首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ecological models suggest that high diversity can be generated by purely niche-based, purely neutral or by a mixture of niche-based and neutral ecological processes. Here, we compare the degree to which four contrasting hypotheses for coexistence, ranging from niche-based to neutral, explain species richness along a body mass niche axis. We derive predictions from these hypotheses and confront them with species body-mass patterns in a highly sampled marine phytoplankton community. We find that these patterns are consistent only with a mechanism that combines niche and neutral processes, such as the emergent neutrality mechanism. In this work, we provide the first empirical evidence that a niche-neutral model can explain niche space occupancy pattern in a natural species-rich community. We suggest this class of model may be a useful hypothesis for the generation and maintenance of species diversity in other size-structured communities.  相似文献   

2.
A central challenge in community ecology is to predict patterns of biodiversity with mechanistic models. The neutral model of biodiversity is a simple model that appears to provide parsimonious and accurate predictions of biodiversity patterns in some ecosystems, even though it ignores processes such as species interactions and niche structure. In a recent paper, we used analytical techniques to reveal why the mean predictions of the neutral model are robust to niche structure in high diversity but not low-diversity ecosystems. In the present paper, we explore this phenomenon further by generating stochastic simulated data from a spatially implicit hybrid niche-neutral model across different speciation rates. We compare the resulting patterns of species richness and abundance with the patterns expected from a pure neutral and a pure niche model. As the speciation rate in the hybrid model increases, we observe a surprisingly rapid transition from an ecosystem in which diversity is almost entirely governed by niche structure to one in which diversity is statistically indistinguishable from that of the neutral model. Because the transition is rapid, one prediction of our abstract model is that high-diversity ecosystems such as tropical forests can be approximated by one simple model—the neutral model—whereas low-diversity ecosystems such as temperate forests can be approximated by another simple model—the niche model. Ecosystems that require the hybrid model are predicted to be rare, occurring only over a narrow range of speciation rates.  相似文献   

3.
Reconciling niche and neutrality: the continuum hypothesis   总被引:8,自引:0,他引:8  
In this study, we ask if instead of being fundamentally opposed, niche and neutral theories could simply be located at the extremes of a continuum. First, we present a model of recruitment probabilities that combines both niche and neutral processes. From this model, we predict and test whether the relative importance of niche vs. neutral processes in controlling community dynamics will vary depending on community species richness, niche overlap and dispersal capabilities of species (both local and long distance). Results demonstrate that niche and neutrality form ends of a continuum from competitive to stochastic exclusion. In the absence of immigration, competitive exclusion tends to create a regular spacing of niches. However, immigration prevents the establishment of a limiting similarity. The equilibrium community consists of a set of complementary and redundant species, with their abundance determined, respectively, by the distribution of environmental conditions and the amount of immigration.  相似文献   

4.
Neutral and niche processes are generally considered to interact in natural communities along a continuum, exhibiting community patterns bounded by pure neutral and pure niche processes. The continuum concept uses niche separation, an attribute of the community, to test the hypothesis that communities are bounded by pure niche or pure neutral conditions. It does not accommodate interactions via feedback between processes and the environment. By contrast, we introduce the Community Assembly Phase Space (CAPS), a multi-dimensional space that uses community processes (such as dispersal and niche selection) to define the limiting neutral and niche conditions and to test the continuum hypothesis. We compare the outputs of modelled communities in a heterogeneous landscape, assembled by pure neutral, pure niche and composite processes. Differences in patterns under different combinations of processes in CAPS reveal hidden complexity in neutral–niche community dynamics. The neutral–niche continuum only holds for strong dispersal limitation and niche separation. For weaker dispersal limitation and niche separation, neutral and niche processes amplify each other via feedback with the environment. This generates patterns that lie well beyond those predicted by a continuum. Inferences drawn from patterns about community assembly processes can therefore be misguided when based on the continuum perspective. CAPS also demonstrates the complementary information value of different patterns for inferring community processes and captures the complexity of community assembly. It provides a general tool for studying the processes structuring communities and can be applied to address a range of questions in community and metacommunity ecology.  相似文献   

5.
丛枝菌根真菌生物地理学研究进展   总被引:4,自引:1,他引:4  
陈保冬  李雪静  徐天乐  谢伟 《生态学报》2018,38(4):1167-1175
丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)普遍存在于陆地生态系统中,能与绝大多数高等植物形成菌根共生体系。AMF能够促进植物对矿质养分的吸收,增强植物的抗逆能力,在维持生态系统稳定性和生产力中发挥着重要作用。AMF生物地理学主要研究AMF的生物地理分布格局和群落构建机制,对于理解AMF在不同生态系统中的重要性至关重要。总结了AMF生物地理学最新研究进展及研究方法,提出了AMF生物地理学研究理论框架。认为AMF在自然界中并非简单随机分布,宿主植物、地理因子、气候因子和土壤因子共同决定AMF的群落结构,不同尺度下的AMF群落构建符合生态位-中性连续统假说,但在不同尺度下这些驱动因子的相对重要性不同。在全球尺度和区域尺度下,AMF的地理分布格局主要受地理距离和气候因子的影响,中性理论的作用大于生态位理论。随着空间尺度的缩减,宿主植物和环境因子对AMF群落的影响胜过地理距离和扩散限制的作用,生态位理论取代中性理论在AMF群落构建中的主导地位。此外,很多研究发现,同一生境中AMF的群落构建机制并非一成不变,会随环境的变化而发生改变。在未来的研究中,应在野外调查和公共数据库的基础上加强整合分析和数据挖掘工作,从而进一步丰富和完善AMF生物地理学理论。  相似文献   

6.
Yayoi Takeuchi  Hideki Innan 《Oikos》2015,124(9):1203-1214
Understanding the processes that underlie species diversity and abundance in a community is a fundamental issue in community ecology. While the species abundance distributions (SADs) of various natural communities may be well explained by Hubbell's neutral model, it has been repeatedly pointed out that Hubbell's SAD‐fitting approach lacks the ability to detect the effects of non‐neutral factors such as niche differentiation; however, our understanding of its quantitative effect is limited. Herein, we conducted extensive simulations to quantitatively evaluate the performance of the SAD‐fitting method and other recently developed tests. For simulations, we developed a niche model that incorporates the random stochastic demography of individuals and the nonrandom replacements of those individuals, i.e. niche differentiation. It therefore allows us to explore situations with various degrees of niche differentiation. We found that niche differentiation has strong effects on SADs and the number of species in the community under this model. We then examined the performance of these neutrality tests, including Hubbell's SAD‐fitting method, using extensive simulations. It was demonstrated that all these tests have relatively poor performance except for the cases with very strong niche structure, which is in accordance with previous studies. This is likely because two important parameters in Hubbell's model are usually unknown and are commonly estimated from the data to be tested. To demonstrate this point, we showed that the precise estimation of the two parameters substantially improved the performance of these neutrality tests, indicating that poor performance can be owed to overfitting Hubbell's neutral model with unrealistic parameters. Our results therefore emphasize the importance of accurate parameter estimation, which should be obtained from data independent of the local community to be tested.  相似文献   

7.
This study utilized individual senesced sugar maple and beech leaves as natural sampling units within which to quantify saprotrophic fungal diversity. Quantifying communities in individual leaves allowed us to determine if fungi display a classic taxa–area relationship (species richness increasing with area). We found a significant taxa–area relationship for sugar maple leaves, but not beech leaves, consistent with Wright's species‐energy theory. This suggests that energy availability as affected plant biochemistry is a key factor regulating the scaling relationships of fungal diversity. We also compared taxa rank abundance distributions to models associated with niche or neutral theories of community assembly, and tested the influence of leaf type as an environmental niche factor controlling fungal community composition. Among rank abundance distribution models, the zero‐sum model derived from neutral theory showed the best fit to our data. Leaf type explained only 5% of the variability in community composition. Habitat (vernal pool, upland or riparian forest floor) and site of collection explained > 40%, but could be attributed to either niche or neutral processes. Hence, although niche dynamics may regulate fungal communities at the habitat scale, our evidence points towards neutral assembly of saprotrophic fungi on individual leaves, with energy availability constraining the taxa–area relationship.  相似文献   

8.
Independent species fluctuations are commonly used as a null hypothesis to test the role of competition and niche differences between species in community stability. This hypothesis, however, is unrealistic because it ignores the forces that contribute to synchronization of population dynamics. Here we present a mechanistic neutral model that describes the dynamics of a community of equivalent species under the joint influence of density dependence, environmental forcing, and demographic stochasticity. We also introduce a new standardized measure of species synchrony in multispecies communities. We show that the per capita population growth rates of equivalent species are strongly synchronized, especially when endogenous population dynamics are cyclic or chaotic, while their long-term fluctuations in population sizes are desynchronized by ecological drift. We then generalize our model to nonneutral dynamics by incorporating temporal and nontemporal forms of niche differentiation. Niche differentiation consistently decreases the synchrony of species per capita population growth rates, while its effects on the synchrony of population sizes are more complex. Comparing the observed synchrony of species per capita population growth rates with that predicted by the neutral model potentially provides a simple test of deterministic asynchrony in a community.  相似文献   

9.
Aims Species abundance distributions (SADs) are often used to verify mechanistic theories underlying community assembly. However, it is now accepted that SADs alone are not sufficient to reveal biological mechanisms. Recent attention focuses on the relative importance of stochastic dispersal processes versus deterministic processes such as interspecific competition and environmental filtering. Here, we combine a study of the commonness and rarity of species (i.e. the SAD) with mechanistic processes underlying community composition. By comparing the occurrence frequencies of each and every species with its abundance, we quantify the relative contributions of common and rare species to the maintenance of community structure. Essentially, we relate the continuum between commonness and rarity with that of niches and neutrality.Methods An individual-based, spatially explicit model was used to simulate local communities in niche spaces with the same parameters. We generated sets of assemblages from which species were eliminated in opposing sequences: from common to rare and from rare to common, and investigated the relationship between the abundance and frequency of species. We tested the predictions of our model with empirical data from a field experiment in the environmentally homogeneous alpine meadows of the Qinghai–Tibetan plateau.Important findings Our simulations support the widespread notion that common species maintain community structure, while rare species maintain species diversity, in both local and regional communities. Our results, both from theoretical simulations and from empirical observations, revealed positive correlations between the abundance of a particular species and its occurrence frequency. SAD curves describe a continuum between commonness and rarity. Removing species from the 'rare' end of this continuum has little effect on the similarity of communities, but removing species from the 'common' end of the continuum causes significant increases in beta diversity, or species turnover, between communities. In local communities distributed in a homogenous habitat, species located at the 'common' end of the continuum should be selected by environmental filtering, with niche space partitioning governed by interspecific competition. Conversely, species located at the 'rare' end of the continuum are most likely subject to stochastic dispersal processes. Species situated at intermediate locations on this continuum are therefore determined by niche and neutral processes acting together. Our results suggest that, in homogeneous habitats, SAD curves describing the common-rare continuum may also be used to describe the continuum between niches and neutrality.  相似文献   

10.
Repeatability of community composition has been a critical aspect for community structure, which is closely associated with community stability, predictability, conservation biology and ecological restoration. It has been shown that both immigration and local dispersal limitation can affect the community composition in both neutral and niche model. Hence, we use a spatially explicit individual-based model to investigate the potential influence of immigration rate and strength of local dispersal limitation on repeatability in both neutral and niche models. Similarity measures are used to quantify repeatability. We examine the repeatability of community composition among replicate communities (which means the same community repeats many times), and between niche and neutral replicate communities. We find the correlation between repeatability and immigration rate is positive in the neutral model and an inverted unimodal in the niche model. The correlation between repeatability and local dispersal distance is positive in the niche model and negative in the neutral model. High repeatability between niche communities and neutral communities is observed with high immigration rates or when high local dispersal distance appears in the niche model or low local dispersal distance in the neutral model. Our results show that repeatability of community composition is not only dependent on the types of community models (niche vs. neutrality) but also strongly determined by immigration rates and local dispersal limitation.  相似文献   

11.
Caruso T  Powell JR  Rillig MC 《PloS one》2012,7(4):e35942
Community structure depends on both deterministic and stochastic processes. However, patterns of community dissimilarity (e.g. difference in species composition) are difficult to interpret in terms of the relative roles of these processes. Local communities can be more dissimilar (divergence) than, less dissimilar (convergence) than, or as dissimilar as a hypothetical control based on either null or neutral models. However, several mechanisms may result in the same pattern, or act concurrently to generate a pattern, and much research has recently been focusing on unravelling these mechanisms and their relative contributions. Using a simulation approach, we addressed the effect of a complex but realistic spatial structure in the distribution of the niche axis and we analysed patterns of species co-occurrence and beta diversity as measured by dissimilarity indices (e.g. Jaccard index) using either expectations under a null model or neutral dynamics (i.e., based on switching off the niche effect). The strength of niche processes, dispersal, and environmental noise strongly interacted so that niche-driven dynamics may result in local communities that either diverge or converge depending on the combination of these factors. Thus, a fundamental result is that, in real systems, interacting processes of community assembly can be disentangled only by measuring traits such as niche breadth and dispersal. The ability to detect the signal of the niche was also dependent on the spatial resolution of the sampling strategy, which must account for the multiple scale spatial patterns in the niche axis. Notably, some of the patterns we observed correspond to patterns of community dissimilarities previously observed in the field and suggest mechanistic explanations for them or the data required to solve them. Our framework offers a synthesis of the patterns of community dissimilarity produced by the interaction of deterministic and stochastic determinants of community assembly in a spatially explicit and complex context.  相似文献   

12.
Interaction networks are central elements of ecological systems and have very complex structures. Historically, much effort has focused on niche-mediated processes to explain these structures, while an emerging consensus posits that both niche and neutral mechanisms simultaneously shape many features of ecological communities. However, the study of interaction networks still lacks a comprehensive neutral theory. Here we present a neutral model of predator-prey interactions and analyze the structural characteristics of the simulated networks. We find that connectance values (complexity) and complexity-diversity relationships of neutral networks are close to those observed in empirical bipartite networks. High nestedness and low modularity values observed in neutral networks fall in the range of those from empirical antagonist bipartite networks. Our results suggest that, as an alternative to niche-mediated processes that induce incompatibility between species ("niche forbidden links"), neutral processes create "neutral forbidden links" due to uneven species abundance distributions and the low probability of interaction between rare species. Neutral trophic networks must be seen as the missing endpoint of a continuum from niche to purely stochastic approaches of community organization.  相似文献   

13.
Breaking the core assumption of ecological equivalence in Hubbell’s “neutral theory of biodiversity” requires a theory of species differences. In one framework for characterizing differences between competing species, non-neutral interactions are said to involve both niche differences, which promote stable coexistence, and relative fitness differences, which promote competitive exclusion. We include both in a stochastic community model in order to determine if relative fitness differences compensate for changes in community structure and dynamics induced by niche differences, possibly explaining neutral theory’s apparent success. We show that species abundance distributions are sensitive to both niche and relative fitness differences, but that certain combinations of differences result in abundance distributions that are indistinguishable from the neutral case. In contrast, the distribution of species’ lifetimes, or the time between speciation and extinction, differs under all combinations of niche and relative fitness differences. The results from our model experiment are inconsistent with the hypothesis of “emergent neutrality” and support instead a hypothesis that relative fitness differences counteract effects of niche differences on distributions of abundance. However, an even more developed theory of interspecific variation appears necessary to explain the diversity and structure of non-neutral communities.  相似文献   

14.
Species abundances are undoubtedly the most widely available macroecological data, but can we use them to distinguish among several models of community structure? Here we present a Bayesian analysis of species‐abundance data that yields a full joint probability distribution of each model's parameters plus a relatively parameter‐independent criterion, the posterior Bayes factor, to compare these models. We illustrate our approach by comparing three classical distributions: the zero‐sum multinomial (ZSM) distribution, based on Hubbell's neutral model, the multivariate Poisson lognormal distribution (MPLN), based on niche arguments, and the discrete broken stick (DBS) distribution, based on MacArthur's broken stick model. We give explicit formulas for the probability of observing a particular species‐abundance data set in each model, and argue that conditioning on both sample size and species count is needed to allow comparisons between the two distributions. We apply our approach to two neotropical communities (trees, fish). We find that DBS is largely inferior to ZSM and MPLN for both communities. The tree data do not allow discrimination between ZSM and MPLN, but for the fish data ZSM (neutral model) overwhelmingly outperforms MPLN (niche model), suggesting that dispersal plays a previously underestimated role in structuring tropical freshwater fish communities. We advocate this approach for identifying the relative importance of dispersal and niche‐partitioning in determining diversity of different ecological groups of species under different environmental conditions.  相似文献   

15.
The continuum hypothesis has been proposed as a means to reconcile the contradiction between the niche and neutral theories. While past research has shown that species richness affects the location of communities along the niche–neutrality continuum, there may be extrinsic forces at play as well. We used a spatially explicit continuum model to quantify the effects of environmental heterogeneity, comprising abundance distribution and spatial configuration of resources, on the degree of community neutrality. We found that both components of heterogeneity affect the degree of community neutrality and that species'' dispersal characteristics affect the neutrality–heterogeneity relationship. Narrower resource abundance distributions decrease neutrality, while spatial configuration, which is manifested by spatial aggregation of resources, decreases neutrality at higher aggregation levels. In general, the degree of community neutrality was affected by complex interactions among spatial configuration of resources, their abundance distributions and the dispersal characteristics of species in the community. Our results highlight the important yet overlooked role of the environment in dictating the location of communities along the hypothesized niche–neutrality continuum.  相似文献   

16.
Neutral theory in ecology is aimed at describing communities where species coexist due to similarities rather than the classically posited niche differences. It assumes that all individuals, regardless of species identity, are demographically equivalent. However, Hubbell suggested that neutral theory may describe even niche communities because tradeoffs equalize fitness across species which differ in their traits. In fact, tradeoffs can involve stabilization as well as fitness equalization, and stabilization involves different dynamics and can lead to different community patterns than neutral theory. Yet the important question remains if neutral theory provides a robust picture of all fitness-equalized communities, of which communities with demographic equivalence are one special case. Here, I examine Hubbell’s suggestion for a purely fitness-equalizing interspecific birth–death tradeoff, expanding neutral theory to a theory describing this broader class of fitness-equalized communities. In particular, I use a flexible framework allowing examination of the influence of speciation dynamics. I find that the scaling of speciation rates with birth and death rates, which is poorly known, has large impacts on community structure. In most cases, the departure from the predictions of current neutral models is substantial. This work suggests that demographic and speciation complexities present a challenge to the future development and use of neutral theory in ecology as null model. The framework presented here will provide a starting point for meeting that challenge, and may also be useful in the development of stochastic niche models with speciation dynamics.  相似文献   

17.
One of the most important questions in ecology is the relative importance of local conditions (niche processes) and dispersal ability (neutral processes) in driving metacommunity structure. Although many studies have been conducted in recent years, there is still much debate. We evaluated the processes (niche and neutral) responsible for variation in anuran composition in 28 lentic water bodies in southeastern Brazil. Because anurans depend heavily on environmental conditions, we hypothesized that environmental variables (niche processes) are the most important drivers of community composition. Additionally, as anurans have limited dispersal abilities, and the study region presents harsh conditions (high forest fragmentation, low rainfall and long dry season), we expected a lower, but significant, spatial signature in metacommunity structure, due to neutral dynamics. We used a partial redundancy analysis with variation partitioning to evaluate the relative influence of environmental and spatial variables as drivers of metacommunity structure. Additionally, we used a recently developed spatial autocorrelation analysis to test if neutral dynamics can be attributed to the pure spatial component. This analysis is based on predictions that species abundances are independent but similarly spatially structured, with correlograms similar in shape. Therefore, under neutral dynamics there is no expectation of a correlation between the pairwise distance of spatial correlograms and the pairwise correlation of species abundances predicted by the pure spatial component. We found that the environmental component explained 21.5%, the spatial component 10.2%, and the shared component 6.4% of the metacommunity structure. We found no correlation between correlograms and correlation of abundances predicted by the pure spatial component (Mantel test = ?0.109, P = 0.961). In our study, niche‐based processes are the dominant process that explained community composition. However, neutral processes are important because spatial variation can be attributed to pure neutral dynamics rather than to missing spatially structured environmental factors.  相似文献   

18.
The relative influence of niche vs. neutral processes in ecosystem dynamics is an on‐going debate, but the extent to which they structured the earliest animal communities is unknown. Some of the oldest known metazoan‐dominated paleocommunities occur in Ediacaran age (~ 565 million years old) strata in Newfoundland, Canada and Charnwood Forest, UK. These comprise large and diverse populations of sessile organisms that are amenable to spatial point process analyses, enabling inference of the most likely underlying niche or neutral processes governing community structure. We mapped seven Ediacaran paleocommunities using LiDAR, photogrammetry and a laser line probe. We found that neutral processes dominate these paleocommunities, with niche processes exerting limited influence, in contrast with the niche‐dominated dynamics of modern marine ecosystems. The dominance of neutral processes suggests that early metazoan diversification may not have been driven by systematic adaptations to the local environment, but instead may have resulted from stochastic demographic differences.  相似文献   

19.
Tropical forests are mega-diverse ecosystems that display complex and non-equilibrium dynamics. However, theoretical approaches have largely focused on explaining steady-state behaviour and fitting snapshots of data. Here we show that local and niche interspecific competition can realistically and parsimoniously explain the observed non-equilibrium regime of permanent plots of nine tropical forests, in eight different countries. Our spatially-explicit model, besides predicting with accuracy the main biodiversity metrics for these plots, can also reproduce their dynamics. A central finding is that tropical tree species have a universal niche width of approximately 1/6 of the niche axis that echoes the observed widespread convergence in their functional traits enabling them to exploit similar resources and to coexist despite of having large niche overlap. This niche width yields an average ratio of 0.25 between interspecific and intraspecific competition that corresponds to an intermediate value between the extreme claims of the neutral model and the classical niche-based model of community assembly (where interspecific competition is dominant). In addition, our model can explain and yield observed spatial patterns that classical niche-based and neutral theories cannot.  相似文献   

20.
The cichlid family features some of the most spectacular examples of adaptive radiation. Evolutionary studies have highlighted the importance of both trophic adaptation and sexual selection in cichlid speciation. However, it is poorly understood what processes drive the composition and diversity of local cichlid species assemblages on relatively short, ecological timescales. Here, we investigate the relative importance of niche‐based and neutral processes in determining the composition and diversity of cichlid communities inhabiting various environmental conditions in the littoral zone of Lake Tanganyika, Zambia. We collected data on cichlid abundance, morphometrics, and local environments. We analyzed relationships between mean trait values, community composition, and environmental variation, and used a recently developed modeling technique (STEPCAM) to estimate the contributions of niche‐based and neutral processes to community assembly. Contrary to our expectations, our results show that stochastic processes, and not niche‐based processes, were responsible for the majority of cichlid community assembly. We also found that the relative importance of niche‐based and neutral processes was constant across environments. However, we found significant relationships between environmental variation, community trait means, and community composition. These relationships were caused by niche‐based processes, as they disappeared in simulated, purely neutrally assembled communities. Importantly, these results can potentially reconcile seemingly contrasting findings in the literature about the importance of either niche‐based or neutral‐based processes in community assembly, as we show that significant trait relationships can already be found in nearly (but not completely) neutrally assembled communities; that is, even a small deviation from neutrality can have major effects on community patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号