways comprehension. We examined the effects of lycopene on breast cancer cell lines using pangenomic arrays. Lycopene is derived predominantly from tomatoes and tomato products and there is some epidemiologic evidence for a preventive role in breast cancer. Previously, we investigated lycopene in breast cancer using a dedicated breast cancer microarray. To confirm these results and explore pathways other than those implicated in breast cancer, for this study we used pangenomic arrays containing 25,000 oligonucleotides. This in vitro study assayed two human mammary cancer cell lines (MCF-7 and MDA-MB-231), and a fibrocystic breast cell line (MCF-10a) treated or not with 10 μM lycopene for 48 h. A competitive hybridization was performed between Cy3-labeled lycopene treated RNA and Cy5-labeled untreated RNA to define differentially expressed genes. Using t-test analysis, a subset of 391 genes was found to be differentially modulated by lycopene between estrogen-positive cells (MCF-7) and estrogen-negative cells (MDA-MB-231, MCF-10a). Hierarchical clustering revealed 726 discriminatory genes between breast cancer cell lines (MCF-7, MDA-MB-231) and the fibrocystic breast cell line (MCF-10a). Modified gene expression was observed in various molecular pathways, such as apoptosis, cell communication, MAPK and cell cycle as well as xenobiotic metabolism, fatty acid biosynthesis and gap junctional intercellular communication.  相似文献   

7.
The correlation between diet and variation in gene-expression is an important field which could be considered to approach cancer pathways comprehension. We examined the effects of lycopene on breast cancer cell lines using pangenomic arrays. Lycopene is derived predominantly from tomatoes and tomato products and there is some epidemiologic evidence for a preventive role in breast cancer. Previously, we investigated lycopene in breast cancer using a dedicated breast cancer microarray. To confirm these results and explore pathways other than those implicated in breast cancer, for this study we used pangenomic arrays containing 25,000 oligonucleotides. This in vitro study assayed two human mammary cancer cell lines (MCF-7 and MDA-MB-231), and a fibrocystic breast cell line (MCF-10a) treated or not with 10 microM lycopene for 48 h. A competitive hybridization was performed between Cy3-labeled lycopene treated RNA and Cy5-labeled untreated RNA to define differentially expressed genes. Using t-test analysis, a subset of 391 genes was found to be differentially modulated by lycopene between estrogen-positive cells (MCF-7) and estrogen-negative cells (MDA-MB-231, MCF-10a). Hierarchical clustering revealed 726 discriminatory genes between breast cancer cell lines (MCF-7, MDA-MB-231) and the fibrocystic breast cell line (MCF-10a). Modified gene expression was observed in various molecular pathways, such as apoptosis, cell communication, MAPK and cell cycle as well as xenobiotic metabolism, fatty acid biosynthesis and gap junctional intercellular communication.  相似文献   

8.
9.
10.
Altered protein glycosylation compared with the disease-free state is a universal feature of cancer cells. It has long been established that distinct glycan structures are associated with specific forms of cancer, but far less is known about the complete array of glycans associated with certain tumors. The cancer glycome has great potential as a source of biomarkers, but progress in this field has been hindered by a lack of available techniques for the elucidation of disease-associated glycosylation. In the present study, lectin microarrays consisting of 45 lectins with different binding preferences covering N- and O-linked glycans were coupled with evanescent-field activated fluorescent detection in the glycomic analysis of primary breast tumors and the serum and urine of patients with metastatic breast cancer. A single 50 μm section of a primary breast tumor or <1 μL of breast cancer patient serum or urine was sufficient to detect glycosylation alterations associated with metastatic breast cancer, as inferred from lectin-binding patterns. The high-throughput, sensitive and relatively simple nature of the simultaneous analysis of N- and O-linked glycosylation following minimal sample preparation and without the need for protein deglycosylation makes the lectin microarray analysis described a valuable tool for discovery phase glycomic profiling.  相似文献   

11.
Metallothionein isoform expression by breast cancer cells   总被引:3,自引:0,他引:3  
Expression of metallothionein (MT) isoforms by a human breast cancer cell line, PMC42, which retains many characteristics of normal breast epithelial cells and expresses functional estrogen receptors, was examined because it has been proposed that human breast cancer cells which are estrogen receptor positive can be differentiated from those which are estrogen receptor negative, by failure to express MT-1E [J.A. Friedline, S.H. Garrett, S. Somji, J.H. Todd, D. A. Sens, Differential expression of the MT-1E gene in estrogen-receptor positive and -negative breast cancer cell lines, Am. J. Pathol. 152 (1998) 23-27]. Using RT-PCR, PMC42 cells were found to transcribe genes for the MT isoforms IE, IX and 2A but not 1A or 1H. In order to examine which of the expressed isoforms might protect against metal toxicity, the cells were challenged with high concentrations of zinc and copper. Using competitive RT-PCR, cells resistant to 500 microM zinc showed 7+/-2 fold (SD, n=3) increases in expression of MT-1X and 6+/-3 fold increases in expression of MT-2A compared to control cells in normal media. For cells resistant to 250 microM copper the corresponding increases were 37+/-13 and 60+/-20 fold, whilst for control cells treated with 250 microM copper for only 6 h, increases were 10+/-3 and 6+/-3 fold. There was only a low level of expression of MT-1E in untreated cells and but a >120 fold increase in copper- resistant cells. Thus estrogen receptor positive cells cannot, in general, be differentiated from estrogen receptor negative cells by failure to express MT-1E, as suggested by Friedline et al. (1998). Increased expression of MT-1E, as well as MT-1X and MT-2A, protects against metal toxicity in PMC42 breast cancer cells.  相似文献   

12.
13.
Clinical and pathological heterogeneity of breast cancer, partly responsible of therapeutic failures, reflects complex and combinatory molecular alterations until now poorly documented by classical investigation tools. Thorough molecular typing is crucial. The advent of DNA microarray-based gene expression profiling allowed consistent progresses in this direction. A novel molecular taxonomy of breast cancer has been defined, signatures that predict clinical outcome or therapeutic response have been identified, some of them being tested in ongoing prospective clinical trials. In this review, we present the main results and their potential clinical applications. We also discuss their current limits and future hopes in the therapeutic management of patients.  相似文献   

14.
15.
To better understand the immune system of a commercially important fish (yellowtail, Seriola quinqueradiata), we constructed a cDNA microarray containing 1001 selected genes from yellowtail EST and used this to investigate gene expression of primary cultured kidney cells stimulated with ConA and LPS. The total number of up-regulated genes stimulated by LPS was apparently greater than that of ConA stimulation, whereas down-regulated genes were markedly found in ConA-stimulated group. Of the genes that were up-regulated at 3, 6, and 12h after LPS treatment, 12%, 13% and 12%, respectively, were immune-related. Immune-related genes were sorted into 4 groups based on their differential expression patterns against LPS induction. LPS induced the expression of genes related to inflammation, cytokine activity, antigen presentation and antigen binding such as, IL-1beta, CC chemokine with stalk CK2, MHC class II beta chain and immunoglobulin heavy chain. Amplified fragments of RT-PCR products of IgM, IL-1beta, nephrosin, and beta-actin had signal intensities that were comparable to those obtained with the microarray. Overall, these results show that microarrays are a promising tool for uncovering immune mechanism in teleost fish. cDNA sequences of genes were deposited in the GenBank database at DDBJ with accession numbers BB 996897-BB 997897.  相似文献   

16.
Pathologic and clinical heterogeneity of breast cancer reflects the poorly documented, complex, and combinatory molecular basis of the disease and is in part responsible for therapeutic failures. The DNA microarray technique allows the analysis of RNA expression of several thousands of genes simultaneously in a sample. There are multiple potential applications of the technique in cancer research. A number of recent studies have shown the promising role of gene expression profiling in breast cancer by identifying new prognostic subclasses unidentifiable by conventional parameters and new prognostic and/or predictive gene signatures, whose predictive impact is superior to conventional histoclinical prognostic factors. In this review we describe current use of DNA microarrays in the prognosis of breast cancer. We also discuss issues that need to be addressed in the near future to allow the method to reach its full potential.  相似文献   

17.
Alterations of the DNA methylation pattern have been related to generalized chromosomal disruption and inactivation of multiple tumor suppressor genes in neoplasia. To screen for tumor-specific alterations and to make a global assessment of methylation status in cancer cells, we have modified the methylated CpG island amplification method to generate easily readable fingerprints representing the cell’s DNA methylation profile. The method is based on the differential cleavage of isoschizomers with distinct methylation sensitivity. Specific adaptors are ligated to the methylated ends of the digested genomic DNA. The ligated sequences are amplified by PCR using adaptor- specific primers extended at the 3′ end with two to four arbitrarily chosen nucleotidic residues to reduce the complexity of the product. Fingerprints consist of multiple anonymous bands, representing DNA sequences flanked by two methylated sites, which can be isolated and individually characterized. Hybridization of the whole product to metaphase chromosomes revealed that most bands originate from the isochore H3, which identifies the regions of the genome with the highest content of CpG islands and genes. Comparison of the fingerprints obtained from normal colon mucosa, colorectal carcinomas and cell lines revealed tumor-specific alterations that are putative recurrent markers of the disease and include tumor-specific hypo- and hypermethylations.  相似文献   

18.
Quantitative profiling of glycans with different structures appears essential for a better understanding of the cellular adhesion phenomena associated with malignant transformation and the underlying aberrant glycosylation of cancer cells. Using the recently developed glycomic techniques and mass-spectrometric measurements, we compare the N-linked and O-linked oligosaccharide profiles for different breast cancer cell lines with those of normal epithelial cells. Statistically significant differences in certain neutral, sialylated and fucosylated structures are readily discerned through quantitative measurements, indicating a potential of distinguishing invasive and non-invasive cancer attributes. The glycomic profile data cluster accordingly using Principal Component Analysis, verifying further glycobiological differences due to the differences between normal and cancer cell lines.  相似文献   

19.
Macrophages are a major cellular component of innate immunity and are mainly known to have phagocytic activity. In the tumor microenvironment (TME), they can be differentiated into tumor-associated macrophages (TAMs). As the most abundant immune cells in the TME, TAMs promote tumor progression by enhancing angiogenesis, suppressing T cells and increasing immunosuppressive cytokine production. N-myc downstream-regulated gene 2 (NDRG2) is a tumor suppressor gene, whose expression is down-regulated in various cancers. However, the effect of NDRG2 on the differentiation of macrophages into TAMs in breast cancer remains elusive. In this study, we investigated the effect of NDRG2 expression in breast cancer cells on the differentiation of macrophages into TAMs. Compared to tumor cell-conditioned medium (TCCM) from 4T1-mock cells, TCCM from NDRG2-overexpressing 4T1 mouse breast cancer cells did not significantly change the morphology of RAW 264.7 cells. However, TCCM from 4T1-NDRG2 cells reduced the mRNA levels of TAM-related genes, including MR1, IL-10, ARG1 and iNOS, in RAW 264.7 cells. In addition, TCCM from 4T1-NDRG2 cells reduced the expression of TAM-related surface markers, such as CD206, in peritoneal macrophages (PEM). The mRNA expression of TAM-related genes, including IL-10, YM1, FIZZ1, MR1, ARG1 and iNOS, was also downregulated by TCCM from 4T1-NDRG2 cells. Remarkably, TCCM from 4T1-NDRG2 cells reduced the expression of PD-L1 and Fra-1 as well as the production of GM-CSF, IL-10 and ROS, leading to the attenuation of T cell-inhibitory activity of PEM. These data showed that compared with TCCM from 4T1-mock cells, TCCM from 4T1-NDRG2 cells suppressed the TAM differentiation and activation. Collectively, these results suggest that NDRG2 expression in breast cancer may reduce the differentiation of macrophages into TAMs in the TME.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号