首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Respiration patterns and growth of cytokinin-dependent cell suspensions ofBeta vulgaris L., precultured in media with or without three different synthetic cytokinins [benzyladenine (BA), kinetin (KIN), and thidiazuron (TDA)], were compared. The content of endogenous cytokinins, especially zeatin and isopentenyladenine, as well as the dry mass yield, were dependent on the kind of synthetic cytokinin present in the culture medium and decreased in the following order: thidiazuron, kinetin, benzyladenine, no cytokinin. The apparent capacity of the alternative pathway, as measured after blocking of the cytochrome pathway by cyanide, was inversely proportional to the content of endogenous cytokinins. Some synthetic cytokinins (e.g., benzyladenine), when exogenously applied, are known to inhibit selectively the alternative pathway. However, this does not necessarily imply that the mechanism of action of endogenous cytokinins on the respiration pattern is limited to a single effect on the alternative pathway. Multiple effects on oxidative processes cannot be excluded.  相似文献   

2.
The induction of shoot buds from the filamentous protonema of moss is a classic bioassay for cytokinin. While a large literature documents this response in many species of moss and for a wide range of natural and synthetic cytokinins, to date only substituted adenine cytokinins have been examined in detail. This paper shows that at least some of the novel phenylurea cytokinins will induce bud formation in mosses. Funaria responds to thidiazuron much as it responds to benzyladenine. Exposure to either substance results in log-linear dose-dependent increases in bud number that reach similar maximal numbers of buds at the optimal concentration of compound. The related compound chloro-pyridyl-phenylurea (CPPU) is slightly less active, but induces buds over a wider range of concentration. Carbanilide (diphenylurea or DPU), an active cytokinin in other systems, induces very few buds in Funaria, but does so over a wide range of concentration. Bioassay of mixtures of benzyladenine and DPU finds no evidence of competition for cytokinin receptors. That result could support suggestions that the phenylurea cytokinins act indirectly, by altering endogenous cytokinin metabolism, but we favor another interpretation. Unlike other cytokinin-responsive systems, the induction of buds from moss protonema involves two cytokinin-mediated events. The number of buds is controlled by the second cytokinin-mediated event. If DPU has little or no affinity for the receptor triggering this second event, DPU treatments will produce few to no buds, and kinetic analysis using bud number would find no evidence for competition with benzyladenine. Our results would support the hypothesis that bud induction in Funaria involves two chemically distinct cytokinin receptors.  相似文献   

3.
The thidiazolylurea derivative thidiazuron has been reported to be considerably more effective than benzyladenine in promotion of in vitro shoot formation in a number of dicotyledonous species. In the present study, axillary shoots of Miscanthus sinensis (Thunb.) Anderss. Giganteus that had been subcultured four times on modified Murashige & Skoog medium with 20M benzyladenine were transferred to media with benzyladenine, kinetin, isopentenyladenine or thidiazuron at concentrations of 0.01, 0.1, 1, 10, 30 or 100M and grown over four subcultures. Shoot and root formation stabilized after the first subculture and results from the three subsequent subcultures are presented. The common effects of cytokinins, i.e., promotion of axillary bud growth, inhibition of root formation, reduced stem growth and delay of senescence, were observed for all four cytokinins. In a descending order regarding shoot formation, the four cytokinins at the optimum concentration could be ranked as follows: benzyladenine, thidiazuron, kinetin and isopentenyladenine. Benzyladenine and thidiazuron had optimum effects at the same concentration with regard to axillary shoot formation but thidiazuron induced a significantly lower number of shoots than benzyladenine. The number of roots, shoot size and percentage of chlorotic shoots were also the same for benzyladenine and thidiazuron. When transferring shoots from benzyladenine or thidiazuron medium to rooting medium, shoots previously grown on thidiazuron became taller and formed fewer roots than shoots previously grown on benzyladenine.Abbreviations BA benzyladenine - 2iP isopentenyladenine - KIN 6-(furfurylamino)-purine (kinetin) - MS Murashige & Skoog medium - NAA naphthaleneacetic acid - THI N-phenyl-N(1,2,3-thidiazol-5-yl)-urea (thidiazuron)  相似文献   

4.
The higher plant tumors are convenient models for studying the genetic control mechanism of plant cell division. There are two types of tumors: induced by the pathogenic factor and genetically determined. The development of both tumor types was related to the changes in cytokinin metabolism and/or signal transduction. In this work, the effect of synthetic cytokinins on the in vitro morphogenesis of cotyledon explants and isolated apices of radish seedlings was studied in several inbred radish lines (Raphanus sativus var. radicula Pers.) that differed in their in vivo tumorigenic properties. It was noted that root formation was stronger affected by kinetin while the treatment with thidiazuron tended to induce active callus formation in cotyledon explants of all inbred lines, except IIa. Growing with benzyladenine produced an intermediate effect as regards all morphogenetic responses. Cytokinin treatment of tumorigenic lines enhanced necrotic development in cotyledon explants. Culturing isolated apices of regenerated plants produced tumors anatomically and morphologically similar to those developing in vivo. Some of the lines nontumorigenic in vivo with enhanced formation of calli on cotyledon explants also developed tumors on apical explants in vitro when treated with cytokinins. These data suggest that different mechanisms for tumor formation operate in various radish lines. The radish lines are classified into three types: (1) necrotic lines with tumor formation putatively related to endogenous cytokinin level, (2) callus-forming lines with cell division enhanced in response to cytokinins, and (3) necrosis-and callus-forming lines with both mechanisms of tumor formation involved.  相似文献   

5.
Organogenesis in thin cell layers of Nicotiana tabacum L. was studied in relation to the effects of natural and synthetic auxins in combination with various cytokinins. All cytokinins tested, benzyladenine (BA), kinetin, zeatin (Z), zeatin riboside (ZR), N62-isopentenyl) adenine (IPA), dihydrozeatin [(diH)Z] and dihydrozeatin riboside [(diH)ZR], seem to be active in flower bud formation. In addition to the initiation of flower buds, vegetative buds or roots were also formed on the explants in the presence of BA, Z or IPA as exogenous cytokinins. Only dihydrozeatin and its riboside stimulated the initation of flower buds alone (as is known for kinetin), especially if supplemented with indole-3-acetic acid (IAA) as exogenous auxin. A high number of explants with flower buds was also found with high cytokinin/2,4-D ratios. In these conditions the presence of (diH)Z yielded the higest number of flower buds per explant.  相似文献   

6.
We examined the effects of various adenine analogues on the growth and differentiation of human myeloid leukemia HL-60 cells. Some of these analogues inhibit growth and induce nitroblue tetrazolium reducing activity in HL-60 cells. Cytokinins such as kinetin, isopentenyladenine, and benzyladenine were very effective in inducing nitroblue tetrazolium reduction and morphological changes in the cells into mature granulocytes. On the other hand, cytokinin ribosides such as kinetin riboside, isopentenyladenosine, and benzylaminopurine riboside were the most potent for growth inhibition and apoptosis. Cytokinin ribosides greatly reduced the intracellular ATP content and disturbed the mitochondrial membrane potential and the accumulation of reactive oxygen species, whereas cytokinins did not. When the cells were incubated with cytokinin ribosides in the presence of O(2)(-) scavenger, antioxidant or caspase inhibitor, apoptosis was significantly reduced and differentiation was greatly enhanced. These results suggest that both cytokinins and cytokinin ribosides can induce granulocytic differentiation of HL-60 cells, but cytokinin ribosides also induce apoptosis prior to the differentiation process.  相似文献   

7.
An experiment was designed to evaluate the effect of various adenine derived cytokinins (kinetin and 6-benzylaminopurine) and diphenyl urea cytokinin (thidiazuron) on the postharvest performance of cut scapes of Iris germanica. Flower scapes were harvested with the oldest bud at ‘1 day before anthesis stage’, brought to laboratory under water, cut to a uniform length of 35 cm, divided into three sets viz., kinetin (KIN), 6-benzyl aminopurine (BAP) and thidiazuron (TDZ). Each set of scapes was treated with a particular cytokinin alone or in combination with 0.1 M sucrose. TDZ was effective than KIN and BAP in improving the postharvest life of the I. germanica scapes by 5.4 days as compared to the control (untreated scapes held in distilled water). This was because of the minimum percentage of bud abortion by TDZ application. Cytokinin application resulted in increased antioxidant activity, higher protein and phenolic content, besides a decrease in specific protease activity and α-amino acids in the tepal tissues. Application of TDZ resulted in the maximum increase in the superoxide dismutase, catalase and ascorbate peroxidase activity in the tepal tissues. The scapes treated with BAP and KIN maintained higher carbohydrate content in the tissue samples as compared to control and TDZ treated scapes. TDZ and BAP application resulted in increased membrane stability because of the decreased lipoxygenase activity which prevented membrane lipid peroxidation. Among the cytokinins tested, TDZ proved to be the promising cytokinin in improving the postharvest performance of beautiful flowers of I. germanica scapes.  相似文献   

8.
Cytokinins are growth regulators that stimulate cell division and control morphogenesis in plants, however their role in regulating secondary metabolism is not well studied. The influence of various cytokinins (benzyladenine, zeatin, kinetin, meta‐topolin, thidiazuron) and culture systems (solid and temporary immersion RITA® system) on the quality Leucojum aestivum plant regenerated from somatic embryos was investigated. The largest number of regenerated plants (181.6 and 168.8) was obtained from the embryos cultivated on media enriched with meta‐topolin and benzyladenine. Thidiazuron and meta‐topolin led to the highest number of normally developed plants (94.8 and 90.6). The random amplified polymorphic DNA analysis of in vitro and in vivo plants showed four clusters of similarity. The highest biomass (growth index: 2.49) was obtained with the temporary immersion RITA® system. Alkaloid extracts were analyzed by LC‐MS, leading to the quantification of galanthamine and lycorine both in plant materials and in liquid media. The highest contents of galanthamine (0.05% dry weight) were observed in plants cultivated in the presence of thidiazuron in bioreactor system. Galanthamine was accumulated (highest content 0.05% dry weight) in plants cultivated in the presence of thidiazuron in bioreactor system whereas lycorine was synthetized mainly in plants cultivated on solid media.  相似文献   

9.
Cytokinin bioassay material from six sources ( Amaranthus caudatus L.; Avena sativa L.; Cucumis sativus L.; Funaria hygrometrica Hedw.; Pisum sativum L., cv. Alaska and cv. Progress No. 9; Xanthium pensylvanicum Wallr.) was analyzed for cyanide-resistant oxygen consumption (alternative respiration) during the course of a response to benzyladenine (40 μ M ). In five of the six bioassay systems, the alternative pathway was found to be present but disengaged (ϱ=0) in the cytokinin-treated material while untreated controls continued to fully utilize the pathway (ϱ=1). The moss, Funaria hygrometrica , was the exception to this pattern, with the alternative pathway fully engaged in both treated and untreated protonemata throughout the period of cytokinin-induced bud formation. Respiration via the alternative pathway was not inhibited by benzyladenine in this latter tissue, although titrations with benzyladenine in carrot ( Daucus carota L.) cell suspensions mimicked those obtained using salicylhydroxamic acid, an inhibitor of the alternative pathway. The dwarf pea, Progress No. 9, showed no response to cytokinin application in terms of increased ethylene production, and was also found to lack any capacity for the alternative pathway. Taken together, these results point to a role for the alternative pathway in responses of at least some plant tissues to cytokinins.  相似文献   

10.
A mass in vitro propagation system for Bacopa monniera (L.) Wettst. (Scrophulariaceae), a medicinally important plant, has been developed. A range of cytokinins have been investigated for multiple shoot induction with node, internode and leaf explants. Of the four cytokinins (6-benzyladenine, thidiazuron, kinetin and 2-isopentenyladenine) tested thidiazuron (6.8 μM) and 6-benzyladenine (8.9 μM) proved superior to other treatments. Optimum adventitious shoot buds induction occurred at 6.8 μM thidiazuron where an average of 93 shoot buds were produced in leaf explants after 7 weeks of incubation. However, subculture of leaf explants on medium containing 2.2 μM benzyladenine yielded a higher number (129.1) of adventitious shoot buds by the end of third subculture. The percentage shoot multiplication (100%) as well as the number of shoots per explant remained the high during the first 3 subculture cycles, facilitating their simultaneous harvest for rooting. In vitro derived shoots were elongated on growth regulator-free MS medium and exhibited better rooting response on medium containing 4.9 μM IBA. After a hardening phase of 3 weeks, there was an almost 100% transplantation success in the field. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
The role of cytokinins in shoot organogenesis in apple   总被引:1,自引:0,他引:1  
Effective regeneration in vitro is a necessary precondition for the implementation of different biotechnological approaches in plant breeding. Numerous studies have reported on regeneration from apple somatic tissues, and organogenesis has been proved to be influenced by several factors including mother shoots (genotype, size, type, and age of explant), in vitro conditions (dark period, light intensity, and quality), and others (wounding, orientation of leaf explants). However, one of the most important factors before and during the regeneration process is the type and concentration of cytokinin applied. Thidiazuron and benzyladenine are the most frequently used cytokinins in the regeneration systems, but their efficiency depends on genotype and other factors. Other cytokinins (e.g., zeatin and kinetin) have also been tested in several experiments and they were found in general to be less active. The organogenic ability of explants can also be increased by a properly selected cytokinin pre-treatment. Cytokinins applied in the pre-treatments can influence the leaf structure, which in turn can alter the regeneration capacity of the leaf explant. Interactions between factors of pre-treatments (hormones, light, and culture conditions) and factors of the regeneration phase should be considered. This review brings into focus the role of different cytokinins during in vitro shoot development, discussing their effects on the histology of leaves developed in vitro, and how this affects the subsequent regeneration process.  相似文献   

12.
The effect of inhibitors of polyamine biosynthesis on the development of embryogenic cell cultures of celery (Apium graveolus L.) was studied. Several developmental stages of somatic embryos were compared for differences in the content and biosynthesis of free polyamines and for cytokinin content. Cyclohexylamine and particularly methylglyoxal bis(guanylhydrazone), inhibited both cell division and the organization of polar embryos from globular embryos. Difluoromethylornithine slightly promoted embryo development, especially cell division.The free putrescine content of globular embryos was 6-fold that of fully differentiated plantlets, and that of spermidine 2-fold. Only a slight increase in the spermine content was found with embryo development. These differences were confirmed by data from polyamine biosynthesis. Incorporation of 14C-arginine into polyamines was slightly higher than that of 14C-ornithine. Over 96% of this incorporation was detected in the putrescine fraction. Incorporation of 14C into putrescine in globular embryos was 3 to 4-fold that in fully-differentiated plantlets. Incorporation into spermidine and spermine was, however, higher in plantlets than in globular embryos.Cytokinin analysis revealed considerable differences in the biological activity between the developmental stages of embryogenesis. This could be due to endogenous cytokinins and/or BA taken up from the maintenance medium. Cytokinin levels decreased with increased embryo development. Most of the detected cytokinin-like activity co-chromatographed with BA and its metabolites. Some as yet unidentified peaks of activity were recorded in the globular embryos.The results are considered with respect to the possible participation of polyamines and cytokinins in the development of embryogenic cell cultures of celery. It is suggested that the onset of embryogenesis is characterized by a high content of putrescine and cytokinins, while a decrease in putrescine synthesis and cytokinin content, and an increase in spermidine and spermine content, accompany further embryo development and plantlet formation.Abbreviation ADC arginine decarboxylase - ODC ornithine decarboxylase - 2,4-D dichlorophenoxyacetic acid - DFMA difluoromethylarginine - DFMO difluoromethylornithine - MGBG methylglyoxal bis(guanylhydrazone) - CHA cyclohexylamine - BA benzyladenine - BAR benzyladenine riboside  相似文献   

13.
The role of cytokinins in the differentiation of the photosynthetic apparatus in micropropagated plants and their effect on the plant’s ability to transition from a heterotrophic to an autotrophic condition during acclimatization was investigated. Annona glabra L. shoots were cultured on woody plant medium supplemented with sucrose and different cytokinins to evaluate leaf tissue for chloroplast development, chloroplast numbers, photosynthetic pigmentation, total photosynthetic potential, and soluble sugar content. Plants were transferred to the rooting medium in the presence or absence of sucrose and then acclimatized. Kinetin and benzyladenine (BAP) stimulated chloroplast differentiation. Inclusion of zeatin in the medium induced the formation of greater numbers of chloroplasts in the leaves, while plants cultivated in the presence of only kinetin and BAP demonstrated greater chlorophyll a and carotenoid content. The use of kinetin and BAP during in vitro culture promoted accumulation of dry matter during the acclimatization phase, especially in plants rooted under autotrophic conditions (without sucrose). Kinetin and BAP promoted development of more leaf area and greater plant survival rates in plant acclimatization on both autotrophic and heterotrophic media. The inhibitory effects of thidiazuron on the differentiation of chloroplasts, accumulation of chlorophyll a, and photosynthetic potential were examined.  相似文献   

14.
Light and cytokinins are known to be the key players in the regulation of plant senescence. In detached leaves, the retarding effect of light on senescence is well described; however, it is not clear to what extent is this effect connected with changes in endogenous cytokinin levels. We have performed a detailed analysis of changes in endogenous content of 29 cytokinin forms in detached leaves of Arabidopsis thaliana (wild‐type and 3 cytokinin receptor double mutants). Leaves were kept under different light conditions, and changes in cytokinin content were correlated with changes in chlorophyll content, efficiency of photosystem II photochemistry, and lipid peroxidation. In leaves kept in darkness, we have observed decreased content of the most abundant cytokinin free bases and ribosides, but the content of cis‐zeatin increased, which indicates the role of this cytokinin in the maintenance of basal leaf viability. Our findings underscore the importance of light conditions on the content of specific cytokinins, especially N6‐(Δ2‐isopentenyl)adenine. On the basis of our results, we present a scheme summarizing the contribution of the main active forms of cytokinins, cytokinin receptors, and light to senescence regulation. We conclude that light can compensate the disrupted cytokinin signalling in detached leaves.  相似文献   

15.
In order to investigate the possibility that cytokinins control transpiration indirectly through affecting leaf senescence, a direct comparison was made of the effect of different cytokinins on transpiration and senescence of oat leaves (Avena sativa L. cv. Forward). Senescence was assessed by measuring chlorophyll loss. The synthetic cytokinins N6 benzyladenine (BA) and kinetin delayed senescence and increased transpiration of oat leaves to a greater extent than did the naturally occurring compounds zeatin, Nb2 isopentenyladenine (i6 Ade) and 6-ø-hydroxybenzyladenosine (hyd-BA riboside). During the early stages of the transpiration experiment zeatin showed similar or greater activity than BA. This period was longest when freshly excised leaves were used, was reduced when leaves were used after incubation in distilled water in the dark for 20 h and was eliminated by incubation in cytokinin solution in the dark. After this period the activity of zeatin declined relative to BA. The effect of cytokinins in increasing transpiration occurred only in the light; no effect was observed in the dark. BA showed higher activity than zeatin in senescence tests but both cytokinins were less effective as the tests progressed, this decrease in activity being more rapid when older leaves were used. The results are discussed in relation to the mechanisms by which endogenous cytokinins might control sensecence and transpiration in oat leaves and to the value of the oat leaf senscence and transpiration bioassays as tests for cytokinin activity of plant extracts.  相似文献   

16.
The aromatic cytokinins   总被引:10,自引:0,他引:10  
After the discovery of kinetin (Miller et al. 1956, J. Am. Chem. Soc. 78: 1345–1350) there was a flurry of syntheses that led to the finding of 6-benzylaminopurine (BA), an active and easily obtainable cytokinin. Much research into cytokinin physiology was subsequently done with this substance. Further, the isolation and unequivocal identification of natural BA and the high biological activity of its meta -hydroxylated analogues stimulated the search for other natural aromatic cytokinins. Screening was accomplished by ELISA of HPLC fractions using antisera against ortho - and meta -hydroxybenzyladenosine. Subsequent isolation and decisive identification by mass spectrometry led to discovery of a broad spectrum of endogenous plant growth substances structurally similar to a highly active compound, meta -topolin (6-[3-hydroxybenzyl-amino]purine), and to its less active analogue, ortho -topolin (6-[2-hydroxybenzyl-amino]purine). The structures of such aromatic cytokinins suggest considerably different biosynthetic pathways from that of zeatin and related isoprenoid cytokinins. From a physiological viewpoint, aromatic cytokinin metabolism can be classified under four main headings analogous to isoprenoid cytokinins: interconversion, hydroxylation, conjugation, and oxidative degradation. This review attempts to put into context what is known about 9-alkyl-BAs and compares their metabolism in regard to the practical use of cytokinins in agriculture and biotechnology. The recently discovered unusual specificity of additionally C2,N9-disubstituted aromatic cytokinins toward cell cycle kinases, suggests that these cytokinin-derived growth regulators may selectively inhibit certain steps of the cell cycle. The functional overlap of the aromatic cytokinins with those of their isoprenoid counterparts and cytokinin inhibitors, in relation to growth and developmental processes in plants, has yet to be determined.  相似文献   

17.
The content of cytokinins and pigments together with the morphological parameters and fresh weight were estimated in durum wheat (Triticum durum Desf.) plants 2–4 days after introduction into their rhizosphere of an aliquot of Bacillus suspension using the strains that differed in their ability of producing cytokinins. The experiments were performed under laboratory conditions at the optimum light intensity and mineral nutrition. Inoculation with microorganisms incapable to synthesize cytokinins did not affect the total cytokinin content in the wheat plants, whereas the presence of cytokinin-producing microorganisms in the rhizosphere was accompanied by a considerable increase in the total cytokinin content and the accumulation of individual hormones. On the second day after inoculation, a dramatic increase in zeatin riboside and zeatin O-glucoside contents was observed in the roots, and at the next day the accumulation of zeatin riboside and zeatin was registered in the shoots of treated plants. The increase in cytokinin content promoted plant growth (the increased leaf length and width and a faster accumulation of plant fresh and dry weight). Plant treatment with a substance obtained from microorganisms incapable to synthesize hormones resulted in the insignificant growth stimulation. Plant treatment with a substance obtained from cytokinin-producing microorganisms increased leaf chlorophyll content; in this case, the level of chlorophylls was comparable to that observed in the plants treated with a synthetic cytokinin benzyladenine. The role of cytokinins of microbial origin as a factor providing for growth-stimulating effect of bacteria on plants is discussed.  相似文献   

18.
Cytokinins are plant hormones that are involved in regulation of cell proliferation, cell cycle progression, and cell and plastid development. Here, we show that the apicomplexan parasites Toxoplasma gondii and Plasmodium berghei, an opportunistic human pathogen and a rodent malaria agent, respectively, produce cytokinins via a biosynthetic pathway similar to that in plants. Cytokinins regulate the growth and cell cycle progression of T. gondii by mediating expression of the cyclin gene TgCYC4. A natural form of cytokinin, trans-zeatin (t-zeatin), upregulated expression of this cyclin, while a synthetic cytokinin, thidiazuron, downregulated its expression. Immunofluorescence microscopy and quantitative PCR analysis showed that t-zeatin increased the genome-copy number of apicoplast, which are non-photosynthetic plastid, in the parasite, while thidiazuron led to their disappearance. Thidiazuron inhibited growth of T. gondii and Plasmodium falciparum, a human malaria parasite, suggesting that thidiazuron has therapeutic potential as an inhibitor of apicomplexan parasites.  相似文献   

19.
Experiments were designed to determine the optimal MS salt concentration and the best auxin and cytokinin to use for shoot growth of Salvia greggii A. Gray. Full or 1/2 MS salts were superior to 1/4 MS salts based on number of shoots produced. There were no differences in the various auxins tested (IAA, NAA or IBA) as to their abilities to stimulate shoot production or increased fresh weight. BA, and BA + Kin stimulated the greatest shoot number among the cytokinins tested. A final experiment was designed to determine optimal BA and NAA concentrations for shoot growth. A medium containing 11.1M BA and no NAA produced the best growth of Salvia greggii in vitro. Shoots produced in vitro rooted and acclimatized readily in the green-house.Abbreviations MS Murashige and Skoog salts - IAA indoleacetic acid - IBA indolebutyric acid - NAA napthaleneacetic acid - BA benzyladenine - Kin kinetin - 2iP isopentenyl adenine  相似文献   

20.
Germination of witchweed ( Striga asiatica [L.] Kuntze), an important parasitic weed on several poaceous crops, is stimulated by several synthetic and natural compounds. We investigated the role of ethylene biosynthesis and action in cytokinin-induced germination. Conditioned Striga seeds treated with distilled water, 1-aminocyclopro-pane-1-carboxylic acid (ACC) or the cytokinins thidiazuron (TDZ), trans zeatin (TZ), benzyladenine (BA) and kinetin (KIN) produced little ethylene. Treatments with cytokinin-ACC combinations enhanced ethylene production. The relative order of activity of the cytokinins in elicitation of the phytohormone was TDZ > TZ > BA > KIN. Germination in response to distilled water and ACC treatments was negligible. Induction of germination by cytokinins varied from low (0%) to moderate (52%). Seeds treated with cytokinin-ACC combinations displayed high rates of germination. The observed germination was positively correlated (γ= 0. 8 and 0. 9) with ethylene production. Germination was reduced by silver thiosulphate (STS) and CoCl2, inhibitors of ethylene action and ACC oxidase, respectively. Aminoethoxyvi-nylglycine (AVG), an ACC-synthase inhibitor, reduced TDZ-induced Striga germination. However, the inhibitory effect of AVG was overcome by addition of ACC. The results are consistent with a model in which Striga germination and embryo growth are limited by low capacity of the seeds to oxidize ACC. The cytokinins promote ACC conversion into ethylene and consequent Striga germination by enhancing ACC oxidase activity and/or synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号