首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
H Wu  S Roy  M Alami  BR Green  DA Campbell 《Plant physiology》2012,160(1):464-476
Diatoms are important contributors to aquatic primary production, and can dominate phytoplankton communities under variable light regimes. We grew two marine diatoms, the small Thalassiosira pseudonana and the large Coscinodiscus radiatus, across a range of temperatures and treated them with a light challenge to understand their exploitation of variable light environments. In the smaller T. pseudonana, photosystem II (PSII) photoinactivation outran the clearance of PSII protein subunits, particularly in cells grown at sub- or supraoptimal temperatures. In turn the absorption cross section serving PSII photochemistry was down-regulated in T. pseudonana through induction of a sustained phase of nonphotochemical quenching that relaxed only slowly over 30 min of subsequent low-light incubation. In contrast, in the larger diatom C. radiatus, PSII subunit turnover was sufficient to counteract a lower intrinsic susceptibility to photoinactivation, and C. radiatus thus did not need to induce sustained nonphotochemical quenching under the high-light treatment. T. pseudonana thus incurs an opportunity cost of sustained photosynthetic down-regulation after the end of an upward light shift, whereas the larger C. radiatus can maintain a balanced PSII repair cycle under comparable conditions.  相似文献   

2.
DNA content and cell volume have both been hypothesized as controls on metabolic rate and other physiological traits. We use cultures of two cryptic species of Ditylum brightwellii (West) Grunow with an approximately two-fold difference in genome size and a small and large culture of each clone obtained by isolating small and large cells to compare the physiological consequences of size changes due to differences in DNA content and reduction in cell size following many generations of asexual reproduction. We quantified the growth rate, the functional absorption cross-section of photosystem II (PSII), susceptibility of PSII to photoinactivation, PSII repair capacity, and PSII reaction center proteins D1 (PsbA) and D2 (PsbD) for each culture at a range of irradiances. The species with the smaller genome has a higher growth rate and, when acclimated to growth-limiting irradiance, has higher PSII repair rate capacity, PSII functional optical absorption cross-section, and PsbA per unit protein, relative to the species with the larger genome. By contrast, cell division rates vary little within clonal cultures of the same species despite significant differences in average cell volume. Given the similarity in cell division rates within species, larger cells within species have a higher demand for biosynthetic reductant. As a consequence, larger cells within species have higher numbers of PSII per unit protein (PsbA), since PSII photochemically generates the reductant to support biosynthesis. These results suggest that DNA content, as opposed to cell volume, has a key role in setting the differences in maximum growth rate across diatom species of different size while PSII content and related photophysiological traits are influenced by both growth rate and cell size.  相似文献   

3.
All oxygenic photoautotrophs suffer photoinactivation of their Photosystem II complexes, at a rate driven by the instantaneous light level. To maintain photosynthesis, PsbA subunits are proteolytically removed from photoinactivated Photosystem II complexes, primarily by a membrane-bound FtsH protease. Diatoms thrive in environments with fluctuating light, such as coastal regions, in part because they enjoy a low susceptibility to photoinactivation of Photosystem II. In a coastal strain of the diatom Thalassiosira pseudonana growing across a range of light levels, active Photosystem II represents only about 42 % of the total Photosystem II protein, with the remainder attributable to photoinactivated Photosystem II awaiting recycling. The rate constant for removal of PsbA protein increases with growth light, in parallel with an increasing content of the FtsH protease relative to the substrate PsbA. An offshore strain of Thalassiosira pseudonana, originating from a more stable light environment, had a lower content of FtsH and slower rate constants for removal of PsbA. We used this data to generate the first estimates for in vivo proteolytic degradation of photoinactivated PsbA per FtsH6 protease, at ~3.9 × 10?2 s?1, which proved consistent across growth lights and across the onshore and offshore strains.  相似文献   

4.
The pool size of the xanthophyll cycle pigment diadinoxanthin (DD) in the diatom Phaeodactylum tricornutum depends on illumination conditions during culture. Intermittent light caused a doubling of the DD pool without significant change in other pigment contents and photosynthetic parameters, including the photosystem II (PSII) antenna size. On exposure to high-light intensity, extensive de-epoxidation of DD to diatoxanthin (DT) rapidly caused a very strong quenching of the maximum chlorophyll fluorescence yield (F(m), PSII reaction centers closed), which was fully reversed in the dark. The non-photochemical quenching of the minimum fluorescence yield (F(o), PSII centers open) decreased the quantum efficiency of PSII proportionally. For both F(m) and F(o), the non-photochemical quenching expressed as F/F' - 1 (with F' the quenched level) was proportional to the DT concentration. However, the quenching of F(o) relative to that of F(m) was much stronger than random quenching in a homogeneous antenna could explain, showing that the rate of photochemical excitation trapping was limited by energy transfer to the reaction center rather than by charge separation. The cells can increase not only the amount of DT they can produce, but also its efficiency in competing with the PSII reaction center for excitation. The combined effect allowed intermittent light grown cells to down-regulate PSII by 90% and virtually eliminated photoinhibition by saturating light. The unusually rapid and effective photoprotection by the xanthophyll cycle in diatoms may help to explain their dominance in turbulent waters.  相似文献   

5.
In leaves of three alpine high mountain plants, Homogyne alpina, Ranunculus glacialis and Soldanella alpina, both photosystem II (PSII) and the enzyme catalase appeared to he highly resistant to photoinactivation under natural field conditions. While the Dl protein of PSII and catalase have a rapid turnover in light and require continuous new protein synthesis in non-adapted plants, little apparent photoinactivation of PSII or catalase was induced in the alpine plants by translation inhibitors or at low temperature, suggesting that turnover of the Dl protein and catalase was slow in these leaves. In vitro PSII was rapidly inactivated in light in isolated thylakoids from H. alpina and R. glacialis. In isolated intact chloroplasts from R. glacialis, photoinactivation of PSII was slower than in thylakoids. Partially purified catalase from R. glacialis and S. alpina was as sensitive to photoinactivation in vitro as catalases from other sources. Catalase from H. alpina had, however, a 10-fold higher stability in light. The levels of xanthophyll cycle carotenoids, of the antioxidants ascorbate and glulathione, and of the activities of catalase, superoxide dismutase and glutathione reductase were very high in S. alpina, intermediate in H. alpina, but very low in R. glacialis. However, isolated chloroplasts from all three alpine species contained much higher concentrations of ascorbate and glutathione than chloroplasts from lowland plants.  相似文献   

6.
Eleven proteins belonging to photosystem II (PSII) bind photosynthetic pigments in the form of thylakoid membrane-associated pigment-protein complexes. Five of them (PsbA, PsbB, PsbC, PsbD and PsbS) are assigned to PSII core complex while the remaining six (Lhcb1, Lhcb2, Lhcb3, Lhcb4, Lhcb5 and Lhcb6) constitute, along with their pigments, functional complexes situated more distantly with regard to P680 - the photochemical center of PSII. The main function of the pigment-binding proteins is to harvest solar energy and deliver it, in the form of excitation energy, ultimately to P680 although individual pigment-proteins may be engaged in other photosynthesis-related processes as well. The aim of this review is to present the current state of knowledge regarding the structure, functions and degradation of this family of proteins.  相似文献   

7.
Phytoplankton, such as diatoms, experience great variations of photon flux density (PFD) and light spectrum along the marine water column. Diatoms have developed some rapidly-regulated photoprotective mechanisms, such as the xanthophyll cycle activation (XC) and the non-photochemical chlorophyll fluorescence quenching (NPQ), to protect themselves from photooxidative damages caused by excess PFD. In this study, we investigate the role of blue fluence rate in combination with red radiation in shaping photoacclimative and protective responses in the coastal diatom Pseudo-nitzschia multistriata. This diatom was acclimated to four spectral light conditions (blue, red, blue-red, blue-red-green), each of them provided with low and high PFD. Our results reveal that the increase in the XC pool size and the amplitude of NPQ is determined by the blue fluence rate experienced by cells, while cells require sensing red radiation to allow the development of these processes. Variations in the light spectrum and in the blue versus red radiation modulate either the photoprotective capacity, such as the activation of the diadinoxanthin-diatoxanthin xanthophyll cycle, the diadinoxanthin de-epoxidation rate and the capacity of non-photochemical quenching, or the pigment composition of this diatom. We propose that spectral composition of light has a key role on the ability of diatoms to finely balance light harvesting and photoprotective capacity.  相似文献   

8.
Epipelic diatoms are important components of microphytobenthic biofilms. Cultures of four diatom species (Amphora coffeaeformis, Cylindrotheca closterium, Navicula perminuta and Nitzschia epithemioides) and assemblages of mixed diatom species collected from an estuary were exposed to elevated levels of ultraviolet-B (UV-B) radiation. Short exposures to UV-B resulted in decreases in photosystem II (PSII) photochemistry, photosynthetic electron transport, photosynthetic carbon assimilation and changes in the pattern of allocation of assimilated carbon into soluble colloidal, extracellular polysaccharides (EPS) and glucan pools. The magnitude of the effects of the UV-B treatments varied between species and was also dependent upon the photosynthetically active photon flux density (PPFD) to which the cells were also exposed, with effects being greater at lower light levels. Both increases in nonphotochemical quenching of excitation energy in the pigment antennae and photodamage to the D1 reaction centres contributed to decreases in PSII photochemistry. All species demonstrated a rapid ability to recover from perturbations of PSII photochemistry, with some species recovering during the UV-B exposure period. Some of the perturbations induced in carbon metabolism were independent of effects on PSII photochemistry and photosynthetic electron transport. Elevated UV-B can significantly inhibit photosynthetic performance, and modify carbon metabolism in epipelic diatoms. However, the ecological effects of UV-B at the community level are difficult to predict as large variations occur between species.  相似文献   

9.
In photosynthetic organisms, impairment of the activities of enzymes in the Calvin cycle enhances the extent of photoinactivation of Photosystem II (PSII). We investigated the molecular mechanism responsible for this phenomenon in the unicellular green alga Chlamydomonas reinhardtii. When the Calvin cycle was interrupted by glycolaldehyde, which is known to inhibit phosphoribulokinase, the extent of photoinactivation of PSII was enhanced. The effect of glycolaldehyde was very similar to that of chloramphenicol, which inhibits protein synthesis de novo in chloroplasts. The interruption of the Calvin cycle by the introduction of a missense mutation into the gene for the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) also enhanced the extent of photoinactivation of PSII. In such mutant 10-6C cells, neither glycolaldehyde nor chloramphenicol has any additional effect on photoinactivation. When wild-type cells were incubated under weak light after photodamage to PSII, the activity of PSII recovered gradually and reached a level close to the initial level. However, recovery was inhibited in wild-type cells by glycolaldehyde and was also inhibited in 10-6C cells. Radioactive labelling and Northern blotting demonstrated that the interruption of the Calvin cycle suppressed the synthesis de novo of chloroplast proteins, such as the D1 and D2 proteins, but did not affect the levels of psbA and psbD mRNAs. Our results suggest that the photoinactivation of PSII that is associated with the interruption of the Calvin cycle is attributable primarily to the inhibition of the protein synthesis-dependent repair of PSII at the level of translation in chloroplasts.  相似文献   

10.
Shunichi Takahashi 《BBA》2005,1708(3):352-361
In photosynthetic organisms, impairment of the activities of enzymes in the Calvin cycle enhances the extent of photoinactivation of Photosystem II (PSII). We investigated the molecular mechanism responsible for this phenomenon in the unicellular green alga Chlamydomonas reinhardtii. When the Calvin cycle was interrupted by glycolaldehyde, which is known to inhibit phosphoribulokinase, the extent of photoinactivation of PSII was enhanced. The effect of glycolaldehyde was very similar to that of chloramphenicol, which inhibits protein synthesis de novo in chloroplasts. The interruption of the Calvin cycle by the introduction of a missense mutation into the gene for the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) also enhanced the extent of photoinactivation of PSII. In such mutant 10-6C cells, neither glycolaldehyde nor chloramphenicol has any additional effect on photoinactivation. When wild-type cells were incubated under weak light after photodamage to PSII, the activity of PSII recovered gradually and reached a level close to the initial level. However, recovery was inhibited in wild-type cells by glycolaldehyde and was also inhibited in 10-6C cells. Radioactive labelling and Northern blotting demonstrated that the interruption of the Calvin cycle suppressed the synthesis de novo of chloroplast proteins, such as the D1 and D2 proteins, but did not affect the levels of psbA and psbD mRNAs. Our results suggest that the photoinactivation of PSII that is associated with the interruption of the Calvin cycle is attributable primarily to the inhibition of the protein synthesis-dependent repair of PSII at the level of translation in chloroplasts.  相似文献   

11.
Photoinhibition is caused by an imbalance between the rates of the damage and repair cycle of photosystem II D1 protein in thylakoid membranes. The PSII repair processes include (i) disassembly of damaged PSII-LHCII supercomplexes and PSII core dimers into monomers, (ii) migration of the PSII monomers to the stroma regions of thylakoid membranes, (iii) dephosphorylation of the CP43, D1 and D2 subunits, (iv) degradation of damaged D1 protein, and (v) co-translational insertion of the newly synthesized D1 polypeptide and reassembly of functional PSII complex. Here, we studied the D1 turnover cycle in maize mesophyll and bundle sheath chloroplasts using a protein synthesis inhibitor, lincomycin. In both types of maize chloroplasts, PSII was found as the PSII-LHCII supercomplex, dimer and monomer. The PSII core and the LHCII proteins were phosphorylated in both types of chloroplasts in a light-dependent manner. The rate constants for photoinhibition measured for lincomycin-treated leaves were comparable to those reported for C3 plants, suggesting that the kinetics of the PSII photodamage is similar in C3 and C4 species. During the photoinhibitory treatment the D1 protein was dephosphorylated in both types of chloroplasts but it was rapidly degraded only in the bundle sheath chloroplasts. In mesophyll chloroplasts, PSII monomers accumulated and little degradation of D1 protein was observed. We postulate that the low content of the Deg1 enzyme observed in mesophyll chloroplasts isolated from moderate light grown maize may retard the D1 repair processes in this type of plastids.  相似文献   

12.
《BBA》2020,1861(4):148014
The spring ephemeral Berteroa incana is a familial relative of Arabidopsis thaliana and thrives in a diverse range of terrestrial ecosystems. Within this study, the novel chlorophyll fluorescence parameter of photochemical quenching in the dark (qPd) was used to measure the redox state of the primary quinone electron acceptor (QA) in order to estimate the openness of photosystem II (PSII) reaction centres (RC). From this, the early onset of photoinactivation can be sensitively quantified alongside the light tolerance of PSII and the photoprotective efficiency of nonphotochemical quenching (NPQ). This study shows that, with regards to A. thaliana, NPQ is enhanced in B. incana in both low-light (LL) and high-light (HL) acclimation states. Moreover, light tolerance is increased by up to 500%, the rate of photoinactivation is heavily diminished, and the ability to recover from light stress is enhanced in B. incana, relative to A. thaliana. This is due to faster synthesis of zeaxanthin and a larger xanthophyll cycle (XC) pool available for deepoxidation. Moreover, preferential energy transfer via CP47 around the RC further enhances efficient photoprotection. As a result, a high functional cross-section of photosystem II is maintained and is not downregulated when B. incana is acclimated to HL. A greater capacity for protective NPQ allows B. incana to maintain an enhanced light-harvesting capability when acclimated to a range of light conditions. This enhancement of flexible short-term protection saves the metabolic cost of long-term acclimatory changes.  相似文献   

13.
Superoxide dismutase (SOD) catalyzes the transformation of superoxide to molecular oxygen and hydrogen peroxide. Of the four known SOD isoforms, distinguished by their metal cofactor (iron, manganese [Mn], copper/zinc, nickel), MnSOD is the dominant form in the diatom Thalassiosira pseudonana. We cloned the MnSOD gene, sodA, using the expression vector pBAD, overexpressed the product in Escherichia coli, and purified the mature protein (TpMnSOD). This recombinant enzyme was used to generate a polyclonal antibody in rabbit that recognizes MnSOD in T. pseudonana. Based on quantitative immunoblots, we calculate that in vivo concentrations of TpMnSOD are approximately 0.9 amol cell(-1) using the recombinant protein as a standard. Immunogold staining indicates that TpMnSOD is localized in the chloroplasts, which is in contrast to most other eukaryotic algae (including chlorophytes and embryophytes) where MnSOD is localized exclusively in mitochondria. Based on the photosynthetic Mn complex in photosystem II, cellular Mn budgets cannot account for 50% to 80% of measured Mn within diatom cells. Our results reveal that chloroplastic MnSOD accounts for 10% to 20% of cellular Mn, depending on incident light intensity and cellular growth rate. Indeed, our analysis indicates that TpMnSOD accounts for 1.4% (+/-0.2%) of the total protein in the cell. The TpMnSOD has a rapid turnover rate with an apparent half-life of 6 to 8 h when grown under continuous light. TpMnSOD concentrations increase relative to chlorophyll, with an increase in incident light intensity to minimize photosynthetic oxidative stress. The employment of a Mn-based SOD, linked to photosynthetic stress in T. pseudonana, may contribute to the continued success of diatoms in the low iron regions of the modern ocean.  相似文献   

14.
The relationship between the diadinoxanthin cycle and changes in fluorescence yield in the diatom Chaetoceros muelleri Lemm. (clone CH10, Amorient Aquafarm, Inc., Hawaii) was investigated. High-light-induced changes in fluorescence yield and xanthophyll de-epoxidation occurred very rapidly (first order rate constant 1.60 min?1). The observed light-induced changes in diatoxanthin and diadinoxanthin concentration were consistent with a two-pool scheme for diadinoxanthin, one of which does not undergo de-epoxidation. Changes in xanthophyll concentration correlated with changes in in vivo absorbance indicating that diadinoxanthin cycle activity in vivo can be monitored spectrophotometrically. However, changes in cell absorbance were small relative to total optical absorption cross section. Increases in the concentration of diatoxanthin were linearly correlated with increases in the rate constant for thermal de-excitation in the antenna of photosystem II (PSII). Antenna quenching produced or mediated by diatoxanthin may, thus, protect the PSII reaction center in diatoms. Changes in the maximum fluorescence yield suggested that changes in the reaction center also contributed to nonphotochemical quenching of fluorescence. Thus, reaction center quenching affected the relationship between antenna quenching and changes in photochemical efficiency producing the effect of a decrease in fluorescence yield without a decrease in photochemical efficiency.  相似文献   

15.
The main cofactors involved in the oxygen evolution activity of Photosystem II (PSII) are located in two proteins, D1 (PsbA) and D2 (PsbD). In Thermosynechococcus elongatus, a thermophilic cyanobacterium, the D1 protein is encoded by either the psbA1 or the psbA3 gene, the expression of which is dependent on environmental conditions. It has been shown that the energetic properties of the PsbA1-PSII and those of the PsbA3-PSII differ significantly (Sugiura, M., Kato, Y., Takahashi, R., Suzuki, H., Watanabe, T., Noguchi, T., Rappaport, F., and Boussac, A. (2010) Biochim. Biophys. Acta 1797, 1491–1499). In this work the structural stability of PSII upon a PsbA1/PsbA3 exchange was investigated. Two deletion mutants lacking another PSII subunit, PsbJ, were constructed in strains expressing either PsbA1 or PsbA3. The PsbJ subunit is a 4-kDa transmembrane polypeptide that is surrounded by D1 (i.e. PsbA1), PsbK, and cytochrome b559 (Cyt b559) in existing three-dimensional models. It is shown that the structural properties of the PsbA3/ΔPsbJ-PSII are not significantly affected. The polypeptide contents, the Cyt b559 properties, and the proportion of PSII dimer were similar to those found for PsbA3-PSII. In contrast, in PsbA1/ΔPsbJ-PSII the stability of the dimer is greatly diminished, the EPR properties of the Cyt b559 likely indicates a decrease in its redox potential, and many other PSII subunits are lacking. These results shows that the 21-amino acid substitutions between PsbA1 and PsbA3, which appear to be mainly conservative, must include side chains that are involved in a network of interactions between PsbA and the other PSII subunits.  相似文献   

16.
The life cycle of Photosystem II (PSII) is embedded in a network of proteins that guides the complex through biogenesis, damage and repair. Some of these proteins, such as Psb27 and Psb28, are involved in cofactor assembly for which they are only transiently bound to the preassembled complex. In this work we isolated and analyzed PSII from a ΔpsbJ mutant of the thermophilic cyanobacterium Thermosynechococcus elongatus. From the four different PSII complexes that could be separated the most prominent one revealed a monomeric Psb27-Psb28 PSII complex with greatly diminished oxygen-evolving activity. The MALDI-ToF mass spectrometry analysis of intact low molecular weight subunits (<10kDa) depicted wild type PSII with the absence of PsbJ. Relative quantification of the PsbA1/PsbA3 ratio by LC-ESI mass spectrometry using (15)N labeled PsbA3-specific peptides indicated the complete replacement of PsbA1 by the stress copy PsbA3 in the mutant, even under standard growth conditions (50μmol photons m(-2) s(-1)). This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.  相似文献   

17.
When organisms that perform oxygenic photosynthesis are exposed to strong visible or UV light, inactivation of photosystem II (PSII) occurs. However, such organisms are able rapidly to repair the photoinactivated PSII. The phenomenon of photoinactivation and repair is known as photoinhibition. Under normal laboratory conditions, the rate of repair is similar to or faster than the rate of photoinactivation, preventing the detailed analysis of photoinactivation and repair as separate processes. We report here that, using strong UV-A light from a laser, we were able to analyze separately the photoinactivation and repair of photosystem II in the cyanobacterium Synechocystis sp. PCC 6803. Very strong UV-A light at 364 nm and a photon flux density of 2600 micromol photons m(-2) s(-1) inactivated the oxygen-evolving machinery and the photochemical reaction center of PSII within 1 or 2 min before the first step in the repair process, namely, the degradation of the D1 protein, occurred. During subsequent incubation of cells in weak visible light, the activity of PSII recovered fully within 30 min and this process depended on protein synthesis. During subsequent incubation of cells in darkness for 60 min, the D1 protein of the photoinactivated PSII was degraded. Further incubation in weak visible light resulted in the rapid restoration of the activity of PSII. These observations suggest that very strong UV-A light is a useful tool for the analysis of the repair of PSII after photoinactivation.  相似文献   

18.
Micromonas strains of small prasinophyte green algae are found throughout the world’s oceans, exploiting widely different niches. We grew arctic and temperate strains of Micromonas and compared their susceptibilities to photoinactivation of Photosystem II, their counteracting Photosystem II repair capacities, their Photosystem II content, and their induction and relaxation of non-photochemical quenching. In the arctic strain Micromonas NCMA 2099, the cellular content of active Photosystem II represents only about 50 % of total Photosystem II protein, as a slow rate constant for clearance of PsbA protein limits instantaneous repair. In contrast, the temperate strain NCMA 1646 shows a faster clearance of PsbA protein which allows it to maintain active Photosystem II content equivalent to total Photosystem II protein. Under growth at 2 °C, the arctic Micromonas maintains a constitutive induction of xanthophyll deepoxidation, shown by second-derivative whole-cell spectra, which supports strong induction of non-photochemical quenching under low to moderate light, even if xanthophyll cycling is blocked. This non-photochemical quenching, however, relaxes during subsequent darkness with kinetics nearly comparable to the temperate Micromonas NCMA 1646, thereby limiting the opportunity cost of sustained downregulation of PSII function after a decrease in light.  相似文献   

19.
The response of microalgae to photooxidative stress resulting from high light exposure is a well-studied phenomenon. However, direct analyses of photosystem II (PSII) D1 protein (the main target of photoinhibition) in diatoms are scarce. In this study, the response of the diatom model species Phaeodactylum tricornutum to short-term exposure to high light was examined and the levels of D1 protein determined immunochemically. Low light (LL) acclimated cells (40 μmol photons m(-2) s(-1)) subjected to high light (HL, 1,250 μmol photons m(-2) s(-1)) showed rapid induction of non-photochemical quenching (NPQ) and ca. 20-fold increase in diatoxanthin (DT) concentration. This resulted from the conversion of diadinoxanthin (DD) to DT through the activation of the DD-cycle. D1 protein levels under LL decreased about 30% after 1 h of the addition of lincomycin (LINC), a chloroplast protein synthesis inhibitor, showing significant D1 degradation and repair under low irradiance. Exposure to HL lead to a 3.2-fold increase in D1 degradation rate, whereas average D1 repair rate was 1.3-x higher under HL than LL, leading to decreased levels of D1 protein under HL. There were significant effects of both HL and LINC on P. tricornutum maximum quantum yield of PSII (F(v)/F(m)), showing a reduction of active PSII reaction centres. Partial recovery of F(v)/F(m) in the dark demonstrates the photosynthetic resilience of this diatom to changes in the light regime. P. tricornutum showed high allocation of total protein to D1 and an active D1-repair cycle to limit photoinhibition.  相似文献   

20.
When organisms that perform oxygenic photosynthesis are exposed to strong visible or UV light, inactivation of photosystem II (PSII) occurs. However, such organisms are able rapidly to repair the photoinactivated PSII. The phenomenon of photoinactivation and repair is known as photoinhibition. Under normal laboratory conditions, the rate of repair is similar to or faster than the rate of photoinactivation, preventing the detailed analysis of photoinactivation and repair as separate processes. We report here that, using strong UV-A light from a laser, we were able to analyze separately the photoinactivation and repair of photosystem II in the cyanobacterium Synechocystis sp. PCC 6803. Very strong UV-A light at 364 nm and a photon flux density of 2600 μmol photons m−2 s−1 inactivated the oxygen-evolving machinery and the photochemical reaction center of PSII within 1 or 2 min before the first step in the repair process, namely, the degradation of the D1 protein, occurred. During subsequent incubation of cells in weak visible light, the activity of PSII recovered fully within 30 min and this process depended on protein synthesis. During subsequent incubation of cells in darkness for 60 min, the D1 protein of the photoinactivated PSII was degraded. Further incubation in weak visible light resulted in the rapid restoration of the activity of PSII. These observations suggest that very strong UV-A light is a useful tool for the analysis of the repair of PSII after photoinactivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号