首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vitaceae (the grape family) consist of 16 genera and ca. 950 species primarily distributed in tropical regions. The family is well‐known for the economic importance of grapes, and is also ecologically significant with many species as dominant climbers in tropical and temperate forests. Recent phylogenetic and phylogenomic analyses of sequence data from all three genomes have supported five major clades within Vitaceae: (i) the clade of Ampelopsis, Nekemias, Rhoicissus, and Clematicissus; (ii) the Cissus clade; (iii) the clade of Cayratia, Causonis, Cyphostemma, Pseudocayratia, Tetrastigma, and an undescribed genus “Afrocayratia”; (iv) the clade of Parthenocissus and Yua; and (v) the grape genus Vitis and its close tropical relatives Ampelocissus, Pterisanthes and Nothocissus, with Nothocissus and Pterisanthes nested within Ampelocissus. Based on the phylogenetic and morphological (mostly inflorescence, floral and seed characters) evidence, the new classification places the 950 species and 16 genera into five tribes: (i) tribe Ampelopsideae J.Wen & Z.L.Nie, trib. nov. (47 species in four genera; Ampelopsis, Nekemias, Rhoicissus and Clematicissus); (ii) tribe Cisseae Rchb. (300 species in one genus; Cissus); (iii) tribe Cayratieae J.Wen & L.M.Lu, trib. nov. (370 species in seven genera; Cayratia, Causonis, “Afrocayratia”, Pseudocayratia, Acareosperma, Cyphostemma and Tetrastigma); (iv) tribe Parthenocisseae J.Wen & Z.D.Chen, trib. nov. (ca. 16 spp. in two genera; Parthenocissus and Yua); and (v) tribe Viteae Dumort. (ca. 190 species in two genera; Ampelocissus and Vitis).  相似文献   

2.
3.
Bignoniaceae are woody, trees, shrubs, and lianas found in all tropical floras of the world with lesser representation in temperate regions. Phylogenetic analyses of chloroplast sequences (rbcL, ndhF, trnL-F) were undertaken to infer evolutionary relationships in Bignoniaceae and to revise its classification. Eight clades are recognized as tribes (Bignonieae, Catalpeae, Coleeae, Crescentieae, Jacarandeae, Oroxyleae, Tecomeae, Tourrettieae); additional inclusive clades are named informally. Jacarandeae and Catalpeae are resurrected; the former is sister to the rest of the family, and the latter occupies an unresolved position within the "core" Bignoniaceae. Tribe Eccremocarpeae is included in Tourrettieae. Past classifications recognized a large Tecomeae, but this tribe is paraphyletic with respect to all other tribes. Here Tecomeae are reduced to a clade of approximately 12 genera with a worldwide distribution in both temperate and tropical ecosystems. Two large clades, Bignonieae and Crescentiina, account for over 80% of the species in the family. Coleeae and Crescentieae are each included in larger clades, the Paleotropical alliance and Tabebuia alliance, respectively; each alliance includes a grade of taxa assigned to the traditional Tecomeae. Parsimony inference suggests that the family originated in the neotropics, with at least five dispersal events leading to the Old World representatives.  相似文献   

4.
在已有比较形态学研究基础上,本文选择了15个特征方面(外生殖器为主)的74个新征,以支序分析方法探讨了缘蝽科族(或亚科)的系统发育关系。结果表明棒缘蝽亚科、希缘蝽族、沟缘蝽族较为原始,与其余类群差异较大,缘蝽科的范围值得进一步研究;除Chariesterini外的缘蝽亚科是高等的缘蝽类群;Chariesterini似应从缘蝽亚科中独立出来;狭义巨缘蝽族以及萧的鼻缘蝽族、梭缘蝽族、昧缘蝽族、曼缘蝽族成立;拟黛缘蝽属、副黛缘蝽属、华黛缘蝽属、异黛缘蝽属应从”黛缘蝽族”中分别独立出来成立新族,即拟黛缘蝽族、副黛缘蝽族、华黛缘蝽族和异黛缘蝽族,以使原有的黛缘蝽族成为自然类群。  相似文献   

5.
? Premise of the study: Fossil leaves of Menispermaceae were previously described from the Paleocene of Colombia. Because of strong homoplasy of leaf characters, the fossils could not be placed more specifically within recognized clades, and additional data were needed to specify intrafamilial and paleogeographic relationships during the Paleocene. ? Methods: Fossil endocarps of Menispermaceae were collected from the Cerrejón Formation, the recently discovered Bogotá flora, and Wyoming (~60 Ma). We surveyed the endocarp morphology of almost all extant genera, conducted character optimization, a molecular scaffold analysis, and critically reviewed the related fossil genera. ? Key results: Parallel syndromes of fruit characters have appeared in unrelated clades of the family according to current phylogenetic reconstructions. However, mapping selected endocarp characters across those clades that contain horseshoe-shaped endocarps facilitates identification and phylogenetic assessment of the fossils. Three fossil species are recognized. One of them belongs to the extant genus Stephania, which today grows only in Africa and Australasia. Palaeoluna gen. nov. is placed within the pantropical clade composed of extant Stephania, Cissampelos, and Cyclea; this morphogenus is also recognized from the Paleocene of Wyoming. Menispina gen. nov. shows similarity with several unrelated clades. ? Conclusions: The new fossils from Colombia reveal a complex paleobiogeographic history of the recognized clades within Menispermaceae, suggesting a more active exchange among neotropical, paleotropical, North American, and European paleoforests than previously recognized. In addition, the new fossils indicate that neotropical forests were an important biome for the radiation and dispersal of derived lineages in Menispermaceae after the Cretaceous-Paleogene boundary.  相似文献   

6.
Kinorhyncha is a group of benthic, microscopic animals distributed worldwide in marine sediments. The phylum is divided into two classes, Cyclorhagida and Allomalorhagida, congruent with the two major clades recovered in recent phylogenetic analyses. Allomalorhagida accommodates more than one‐third of the described species, most of them assigned to the family Pycnophyidae. All previous phylogenetic analyses of the phylum recovered the two genera within Pycnophyidae, Pycnophyes and Kinorhynchus, as paraphyletic and polyphyletic. A major problem in these studies was the lack of molecular data of most pycnophyids, due to the limited and highly localized distribution of most species, often in the Arctic and the deep‐sea. We here overcame the problem by adding a morphological partition with data for 79 Pycnophyidae species, 15 of them also represented by molecular data. Model‐based analyses yielded seven clades, which each was supported by several morphological apomorphies. Accordingly, Kinorhynchus is synonymized with Pycnophyes and six new genera are described for the remaining recovered clades: Leiocanthus gen. nov., Cristaphyes gen. nov., Higginsium gen. nov., Krakenella gen. nov., Setaphyes gen. nov. and Fujuriphyes gen. nov.  相似文献   

7.
Udoteaceae is a morphologically diverse family of the order Bryopsidales. Despite being very widespread geographically, this family is little known as compared with the closely related Halimedaceae or Caulerpaceae. Using the most extensive Udoteaceae collection to date and a multilocus genetic data set (tufA, rbcL, and 18S rDNA), we reassessed the species diversity of the family, as well as the phylogenetic relationships, the diagnostic morphoanatomical characters, and evolutionary history of its genera, toward a proposed taxonomic revision. Our approach included a combination of molecular and morphological criteria, including species delimitation methods, phylogenetic reconstruction, and mapping of trait evolution. We successfully delimited 62 species hypotheses, of which 29 were assigned (existing) species names and 13 represent putative new species. Our results also led us to revise the genera Udotea s.s., Rhipidosiphon s.s., and Chlorodesmis s.s., to validate the genus Rhipidodesmis, and to propose three new genera: Glaukea gen. nov., Ventalia gen. nov., and Udoteopsis gen. nov. We also identified two large species complexes, which we refer to as the “PenicillusRhipidosiphon–Rhipocephalus–Udotea complex” and the “PoropsisPenicillusRhipidodesmis complex”. Using a time-calibrated phylogeny, we estimated the origin of the family Udoteaceae at Late Triassic (ca. 216 Ma), whereas most of the genera originated during Paleogene. Our morphological inference results indicated that the thallus of the Udoteaceae ancestor was likely entirely corticated and calcified, composed of a creeping axis with a multisiphonous stipe and a pluristromatic flabellate frond. The frond shape, cortication, and calcification are still symplesiomorphies for most extant Udoteaceae genera and represent useful diagnostic characters.  相似文献   

8.
本文记述中国脊颜三节叶蜂亚科—新属五新种:显脉三节叶蜂属,Ortasicerosgen.nov·新属,郑氏显脉三节叶蜂O.zhengisp.nov.(模式种),黑头显脉三节叶蜂O.nigricepssp.nov,短角显脉三节叶蜂O.brevicornissp.nov,曲瓣显脉三节叶蜂O.curvatasp.nov.和隆额显脉三节叶蜂O.ele-vatasp.nov。新属与淡脉三节叶蜂属CopidocerusForsius最近似,但后翅2A+3A脉极短,臀室开放,前翅Sc脉显著并接近R+M脉端部,可与之区别。新属及淡脉三节叶蜂属前翅具Sc脉,口器退化,下颚须5节,下唇须3节,右上颚无基齿等,与脊颜三节叶蜂亚科其它已知属不同,而类似新北亚界的Atomacerinae和新热带界的其它亚科的某些属,故此建立新族,显脉三节叶蜂族Ortasicerinitribenov。文中还编制了东方界和古北亚界三节叶蜂科已知属检索表。模式标本均保存于中南林学院昆虫标本室。  相似文献   

9.
Phylogenetic relationships were studied based on DNA sequences obtained from all recognized genera of the family Corvidae sensu stricto . The aligned data set consists 2589 bp obtained from one mitochondrial and two nuclear genes. Maximum parsimony, maximum-likelihood, and Bayesian inference analyses were used to estimate phylogenetic relationships. The analyses were done for each gene separately, as well as for all genes combined. An analysis of a taxonomically expanded data set of cytochrome b sequences was performed in order to infer the phylogenetic positions of six genera for which nuclear genes could not be obtained. Monophyly of the Corvidae is supported by all analyses, as well as by the occurrence of a deletion of 16 bp in the β-fibrinogen intron in all ingroup taxa. Temnurus and Pyrrhocorax are placed as the sister group to all other corvids, while Cissa and Urocissa appear as the next clade inside them. Further up in the tree, two larger and well-supported clades of genera were recovered by the analyses. One has an entirely New World distribution (the New World jays), while the other includes mostly Eurasian (and one African) taxa. Outside these two major clades are Cyanopica and Perisoreus whose phylogenetic positions could not be determined by the present data. A biogeographic analysis of our data suggests that the Corvidae underwent an initial radiation in Southeast Asia. This is consistent with the observation that almost all basal clades in the phylogenetic tree consist of species adapted to tropical and subtropical forest habitats.  相似文献   

10.
11.
To more confidently assess phylogenetic relationships among astome ciliates, we obtained small subunit (SSU) rRNA sequences from nine species distributed in six genera and three families: Almophrya bivacuolata, Eudrilophrya complanata, Metaracoelophrya sp. 1, Metaracoelophrya sp. 2, Metaracoelophrya intermedia, Metaradiophrya sp., Njinella prolifera, Paraclausilocola constricta n. gen., n. sp., and Paraclausilocola elongata n. sp. The two new species in the proposed new clausilocolid genus Paraclausilocola n. gen. are astomes with no attachment apparatus, two files of contractile vacuoles, and an arc-like anterior suture that has differentiations of thigmotactic ciliature on the anterior ends of the left kineties of the upper surface. Phylogenetic analyses were undertaken using neighbor-joining, Bayesian inference, maximum likelihood, and maximum parsimony. The nine species of astomes formed a strongly supported clade, showing the subclass Astomatia to be monophyletic and a weakly supported sister clade to the scuticociliates. There were two strongly supported clades within the astomes. However, genera assigned to the same family were found in different clades, and genera assigned to the same order were found in both clades. Thus, astome taxa appear to be paraphyletic when morphology is used to assign species to genera.  相似文献   

12.
根据ITS序列证据重建防己科蝙蝠葛族的系统发育   总被引:10,自引:4,他引:6  
研究了国产防己科蝙蝠葛族tirb.Menispermeae9属20种和外类群青牛胆族trib.Tinosporeae 2属3种植物完整的ITS(包括5.8S rDNA)序列。trib.Menispermeae的ITS长527~601 bp,排序后长667bp。当gap处理为missing时具281个有信息位点。PAUP软件分析结果表明:①trib.Menispermeae是一个单系类群,该分支得到hootstrap l00%的支持;②确定了存疑种Pachygone valida的系统学位置,该种是Coc—culus属的成员;③Sinomenium和Menispermum两属有很近的系统学关系,组成族内稳定的一支,它们的ITS序列同源性极高,ITS1比族内其它属长41~73bp;④Stephania和Cyclea也是系统发育关系很近的两个类群。前者具两个主要分支,其IIS1、ITS2的G+C含量差异较大,在种类组成上,该两大支与传统上Stephania属内处理的2个亚属——千金藤亚属subgen.Stephania和山乌龟亚属subgen.Tuberiphania基本一致;Cyclea属内种间的ITS序列差异小,同源性极高。  相似文献   

13.
The phylogeny of the tribe Menispermeae (Menispermaceae) represented by 20 species of 9 genera in China, was reconstructed based on sequence analysis of the internal transcribed spacers (ITS) (including ITS1, ITS2, and 5.8S rRNA gene ) of nuclear ribosomal DNA. Three species of two genera in the tribe Tinosporeae were designated as outgroups. Direct PCR sequencing method was used in the study, The sizes of ITS within trib. Menispermeae range from 527 to 601 bp. The aligned length is 667 bp, which provides 281 phylogenetically informative sites when gaps are treated as missing. The results of phylogenetic analyses show that: ① trib. Menispermeae is a monophyletic group strongly supported by a bootstrap value of 100%; ② Pachygone valida, whose systematic position was uncertain in the previous classification, should be placed in the Cocculus. ③Sinomenium and Menispermum are two close genera of the tribe. Their sequcences are very similar to each other, with ITS1 having 41 to 73 bp longer than that of the other genera in trib. Menispermeae. ④ Stephania and Cyclea are also closely related. The former forms two major clades, which are approximately consistent with the two traditional subgenera: subgen. Stephania and subgen. Tuberiphania. The species of Cyclea are mutually little diverged in complete ITS sequences, and they com-prise a sister clade to the genus Stephania.  相似文献   

14.
Hydroptilidae constitute the most diverse caddisfly family, with over 2000 species known from every habitable continent. Leucotrichiinae are exclusively New World microcaddisflies, currently including over 200 species and 17 genera. Phylogenetic analyses of Leucotrichiinae relationships based on 114 morphological characters and 2451 molecular characters from DNA sequences were conducted. DNA sequences analysed were from one mitochondrial gene, cytochrome oxidase I (653 bp), and four nuclear genes, carbamoylphosphate synthase (802 bp), elongation factor 1α (352 bp), histone 3 (308 bp) and 28S rDNA (336 bp). The morphological matrix included 94 taxa (with representatives of all included genera) and the molecular matrix included 62 taxa. Individual and combined datasets were analysed under parsimony and Bayesian inference. In addition, a relaxed molecular clock divergence time estimate was conducted to determine the age of the subfamily and major lineages. All Bayesian inference analyses strongly suggest a monophyletic Leucotrichiinae, which initially diverged at approximately 124 Ma into two monophyletic groups of genera. These groups are herein elevated to tribal status, Alisotrichiini trib.n. and Leucotrichiini Flint sensu n. Several genera of Leucotrichiini were not recovered as monophyletic clades and some nomenclatural changes are proposed to reflect their phylogenetic history. These include the synonymy of Abtrichia with Peltopsyche; transfer of Betrichia hamulifera to Costatrichia; transfer of Betrichia alibrachia and Costatrichia falsa to Leucotrichia; and transfer of Costatrichia fluminensis to Acostatrichia. Additionally, Tupiniquintrichia gen.n. is described to include Peltopsyche maclachlani and Leucotrichia procera. According to our results, crown diversifications of both Alisotrichiini trib.n. (~80 Ma) and Leucotrichiini sensu n. (~103 Ma) occurred after complete separation of South America from Africa. Current distributions of most leucotrichiine genera are probably a result of migration from South America towards the north using the proto‐Caribbean archipelago (100 to 49 Ma). This published work has been registered in ZooBank, http://zoobank.org/urn:lsid:zoobank.org:pub:FB6A3385-323D-41AF-B4BE-E19A393A493C .  相似文献   

15.
Brachyuran crabs of the family Bythograeidae are endemic to deep-sea hydrothermal vents and represent one of the most successful groups of macroinvertebrates that have colonized this extreme environment. Occurring worldwide, the family includes six genera (Allograea, Austinograea, Bythograea, Cyanagraea, Gandalfus, and Segonzacia) and fourteen formally described species. To investigate their evolutionary relationships, we conducted Maximum Likelihood and Bayesian molecular phylogenetic analyses, based on DNA sequences from fragments of three mitochondrial genes (16S rDNA, Cytochrome oxidase I, and Cytochrome b) and three nuclear genes (28S rDNA, the sodium-potassium ATPase a-subunit 'NaK', and Histone H3A). We employed traditional concatenated (i.e., supermatrix) phylogenetic methods, as well as three recently developed Bayesian multilocus methods aimed at inferring species trees from potentially discordant gene trees. We found strong support for two main clades within Bythograeidae: one comprising the members of the genus Bythograea; and the other comprising the remaining genera. Relationships within each of these two clades were partially resolved. We compare our results with an earlier hypothesis on the phylogenetic relationships among bythograeid genera based on morphology. We also discuss the biogeography of the family in the light of our results. Our species tree analyses reveal differences in how each of the three methods weighs conflicting phylogenetic signal from different gene partitions and how limits on the number of outgroup taxa may affect the results.  相似文献   

16.
? Premise of the study: The Sphagnopsida, an early-diverging lineage of mosses (phylum Bryophyta), are morphologically and ecologically unique and have profound impacts on global climate. The Sphagnopsida are currently classified in two genera, Sphagnum (peat mosses) with some 350-500 species and Ambuchanania with one species. An analysis of phylogenetic relationships among species and genera in the Sphagnopsida were conducted to resolve major lineages and relationships among species within the Sphagnopsida. ? Methods: Phylogenetic analyses of nucleotide sequences from the nuclear, plastid, and mitochondrial genomes (11 704 nucleotides total) were conducted and analyzed using maximum likelihood and Bayesian inference employing seven different substitution models of varying complexity. ? Key results: Phylogenetic analyses resolved three lineages within the Sphagnopsida: (1) Sphagnum sericeum, (2) S. inretortum plus Ambuchanania leucobryoides, and (3) all remaining species of Sphagnum. Sister group relationships among these three clades could not be resolved, but the phylogenetic results indicate that the highly divergent morphology of A. leucobryoides is derived within the Sphagnopsida rather than plesiomorphic. A new classification is proposed for class Sphagnopsida, with one order (Sphagnales), three families, and four genera. ? Conclusions: The Sphagnopsida are an old lineage within the phylum Bryophyta, but the extant species of Sphagnum represent a relatively recent radiation. It is likely that additional species critical to understanding the evolution of peat mosses await discovery, especially in the southern hemisphere.  相似文献   

17.
Meicai Wei 《Insect Science》1997,4(4):295-305
Abstract A key is given for the known Palaearctic and Oriental genera of the family Argidae including a new genus from China. Ortasiceros gen. nov. with five new species, O. nigriceps sp. nov., O. zhengi sp. nov., O. breoicornis sp. nov., O. curvata sp. nov. and O. elevata sp. nov. are described and figured. A new tribe, Ortasicerini trib. nov., is erected for the new genus and Copidocerus Forsius 1921. The type specimens are deposited in the Insect Collection of Central South Forestry University, Zhuzhou, China.  相似文献   

18.
叶肢介(Conchostraca)的系统发育问题一直是甲壳动物研究中颇具争议的一个课题.本研究测定了我国2种叶肢介(Eocyzicus mongolianus,Eoc yzicus orientalis)的28S rDNA D1-D2区基因序列和16S rDNA E-G区序列,并与GenBank中的20种叶肢介序列一起...  相似文献   

19.
20.
Abstract Phylogenetic relationships of Pamphagidae were examined using cytochrome oxidase subunit II (COII) mtDNA sequences (684 bp). Twenty‐seven species of Acridoidea from 20 genera were sequenced to obtain mtDNA data, along with four species from the GenBank nucleotide database. The purpose of this study was analyzing the phylogenetic relationships among subfamilies within Pamphagidae and interpreting the phylogenetic position of this family within the Acridoidea superfamily. Phylogenetic trees were reconstructed using neighbor‐joining (NJ), maximum parsimony (MP) and Bayesian inference (BI) methods. The 684 bp analyzed fragment included 126 parsimony informative sites. Sequences diverged 1.0%–11.1% between genera within subfamilies, and 8.8%–12.3% between subfamilies. Amino acid sequence diverged 0–6.1% between genera within subfamilies, and 0.4%–7.5% between subfamilies. Our phylogenetic trees revealed the monophyly of Pamphagidae and three distinct major groups within this family. Moreover, several well supported and stable clades were found in Pamphagidae. The global clustering results were similar to that obtained through classical morphological classification: Prionotropisinae, Thrinchinae and Pamphaginae were monophyletic groups. However, the current genus Filchnerella (Prionotropisinae) was not a monophyletic group and the genus Asiotmethis (Prionotropisinae) was a sister group of the genus Thrinchus (Thrinchinae). Further molecular and morphological studies are required to clarify the phylogenetic relationships of the genera Filchnerella and Asiotmethis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号