首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Mitochondrial heavy strand (HS) tDNA codes for tRNAs and frequently functions as the light strand (LS) replication origin (OL). During replication, HS sites remain single-stranded until their LS complement is synthesized, a state prone to hydrolytic deaminations of C → T and A → G, causing genome-wide deamination gradients starting at OLs and proportional to time spent single-stranded. Gradient strength is proportional to OL formation by HS tDNAs. Hypothetically, hybridization between HS tDNA and its expressed complement tRNA should decrease OL activity for LS-, but not HS-encoded tRNAs. Comparisons between primate genomes and between pathogenic and non-pathogenic human polymorphisms both confirm corresponding predictions on OL activity. In primates, strengths of deamination gradients starting at tDNAs functioning as OLs and coding for LS tRNAs decrease proportionally to stabilities of HS tDNA-LS tRNA hybridization; not so for HS tRNAs. Similarly, in mutants of human HS tDNAs coding for LS tRNAs, pathogenic mutants of tDNAs usually not forming OLs form weaker HS tDNA-LS tRNA duplexes than non-pathogenic ones; the opposite is true for tDNAs usually forming OLs. No trend was detected for HS tDNA coding for HS tRNA. tDNA-tRNA hybridization of the modal (most frequent) human tDNA sequence is more stable than of other, rarer non-pathogenic polymorphisms, suggesting similar but weaker mutational effects on tDNA/tRNA functions than in pathogenic mutants. HS tDNA-LS tRNA hybridization appears to compete with OL formation by HS tDNA self-hybridization.  相似文献   

3.
Stem-loop hairpins formed by mitochondrial light strand replication origins (OL) and by heavy strand DNA coding for tRNAs that form OL-like structures initiate mitochondrial replication. The loops are recognized by one of the two active sites of the vertebrate mitochondrial gamma polymerase, which are homologuous to the active sites of class II amino-acyl tRNA synthetases. Therefore, the polymerase site recognizing the OL loop could recognize tRNA anticodon loops and sequence similarity between anticodon and OL loops should predict initiation of DNA replication at tRNAs. Strengths of genome-wide deamination gradients starting at tRNA genes estimate extents by which replication starts at that tRNA. Deaminations (A→G and C→T) occur proportionally to time spent single stranded by heavy strand DNA during mitochondrial light strand replication. Results show that deamination gradients starting at tRNAs are proportional to sequence similarity between OL and tRNA loops: most for anticodon-, least D-, intermediate for TψC-loops, paralleling tRNA synthetase recognition interactions with these tRNA loops. Structural and sequence similarities with regular OLs predict OL function, loop similarity is dominant in most tRNAs. Analyses of sequence similarity and structure independently substantiate that DNA sequences coding for mitochondrial tRNAs sometimes function as alternative OLs. Pathogenic mutations in anticodon loops increase similarity with the human OL loop, non-pathogenic polymorphisms do not. Similarity/homology alignment hypotheses are experimentally testable in this system.  相似文献   

4.
Secondary structure stability of mitochondrial origins of light-strand replication (OL) presumably reduces delayed formation of light-strand initiating replication forks on the heavy strand. Delayed replication initiation prolongs single strandedness of the heavy strand. More mutations accumulate during the prolonged time spent single stranded. Presumably, delayed replication initiation and excess mutations affect mitochondrial biochemical processes and ultimately morphological outcomes of development at the whole-organism level. This predicts that developmental stability increases with OL secondary structure stability and with formation of OL-like structures by the five tRNA genes flanking recognized OLs. Stable OLs and high percentages of OL-resembling secondary structures of adjacent tRNA genes (predicted by Mfold) correlate positively with developmental stability in three lizard families (Anguidae, Amphisbaenidae, and Polychrotidae). Accounting for effects of the regular OL, Sfold-predicted OL-like propensity of the entire tRNA gene cluster (not of individual genes) correlates with increased developmental stability in Anguidae, also across the entire free-energy range of Boltzmann's distribution of secondary structures. In the fossorial Amphisbaenidae, the OL-like structure-forming propensity of tRNA genes correlates positively with developmental stability for the distribution's sub-optimally stable regions, and negatively for its optimally stable regions, suggesting the thermoregulated functioning of OL vs. flanking tRNA genes as replication origins. Results for polychrotid tRNA genes are intermediate. Anguid tRNA genes possibly function in addition to the regular OL. Mitochondrial tRNA genes may thus frequently acquire and lose the alternative OL function, without sequence (gene) duplication and loss of their primary function.  相似文献   

5.
6.
We hypothesized that the mutational strand asymmetry is more strongly exerted upon the mitochondrial cytochrome b (Cytb) gene, which is distant from the origin of the light-strand replication (Ori(L)), than upon the ATPase subunit 6 (ATP6) gene, which is close to the Ori(L). To test this hypothesis, we determined the sequences of these two genes in 96 Japanese young obese adults. The frequency of G-->A transitions was significantly higher than that of C-->T transitions in the Cytb gene, whereas the frequencies of G-->A and C-->T transitions were not significantly different in the ATP6 gene. The marked mutational strand asymmetry in the Cytb gene can be explained by the deamination of C to uracil in the long single-stranded state of the heavy strand during replication. The ratio of the nonsynonymous substitutions at the second codon positions to those at the first codon positions was significantly lower in the Cytb gene than in the ATP6 gene. The physicochemical differences between the standard and the replaced amino acid residues were significantly smaller in the Cytb gene than in ATP6 one. The present study indicates that amino acid sequences are less variable for Cytb than for ATP6 in spite of the strong mutational strand asymmetry for the Cytb gene.  相似文献   

7.
Mitochondrial light strand DNA replication is initiated at light strand replication origins (OLs), short stem-loop hairpins formed by the heavy strand DNA. OL-like secondary structures are also formed by heavy strand DNA templating for the five tRNAs adjacent to OLs, the WANCY tRNA cluster. We tested whether natural OL absence associates with greater capacities for formation of OL-like structures by WANCY tRNA genes. Using lepidosaurian taxa (Sphenodon, lizards and amphisbaenids), we compared WANCY tRNA capacities to form OL-like structures between 248 taxa possessing an OL with 131 taxa without OL (from different families). On average, WANCY tRNA genes form more OL-like structures in the absence of a regular OL than in its presence. Formation of OL-like structures by WANCY tRNAs follows hierarchical patterns that may reduce competition between the tRNA's translational function and its secondary OL function: the rarer the tRNA's cognate amino acid, the greater the capacity to form OL-like structures. High OL-forming capacities for neighboring tRNAs are avoided. Because OL absence usually occurs in taxa with reduced genomes, increased formation of OL-like structures by WANCY tRNAs might result from selection for greater metabolic efficiency. Further analyses suggest that OL loss is one of the latest steps in genome reduction, and promotes the increase in formation of OL-like structures by WANCY tRNA genes in Lepidosauria.  相似文献   

8.
Protein synthesis (translation) stops at stop codons, codons not complemented by tRNA anticodons. tRNAs matching stops, antitermination (Ter) tRNAs, prevent translational termination, producing dysfunctional proteins. Genomes avoid tRNAs with anticodons whose complement (the anticodon of the ‘antisense’ tRNA) matches stops. This suggests that antisense tRNAs, which also form cloverleaves, are occasionally expressed. Mitochondrial antisense tRNA expression is plausible, because both DNA strands are transcribed as single RNAs, and tRNA structures signal RNA maturation. Results describe potential antisense Ter tRNAs in mammalian mitochondrial genomes detected by tRNAscan-SE, and evidence for adaptations preventing translational antitermination: genomes possessing Ter tRNAs use less corresponding stop codons; antisense Ter tRNAs form weaker cloverleaves than homologuous non-Ter antisense tRNAs; and genomic stop codon usages decrease with stabilities of codon-anticodon interactions and of Ter tRNA cloverleaves. This suggests that antisense tRNAs frequently function in translation. Results suggest that opposite strand coding is exceptional in modern genes, yet might be frequent for mitochondrial tRNAs. This adds antisense tRNA templating to other mitochondrial tRNA functions: sense tRNA templating, formation and regulation of secondary (light strand DNA) replication origins. Antitermination probably affects mitochondrial degenerative diseases and ageing: pathogenic mutations are twice as frequent in tRNAs with antisense Ter anticodons than in other tRNAs, and species lacking mitochondrial antisense Ter tRNAs have longer mean maximal lifespans than those possessing antisense Ter tRNAs.  相似文献   

9.
10.
Evolution of the WANCY region in amniote mitochondrial DNA   总被引:7,自引:1,他引:6  
In most vertebrate mitochondrial genomes, the site for initiation of light-strand replication, OL, is found within a cluster of five transfer RNA (tRNA) genes (tRNA(Trp), tRNA(Ala), tRNA(Asn), tRNA(Cys), and tRNA(Tyr)). This region and part of the adjacent cytochrome c oxydase subunit I (COI) gene were sequenced for two crocodilian, two turtle, and one snake species and for Sphenodon punctatus; part of the adjacent nicotinamide adenine dinucleotide dehydrogenase subunit 2 (ND2) gene was also sequenced for the crocodilian and turtle species. All had the typical vertebrate gene order. The turtles and the snake have a lengthy noncoding sequence between the tRNA(Asn) and tRNA(Cys) genes that we assumed to be homologous to the mammalian OL. The crocodilians and Sphenodon lack such a sequence, a condition they share with birds. Most proposed phylogenies for the amniotes require that OL at this position was lost at least twice during their diversification or was evolved independently more than once. Within the five tRNA genes, frequencies of substitutions are much higher in loops than in stems. Many loops vary dramatically in size among the species; in the most extreme case, the D-arm of the Sphenodon tRNA(Cys) is a "D-arm replacement" loop of seven nucleotides. Frequency of transitions in stems is relatively uniform across tRNAs, but frequency of transversions varies greatly. Mismatches in stems are infrequent, and their relative frequency in a specific tRNA is unrelated to the frequency of substitution in the corresponding gene. Several features of mammalian mitochondrial tRNAs are conserved in WANCY tRNAs throughout amniotes. The inferred initiation codon for COI is GTG in crocodilians, turtles, and the snake, a condition they share with fishes, certain amphibians, and birds. TTG appears to be the initiation codon for COI in Sphenodon; if correct, this would be a novel initiation codon for vertebrate mitochondrial DNA. Phylogenetic analyses of the inferred amino acid sequences of ND2 and COI support the sister-group relationship of birds and crocodilians and suggest that mammals are an early derived lineage within the amniotes.   相似文献   

11.
Insects, the most biodiverse taxonomic group, have high AT content in their mitochondrial genomes. Although codon usage tends to be AT-rich, base composition and codon usage of mitochondrial genomes may vary among taxa. Thus, we compare base composition and codon usage patterns of 49 insect mitochondrial genomes. For protein coding genes, AT content is as high as 80% in the Hymenoptera and Lepidoptera and as low as 72% in the Orthopotera. The AT content is high at positions 1 and 3, but A content is low at position 2. A close correlation occurs between codon usage and tRNA abundance in nuclear genomes. Optimal codons can pair well with the antr codons of the most abundant tRNAs. One tRNA gene translates a synonymous codon family in vertebrate mitochondrial genomes and these tRNA anticodons can pair with optimal codons. However, optimal codons cannot pair with anticodons in mtDNA ofCochiiomyia hominivorax (Dipteral: CaLliphoridae). Ten optimal codons cannot pair with tRNA anticodons in all 49 insect mitochondrial genomes; non-optimal codon-anticodon usage is common and codon usage is not influenced by tRNA abundance.  相似文献   

12.
13.

Background

Pseudoscorpions are chelicerates and have historically been viewed as being most closely related to solifuges, harvestmen, and scorpions. No mitochondrial genomes of pseudoscorpions have been published, but the mitochondrial genomes of some lineages of Chelicerata possess unusual features, including short rRNA genes and tRNA genes that lack sequence to encode arms of the canonical cloverleaf-shaped tRNA. Additionally, some chelicerates possess an atypical guanine-thymine nucleotide bias on the major coding strand of their mitochondrial genomes.

Results

We sequenced the mitochondrial genomes of two divergent taxa from the chelicerate order Pseudoscorpiones. We find that these genomes possess unusually short tRNA genes that do not encode cloverleaf-shaped tRNA structures. Indeed, in one genome, all 22 tRNA genes lack sequence to encode canonical cloverleaf structures. We also find that the large ribosomal RNA genes are substantially shorter than those of most arthropods. We inferred secondary structures of the LSU rRNAs from both pseudoscorpions, and find that they have lost multiple helices. Based on comparisons with the crystal structure of the bacterial ribosome, two of these helices were likely contact points with tRNA T-arms or D-arms as they pass through the ribosome during protein synthesis. The mitochondrial gene arrangements of both pseudoscorpions differ from the ancestral chelicerate gene arrangement. One genome is rearranged with respect to the location of protein-coding genes, the small rRNA gene, and at least 8 tRNA genes. The other genome contains 6 tRNA genes in novel locations. Most chelicerates with rearranged mitochondrial genes show a genome-wide reversal of the CA nucleotide bias typical for arthropods on their major coding strand, and instead possess a GT bias. Yet despite their extensive rearrangement, these pseudoscorpion mitochondrial genomes possess a CA bias on the major coding strand. Phylogenetic analyses of all 13 mitochondrial protein-coding gene sequences consistently yield trees that place pseudoscorpions as sister to acariform mites.

Conclusion

The well-supported phylogenetic placement of pseudoscorpions as sister to Acariformes differs from some previous analyses based on morphology. However, these two lineages share multiple molecular evolutionary traits, including substantial mitochondrial genome rearrangements, extensive nucleotide substitution, and loss of helices in their inferred tRNA and rRNA structures.  相似文献   

14.
15.
Yu H  Li Q 《PloS one》2011,6(1):e16147

Background

Animal mitochondrial genomes typically encode one tRNA for each synonymous codon family, so that each tRNA anticodon essentially has to wobble to recognize two or four synonymous codons. Several factors have been hypothesized to determine the nucleotide at the wobble site of a tRNA anticodon in mitochondrial genomes, such as the codon-anticodon adaptation hypothesis, the wobble versatility hypothesis, the translation initiation and elongation conflict hypothesis, and the wobble cost hypothesis.

Principal Findings

In this study, we analyzed codon usage and tRNA anticodon wobble sites of 29 marine bivalve mitochondrial genomes to evaluate features of the wobble nucleotides in tRNA anticodons. The strand-specific mutation bias favors G and T on the H strand in all the 29 marine bivalve mitochondrial genomes. A bias favoring G and T is also visible in the third codon positions of protein-coding genes and the wobble sites of anticodons, rejecting that codon usage bias drives the wobble sites of tRNA anticodons or tRNA anticodon bias drives the evolution of codon usage. Almost all codon families (98.9%) from marine bivalve mitogenomes support the wobble versatility hypothesis. There are a few interesting exceptions involving tRNATrp with an anticodon CCA fixed in Pectinoida species, tRNASer with a GCU anticodon fixed in Mytiloida mitogenomes, and the uniform anticodon CAU of tRNAMet translating the AUR codon family.

Conclusions/Significance

These results demonstrate that most of the nucleotides at the wobble sites of tRNA anticodons in marine bivalve mitogenomes are determined by wobble versatility. Other factors such as the translation initiation and elongation conflict, and the cost of wobble translation may contribute to the determination of the wobble nucleotide in tRNA anticodons. The finding presented here provides valuable insights into the previous hypotheses of the wobble nucleotide in tRNA anticodons by adding some new evidence.  相似文献   

16.
In this study, we determined the complete nucleotide sequence of the mitochondrial genome of the Japanese pond frog Rana nigromaculata. The length of the sequence of the frog was 17,804 bp, though this was not absolute due to length variation caused by differing numbers of repetitive units in the control regions of individual frogs. The gene content, base composition, and codon usage of the Japanese pond frog conformed to those of typical vertebrate patterns. However, the comparison of gene organization between three amphibian species (Rana, Xenopus and caecilian) provided evidence that the gene arrangement of Rana differs by four tRNA gene positions from that of Xenopus or caecilian, a common gene arrangement in vertebrates. These gene rearrangements are presumed to have occurred by the tandem duplication of a gene region followed by multiple deletions of redundant genes. It is probable that the rearrangements start and end at tRNA genes involved in the initial production of a tandemly duplicated gene region. Putative secondary structures for the 22 tRNAs and the origin of the L-strand replication (OL) are described. Evolutionary relationships were estimated from the concatenated sequences of the 12 proteins encoded in the H-strand of mtDNA among 37 vertebrate species. A quartet-puzzling tree showed that three amphibian species form a monophyletic clade and that the caecilian is a sister group of the monophyletic Anura.  相似文献   

17.
Human mitochondrial DNA contains two physically separate and distinct origins of DNA replication. The initiation of each strand (heavy and light) occurs at a unique site and elongation proceeds unidirectionally. Animal mitochondrial DNA is novel in that short nascent strands are maintained at one origin (D-loop) in a significant percentage of the molecules. In the case of human mitochondrial DNA, there are three distinct D-loop heavy strands differing in length at the 5' end. We report here the localization of the 5' ends of nascent daughter heavy strands originating from the D-loop region. Analyses of the map positions of 5' ends relative to known restriction endonuclease cleavage sites and 5' end nucleotides indicate that the points of initiation of D-loop synthesis and actual daughter strands are the same. In contrast, the second origin is located two-thirds of the way around the genome where light strand synthesis is presumably initiated on a single-stranded template. Mapping of 5' ends of daughter light strands at this origin relative to known restriction endonuclease cleavage sites reveals two distinct points of initiation separated by 37 nucleotides. This origin is in the same relative genomic position and shows a high degree of DNA sequence homology to that of mouse mitochondrial DNA. In both cases, the DNA region within and immediately flanking the origin of DNA replication contains five tightly clustered tRNA genes. A major portion of the pronounced DNA template secondary structure at this origin includes the known tDNA sequences.  相似文献   

18.
Several studies have shown that in vertebrate mtDNAs the nucleotide content at fourfold degenerate sites is well correlated with the site’s time of exposure to the single-strand state, as predicted from the asymmetrical model of mtDNA replication. Here we examine whether the same explanation may hold for the regional variation in nucleotide content in the maternal and paternal mtDNAs of the mussel Mytilus galloprovincialis. The origin of replication of the heavy strand (OH) of these genomes has been previously established. A systematic search of the two genomes for sequences that are likely to act as the origin of replication of the light strand (OL) suggested that the most probable site lies within the ND3 gene. By adopting this OL position we calculated times of exposure for 0FD (nondegenerate), 2FD (twofold degenerate), and 4FD (fourfold degenerate) sites of the protein-coding part of the genome and for the rRNA, tRNA and noncoding parts. The presence of thymine and absence of guanine at 4FD sites was highly correlated with the presumed time of exposure. Such an effect was not found for the 2FD sites, the rRNA, the tRNA, or the noncoding parts. There was a trend for a small increase in cytosine at 0FD sites with exposure time, which is explicable as the result of biased usage of 4FD codons. The same analysis was applied to a recently sequenced mitochondrial genome of Mytilus trossulus and produced similar results. These results are consistent with the asymmetrical model of replication and suggest that guanine oxidation due to single-strand exposure is the main cause of regional variation of nucleotide content in Mytilus mitochondrial genomes. Electronic Supplementary Material The online version of this article (doi:) contains supplementary material, which is available to authorized users. [Reviewing Editor: Dr. David Pollock]  相似文献   

19.
J. L. Boore  W. M. Brown 《Genetics》1995,141(1):305-319
We have determined the complete nucleotide (nt) sequence of the mitochondrial genome of an oligochaete annelid, the earthworm Lumbricus terrestris. This genome contains the 37 genes typical of metazoan mitochondrial DNA (mtDNA), including ATPase8, which is missing from some invertebrate mtDNAs. ATPase8 is not immediately upstream of ATPase6, a condition found previously only in the mtDNA of snails. All genes are transcribed from the same DNA strand. The largest noncoding region is 384 nt and is characterized by several homopolymer runs, a tract of alternating TA pairs, and potential secondary structures. All protein-encoding genes either overlap the adjacent downstream gene or end at an abbreviated stop codon. In Lumbricus mitochondria, the variation of the genetic code that is typical of most invertebrate mitochondrial genomes is used. Only the codon ATG is used for translation initiation. Lumbricus mtDNA is A + T rich, which appears to affect the codon usage pattern. The DHU arm appears to be unpaired not only in tRNA(ser(AGN)), as is typical for metazoans, but perhaps also in tRNA(ser(UCN)), a condition found previously only in a chiton and among nematodes. Relating the Lumbricus gene organization to those of other major protostome groups requires numerous rearrangements.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号