首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Pollen morphology of 58 species from 17 putative genera of the tribe Atripliceae (Chenopodiaceae) was investigated using light (LM) and scanning electron microscopy (SEM). Morphological variation was analyzed based on a dense sampling of the subtribes Atriplicinae and Eurotiinae, including many of the species in the two largest genera: Atriplex and Obione. The pantoporate pollen grains of Atripliceae are characterized by their spheroidal or subspheroidal shape, flat or moderately vaulted mesoporia with 21–120 pores, tectum with 1–8 spinules and 5–28(?38) puncta per?µm2, and 1–13 ectexinous bodies bearing 1–7 spinules each. Taxonomic relevance of the most important pollen morphological characters is discussed (pollen diameter, pore number, pore diameter, interporal distance, spinule and puncta density and ratio, number of ectexinous bodies, and their spinules). Pollen morphological data support the exclusion of Suckleya from the tribe and the recognition of subtribe Eurotiinae, but suggest that it needs to be reviewed. Pollen does not support generic recognition of Atriplex, Neopreissia and Obione and infrageneric subdivisions as currently recognized, and suggests the need to review them. Smaller or monotypic genera, such as Axyris, Ceratocarpus, Endolepis, Krascheninnikovia, Microgynoecium, Proatriplex and Spinacia have distinctive pollen morphological characters that support their generic status. Grayia needs to be reevaluated; although its two species are distinct from all the other species in the study, there are notable differences between each of them, and this suggests they may not form a natural group. Multivariate techniques were employed to investigate if there are discrete patterns of variation within Atripliceae. Principal Component Analyses (PCA) weakly differentiates four groups based on variation in pore number, puncta density per?µm2, and ratio between spinule and puncta density per?µm2; species of Ceratocarpus, Haloxanthium, Krascheninnikovia, Manochlamys, Microgynoecium, Spinacia, and some species of Atriplex and Obione are isolated. Preliminary results indicate that pollen data are potentially useful in the classification of the tribe, and further studies will be of taxonomic value.  相似文献   

2.
The classification of the Catesbaeeae and Chiococceae tribes, along with that of the entire Rubiaceae, has long been debated. The Catesbaeeae-Chiococceae complex (CCC) includes approximately 28 genera and 190 species primarily concentrated in the Greater Antilles (nearly 70% of the species), Central and South America, and in the western Pacific (three genera). Previous molecular studies, with broad sampling of the Rubiaceae, have shown the CCC to be a monophyletic group. The present study is a more detailed examination of the generic relationships within the CCC using two data sets, the nuclear ribosomal ITS regions and the trnL-F chloroplast intron and spacer. Maximum parsimony analyses lend further support to the previous hypotheses that the CCC is monophyletic and sister to Strumpfia maritima. However, within the complex several genera do not form monophyletic groups. Previous studies of the Rubiaceae suggest that the ancestral fruit type in the CCC is a multiseeded capsule. Indehiscent, fleshy fruits appear to have evolved three to four times within this lineage. Changes in floral morphologies within the complex tend to correspond to cladogenesis among and within genera. Finally, molecular analyses suggest one or possibly two long-distance dispersals from the Americas to the western Pacific.  相似文献   

3.
In this study we used sequence data from the entire mtDNA cytochrome b gene to reconstruct patterns and times of diversification in the roach genus Rutilus. The genus is present with numerous endemic species in the Eastern peri-Mediterranean area and with a few widespread species in Central Europe. Our phylogenetic results do not support the subdivision into two subgenera proposed on morphological grounds. Within R. pigus and R. rutilus we identify highly divergent and allopatric mitochondrial lineages. The deeper splits in the genus phylogeny date back to the middle Miocene; the main diversification took place at the Miocene-Pliocene boundary.  相似文献   

4.
5.
? Premise of the study: The recognition of monophyletic genera for groups that have high levels of homoplastic morphological characters and/or conflicting results obtained by different studies can be difficult. Such is the case in the grammitid ferns, a clade within the Polypodiaceae. In this study, we aim to resolve relationships among four clades of grammitid ferns, which have been previously recovered either as a polytomy or with conflicting topologies, with the goal of circumscribing monophyletic genera. ? Methods: The sampling included 89 specimens representing 61 species, and sequences were obtained for two genes (atpB and rbcL) and four intergenic spacers (atpB-rbcL, rps4-trnS, trnG-trnR, and trnL-trnF), resulting in a matrix of 5091 characters. The combined data set was analyzed using parsimony, likelihood, and Bayesian methods. Ninety-six morphological characters were optimized onto the generated trees, using the parsimony method. ? Key results: Lellingeria is composed of two main clades, the L. myosuroides and the Lellingeria s.s. clades, which together are sister to Melpomene. Sister to all three of these is a clade with two species of the polyphyletic genus Terpsichore. In the L. myosuroides clade, several dispersal events occurred between the neotropics, Africa, and the Pacific Islands, whereas Lellingeria s.s. is restricted to the neotropics, with about 60% of its diversity in the Andes. ? Conclusions: Overall, our results suggest that Lellingeria is monophyletic, with two clades that are easily characterized morphologically and biogeographically. Morphological characters describing the indument are the most important to define the clades within the ingroup. A small clade, previously considered in Terpsichore, should be recognized as a new genus.  相似文献   

6.
A comparative carpological study of 96 species of all clades formerly considered as the tribe Chenopodieae has been conducted for the first time. The results show important differences in the anatomical structure of the pericarp and seed coat between representatives of terminal clades including Chenopodium s.str.+Chenopodiastrum and the recently recognized genera Blitum, Oxybasis and Dysphania. Within Chenopodium the most significant changes in fruit and seed structure are found in members of C. sect. Skottsbergia. The genera Rhagodia and Einadia differ insignificantly from Chenopodium. The evolution of heterospermy in Chenopodium is discussed. Almost all representatives of the tribe Dysphanieae are clearly separated from other Chenopodioideae on the basis of a diverse set of characteristics, including the small dimensions of the fruits (especially in Australian taxa), their subglobose shape (excl. Teloxys and Suckleya), and peculiarities of the pericarp indumentum. The set of fruit and seed characters evolved within the subfamily Chenopodioideae is described. A recent phylogenetic hypothesis is employed to examine the evolution of three (out of a total of 21) characters, namely seed color, testa-cell protoplast characteristics and embryo orientation.  相似文献   

7.
We analyse phylogeny, systematics and biogeography of slider turtles (Trachemys spp.) using sequence data of four mitochondrial genes (3242 bp) and five nuclear loci (3396 bp) of most South American and southern Central American taxa and representatives of northern Central American, West Indian and North American slider species (16 species and subspecies) and allied North American species (genera Chrysemys, Deirochelys, Graptemys, Malaclemys, Pseudemys). By applying maximum likelihood, relaxed molecular clock and ancestral range analyses, we provide evidence for two successive colonizations of South America by slider turtles. In addition, we show that the current species delineation of Central and South American slider turtles is incorrect. Our data suggest that Trachemys grayi is a distinct polytypic species that embraces, besides the nominotypical subspecies, T. g. emolli and T. g. panamensis. Trachemys ornata is also polytypic with the subspecies T. o. ornata, T. o. callirostris, T. o. cataspila, T. o. chichiriviche and T. o. venusta. Moreover, T. adiutrix should be regarded as a subspecies of T. dorbigni. All studied Trachemys species are inferred to have originated in the Late Miocene to Early Pliocene. The ancestor of the two subspecies of T. dorbigni colonized South America most probably prior to the establishment of the land bridge connecting Central and South America, whereas the two South American subspecies of T. ornata represent a younger independent immigration wave from Central America.  相似文献   

8.
Phylogenetic analyses were conducted on cytochrome b sequence data of the most geographically and taxonomically broad sampling of Cavia taxa to date. Primary objectives included providing the first extensive molecular phylogenetic framework for the genus, testing the taxonomic and systematic hypotheses of previous authors and providing insight into the evolutionary and biogeographic history of the genus. Support was found for the morphologically defined species C. aperea, C. tschudii, C. magna and C. fulgida and the taxonomic placement of taxa previously subject to conflicting taxonomic opinions (e.g. C. nana, C. anolaimae and C. guianae) was further resolved. Additionally, we elevate the Ecuadorian C. a. patzelti to species status, restrict the distributional limits and suggest taxonomic affiliations of some C. tschudii subspecies, and provide strong evidence for the geographic origin of guinea pig domestication. Finally, we provide an estimated evolutionary timeline for the genus Cavia, which appears to extend well into the late Miocene.  相似文献   

9.
10.
Dicerandra, an endemic mint of the southeastern United States, comprises nine species, all of which are threatened or endangered and restricted to sandhill vegetation and a mosaic of scrub habitats. Molecular phylogenetic analyses of Dicerandra based on data from the nuclear and plastid genomes for all 13 taxa of the genus, identified two strongly supported clades, corresponding to the four annual and to the five perennial species of Dicerandra. However, the nuclear and plastid trees were incongruent in their placement of two perennial taxa, D. cornutissima and D. immaculata var. savannarum, perhaps due to ancient hybridization or to lineage sorting. Based on these analyses, the widespread D. linearifolia is not monophyletic, with populations of D. linearifolia var. linearifolia falling into either western or eastern clades. The western clade, comprising populations of D. linearifolia var. linearifolia and var. robustior, occurs in an area drained by rivers flowing toward the Gulf of Mexico, whereas the eastern clade, comprising populations of D. linearifolia var. linearifolia, D. densiflora, D. odoratissima, and D. radfordiana (i.e., all the annual species), occupies a region drained by rivers flowing to the Atlantic Ocean. Although this pattern of genetic differentiation between populations from these two river drainages has been documented in several animal species, it has not previously been reported for plants. A revised subgeneric classification is presented to reflect the annual and perennial clades.  相似文献   

11.
Littorella (Plantaginaceae) is a disjunct, amphibious genus represented by three closely related species. Littorella uniflora occurs in Europe including Iceland and the Azores, L. americana is found in temperate North America, and L. australis grows in temperate South America. Littorella has been recognized in numerous floristic treatments, but its status as a genus has recently been questioned. Rahn (Botanical Journal of the Linnean Society 120: 145-198, 1996) proposed a new phylogeny for Plantaginaceae based on morphological, embryological, and chemical data in which he reduced Littorella to a subgenus of Plantago. This article compares the phylogeny proposed by Rahn to one based on DNA sequence data from the internal transcribed spacer (ITS) region. In our analysis, Littorella forms a strongly supported monophyletic clade sister to Plantago and its recognition at the generic rank appears warranted. Littorella australis is sister to L. americana, and this clade is sister to the European L. uniflora. This more distant relationship between L. uniflora and L. americana provides support for maintaining both taxa at the specific rank and suggests a European origin for Littorella. Our studies also indicate that the monotypic genus Bougueria is deeply nested within Plantago and that its inclusion within Plantago as proposed by Rahn appears justified.  相似文献   

12.
Sequence data from nuclear (ITS) and chloroplast (trnL-F) regions for 89 accessions representing 56 out of 64 species from all five genera of the tribe Chorisporeae (plus Dontostemon tibeticus) have been studied to test the monophyly of the tribe and its component genera, clarify its boundaries, and elucidate its phylogenetic position in the family. Both data sets showed strong support for the monophyly of the Chorisporeae as currently delimited, though the position of its tentative member D. tibeticus was not resolved by ITS. Parrya and Pseudoclausia are poly- and paraphyletic with regard to each other, and Chorispora is either polyphyletic or at least paraphyletic (comprising Diptychocarpus) within a weakly supported monophyletic clade. The incongruence in branching pattern among the markers was most likely caused by hybridization and possibly influenced by incomplete lineage sorting. The present results suggest uniting Pseudoclausia, Clausia podlechii, and Achoriphragma with Parrya and transferring P. beketovii and P. saposhnikovii to Leiospora (Euclidieae). We also obtained support for splitting Chorispora into two geographically defined groups, one of which is closer to Diptychocarpus. Both data sets revealed a close relationship of the Chorisporeae to Dontostemoneae, while ITS also indicated affinity to Hesperideae. Therefore, the position of Chorisporeae needs further verification.  相似文献   

13.
Abstract

Molecular sequence data have become prominent tools for phylogenetic relationship inference, particularly useful in the analysis of highly diverse taxonomic orders. Ribosomal RNA sequences provide markers that can be used in the study of phylogeny, because their function and structure have been conserved to a large extent throughout the evolutionary history of organisms. These sequences are inferred from cloned or enzymatically amplified gene sequences, or determined by direct RNA sequencing. The first step of the phylogenetic interpretation of nucleic acid sequence variations implies proper alignment of corresponding sequences from various organisms. Best alignment based on similarity criteria is greatly reinforced, in the case of ribosomal RNAs, by secondary structure homologies. Distance matrix methods to infer evolutionary trees are based on the assumption that the phylogenetic distance between each pair of organisms is proportional to the number of nucleotide substitution events. Computed tree inference methods usually take into consideration the possibility of unequal mutation rates among lineages. Divergence times can be estimated on the tree, provided that at least one lineage has been dated by fossil records. We have utilized this approach based on ribosomal RNA sequence comparison to investigate the phylogenetic relationship between dinoflagellated and other eukaryote protists, and to refine controverse phylogenies of the class Dinophycae.  相似文献   

14.

Background and Aims

Pteris (Pteridaceae), comprising over 250 species, had been thought to be a monophyletic genus until the three monotypic genera Neurocallis, Ochropteris and Platyzoma were included. However, the relationships between the type species of the genus Pteris, P. longifolia, and other species are still unknown. Furthermore, several infrageneric morphological classifications have been proposed, but are debated. To date, no worldwide phylogenetic hypothesis has been proposed for the genus, and no comprehensive biogeographical history of Pteris, crucial to understanding its cosmopolitan distribution, has been presented.

Methods

A molecular phylogeny of Pteris is presented for 135 species, based on cpDNA rbcL and matK and using maximum parsimony, maximum likelihood and Bayesian inference approaches. The inferred phylogeny was used to assess the biogeographical history of Pteris and to reconstruct the evolution of one ecological and four morphological characters commonly used for infrageneric classifications.

Key Results

The monophyly of Pteris remains uncertain, especially regarding the relationship of Pteris with Actiniopteris + Onychium and Platyzoma. Pteris comprises 11 clades supported by combinations of ecological and morphological character states, but none of the characters used in previous classifications were found to be exclusive synapomorphies. The results indicate that Pteris diversified around 47 million years ago, and when species colonized new geographical areas they generated new lineages, which are associated with morphological character transitions.

Conclusions

This first phylogeny of Pteris on a global scale and including more than half of the diversity of the genus should contribute to a new, more reliable infrageneric classification of Pteris, based not only on a few morphological characters but also on ecological traits and geographical distribution. The inferred biogeographical history highlights long-distance dispersal as a major process shaping the worldwide distribution of the species. Colonization of different niches was followed by subsequent morphological diversification. Dispersal events followed by allopatric and parapatric speciation contribute to the species diversity of Pteris.  相似文献   

15.
Oriental voles of the genus Eothenomys are predominantly distributed along the Southeastern shoulder of the Qinghai-Tibetan Plateau. Based on phylogenetic analyses of the mitochondrial cytochrome b gene (1143 bp) obtained from 23 specimens (eight species) of Oriental voles collected from this area, together with nucleotide sequences from six specimens (two species) of Japanese red-backed voles (Eothenomys andersoni and Eothenomys smithii) and five species of the closely related genus Clethrionomys, we revised the systematic status of Eothenomys. We also tested if vicariance could explain the observed high species diversity in this area by correlating estimated divergence times to species distribution patterns and corresponding paleo-geographic events. Our results suggest that: (1) the eight species of Oriental voles form a monophyletic group with two distinct clades, and that these two clades should be considered as valid subgenera--Eothenomys and Anteliomys; (2) Eothenomys eleusis and Eothenomys miletus are not independent species; (3) Japanese red-backed voles are more closely related to the genus Clethrionomys than to continental Asian Eothenomys taxa; and (4) the genus Clethrionomys, as presently defined, is paraphyletic. In addition, the process of speciation of Oriental voles appears to be related to the Trans-Himalayan formation via three recent uplift events of the Qinghai-Tibetan Plateau within the last 3.6 million years, as well as to the effects of the mid-Quaternary ice age.  相似文献   

16.
Most species of the genus Salsola (Chenopodiaceae) that have been examined exhibit C4 photosynthesis in leaves. Four Salsola species from Central Asia were investigated in this study to determine the structural and functional relationships in photosynthesis of cotyledons compared to leaves, using anatomical (Kranz versus non-Kranz anatomy, chloroplast ultrastructure) and biochemical (activities of photosynthetic enzymes of the C3 and C4 pathways, 14C labeling of primary photosynthesis products and 13C/12C carbon isotope fractionation) criteria. The species included S. paulsenii from section Salsola, S. richteri from section Coccosalsola, S. laricina from section Caroxylon, and S. gemmascens from section Malpigipila. The results show that all four species have a C4 type of photosynthesis in leaves with a Salsoloid type Kranz anatomy, whereas both C3 and C4 types of photosynthesis were found in cotyledons. S. paulsenii and S. richteri have NADP- (NADP-ME) C4 type biochemistry with Salsoloid Kranz anatomy in both leaves and cotyledons. In S. laricina, both cotyledons and leaves have NAD-malic enzyme (NAD-ME) C4 type photosynthesis; however, while the leaves have Salsoloid type Kranz anatomy, cotyledons have Atriplicoid type Kranz anatomy. In S. gemmascens, cotyledons exhibit C3 type photosynthesis, while leaves perform NAD-ME type photosynthesis. Since the four species studied belong to different Salsola sections, this suggests that differences in photosynthetic types of leaves and cotyledons may be used as a basis or studies of the origin and evolution of C4 photosynthesis in the family Chenopodiaceae.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

17.
Erhard's wall lizard, Podarcis erhardii (Sauria: Lacertidae), is highly diversified in Greece and especially in the southern Aegean region. Out of the 28 recognized subspecies, 27 are found in Greece from the North Sporades island-complex in the North Aegean (grossly south of the 39th parallel) to the island of Crete in the South. The species exhibits great morphological and ecological plasticity and inhabits many different habitats from rocky islets and sandy shores to mountaintops as high as 2000m. By examining intraspecific variability at a segment of the mitochondrial gene cytochrome b we have found that that extant populations of P. erhardii are paraphyletic. Furthermore, we have found that subspecies previously defined on the basis of morphological characteristics do not correspond to different molecular phylogenetic clades, so that their status should be reconsidered. The DNA based biogeographical and phylogenetic history of Podarcis in Southern Greece is congruent with available paleogeographic data of the region, which supports the view that DNA sequences may be a useful tool for the study of palaeogeography.  相似文献   

18.
The endemic Hawaiian Succineidae represent an important component of the exceptionally diverse land snail fauna of the Hawaiian Islands, yet they remain largely unstudied. We employed 663-bp fragments of the cytochrome oxidase I (COI) mitochondrial gene to investigate the evolution and biogeography of 13 Hawaiian succineid land snail species, six succineid species from other Pacific islands and Japan, and various outgroup taxa. Results suggest that: (1) species from the island of Hawaii are paraphyletic with species from Tahiti, and this clade may have had a Japanese (or eastern Asian) origin; (2) species from five of the remaining main Hawaiian islands form a monophyletic group, and the progression rule, which states that species from older islands are basal to those from younger islands, is partially supported; no geographic origin could be inferred for this clade; (3) succineids from Samoa are basal to all other succineids sampled (maximum likelihood) or unresolved with respect to the other succineid clades (maximum parsimony); (4) the genera Succinea and Catinella are polyphyletic. These results, while preliminary, represent the first attempt to reconstruct the phylogenetic pattern for this important component of the endemic Hawaiian fauna.  相似文献   

19.
Toads of the Bufo peltocephalus Group (Anura: Bufonidae) occur throughout the Greater Antilles (Cuba to the Virgin Islands), a geographic region of relatively high endemicity. Previous morphological and immunological studies suggested that the West Indian toads are a monophyletic lineage derived from Neotropical Bufo but were unable to clarify relationships within the group. We examined the evolutionary relationships and biogeography of this group of frogs by collecting approximately 2 kb of mitochondrial DNA sequence data from eight West Indian species and selected non-West Indian species from the New World and the Old World. Our analyses support the monophyly of native West Indian toads and a New World origin for the group. Relationships among the West Indian species are less certain, but a Cuban lineage is defined in most analyses.  相似文献   

20.
Apathya is a lacertid genus occurring mainly in south-east Turkey and its adjacent regions (part of Iran and Iraq). So far two morphological species have been attributed to the genus; A. cappadocica (with five subspecies, A. c. cappadocica, A. c. muhtari, A. c. schmidtlerorum, A. c. urmiana and A. c. wolteri) and A. yassujica. The first species occupies most of the genus’ distribution range, while A. yassujica is endemic of the Zagros Mountains. Here, we explored Apathya’s taxonomy and investigated the evolutionary history of the species by employing phylogenetic and phylogeographic approaches and using both mitochondrial (mtDNA) and nuclear markers. The phylogenetic relationships and the genetic distances retrieved, revealed that Apathya is a highly variable genus, which parallels its high morphological variation. Such levels of morphological and genetic differentiation often exceed those between species of other Lacertini genera that are already treated as full species, suggesting the necessity for a taxonomic revision of Apathya. The phylogeographical scenario emerging from the genetic data suggests that the present distribution of the genus was determined by a combination of dispersal and vicariance events between Anatolia and Southwest Asia dating back to the Miocene and continuing up to the Pleistocene. Key geological events for the understanding of the phylogeography of the genus are the movement of the Arabian plate that led to the configuration of Middle East (orogenesis of the mountain ranges of Turkey and Iran) and the formation of Anatolian Diagonal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号