首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wang QM  Wang L 《Plant cell reports》2012,31(9):1535-1547
Plants regenerated from in vitro cultures possess an array of genetic and epigenetic changes. This phenomenon is known as 'somaclonal variation' and the frequency of somaclonal variation (SV) is usually elevated far beyond that expected in nature. Initially, the relationship between time in culture and detected SV was found to support the widespread belief that SV accumulates with culture age. However, a few studies indicated that older cultures yielded regenerants with less SV. What leads to this seemed contradiction? In this article, we have proposed a novel in vitro callus selection hypothesis, differentiation bottleneck (D-bottleneck) and dedifferentiation bottleneck (Dd-bottleneck), which consider natural selection theory to be fit for cell population in vitro. The results of multiplication races between the cells with the true-to-type phenotype and the deleterious cells determine the increase/decrease of SV frequencies in calli or regenerants as in vitro culture time goes on. The possibility of interpreting the complex situation of time-related SV by the evolutionary theory is discussed in this paper. In addition, the SV threshold, space-determined hypothesis and D-bottleneck are proposed to interpret the loss of the regenerability through a long period of plant tissue culture (PTC).  相似文献   

2.
体细胞无性系变异是植物组织培养中的一种普遍现象.常见的有染色体数目和结构变异、序列变异、DNA甲基化变异、基因的活化与沉默等。转座子和逆转录转座子的激活表明通过组织培养发生表观遗传变异。综述了植物组织培养中体细胞无性系变异的研究进展.重点阐述表观遗传变异在植物体细胞无性系变异中的作用。  相似文献   

3.
Researchers are beginning to use wild plant populations to survey and assess cytosine methylation polymorphisms in a population and ecological genetic framework. These studies support the plausibility of adaptive epigenetic alleles, but uncertainty remains due to the difficulty in untangling genetic and epigenetic variation in wild populations. The increasing emphasis on stress-induced epigenetic alterations and transgenerational phenomena among researchers focused on epigenetic mechanisms should push practitioners of this subfield to consider the questions and tools of colleagues grappling with epigenetics from ecological and evolutionary perspectives.  相似文献   

4.
Bacterial contamination represents a serious problem for plant tissue culture research and applications. Bacterial interference with normal plant physiology and morphology can generate misleading conclusions if the presence of bacteria is ignored. Bacterial contaminants in in vitro plant culture are typically detected by direct observation; thus, it is assumed that cultures without visible symptoms are bacteria free. Here, we demonstrate that contaminating Bacillus DNA in plant DNA solutions from asymptomatic plants can interfere with the analysis of somaclonal variation in chrysanthemum. We studied somaclonal variation in chrysanthemum using short semi-specific PCR primers based on conserved motifs in NBS–LRR disease resistance genes and in mobile elements. Instead of true somaclonal variation we found three polymorphic bands derived from contaminant bacterial DNA in plant extracts. Although the detection of asymptomatic bacteria in in vitro plant cultures is a major issue, we found that it has not been adequately addressed to date, particularly for studies on somaclonal variation. We reviewed the most commonly cited contaminant bacteria in in vitro plant culture and designed specific 16S rRNA gene-based PCR primers for the main genera causing contamination (Bacillus, Pseudomonas, Staphylococcus, Lactobacillus, Erwinia/Enterobacter and Xanthomonas). Using a panel of pure bacterial DNAs, artificial mixes of bacterial/plant DNAs, and in vitro plant cultures with and without visible contamination we demonstrated that our primers are in most instances both reliable and sensitive, and appropriate for the identification and tracking of the most frequent bacterial contaminants in plant in vitro cultures. Implications of bacterial identification to molecular analysis of somaclonal variation and plant culture decontamination are discussed.  相似文献   

5.
A procedure for the non-radioactive detection of random amplified polymorphic DNA (RAPD) was developed and designated as digoxigenin (DIG)-based RAPD. Using this procedure, we analyzed somaclonal variation in cultured cells of rice. Somaclonal variation was found to increase with culture age. More than 50 polymorphic fragments were identified with the four primers tested. Random sequencing of 10 clones generated one intron, one 5′-noncoding, and eight non-redundant expressed sequences. A database search for homology showed that the eight exon sequences displayed a significant similarity to sequences already stored in EMBL, GenBank and DDBJ. The sources of the known genes ranged from microorganism to human, including three rice genes. The results showed that somaclonal variation might have occurred in transfer RNA, ribosomal protein, and other genes during cell culture. Received: 14 November 1997 / Revision received: 21 August 1998 / Accepted: 31 August 1998  相似文献   

6.
Summary Tissue specific qualitative variation in the zymmogram profile of alcohol dehydrogenase in carrot is described. Extracts made from roots and petiole tissues of the plant exhibit three and two bands of activity, respectively. No alcohol dehydrogenase (ADH) activity is detectable in lamina extracts. Similar extracts from carrot cells cultured in vitro exhibit five bands of ADH activity. However, when the same cell line is cultured in medium either lacking auxin (2,4-D) or Zn++, no ADH activity can be observed on the gels.  相似文献   

7.
Somatic embryogenesis,plant regeneration and somaclonal variation in barley   总被引:2,自引:0,他引:2  
In vitro culture of immature embryo and young leaf tissues was carried out with five cultivars of barley, Hordeum vulgare. Two cultivars (Albacete and Porthos) responded poorly from both types of explants, while the three others (Dissa, Golden Promise and Ingrid) produced a high frequency of embryogenic callus from these explants (25–60%). For Dissa and Ingrid, young leaf explants were slightly better than immature embryo explants for embryogenic callus induction, while immature embryo cultures of Golden Promise responded better than young leaf explants. Thus, there appears to be a significant genotype × explant interaction in the initiation of embryogenic callus in barley.Some phenotypic variants were detected among the regenerated plants of Golden Promise and Ingrid, most originating by epigenetic changes. Only in one case was the variant phenotype heritable, probably due to a mutation in the chloroplast DNA. Mitotic alteractions were not detected. Consequently, somaclonal variation did not appear to be a very frequent event in plants regenerated from 1- to 6- month-old cultures of barley.  相似文献   

8.
9.
Somatic embryogenesis plays a significant role in plant regeneration and requires complex cellular, molecular, and biochemical processes for embryo initiation and development associated with plant epigenetics. Epigenetic regulation encompasses many sensitive events and plays a vital role in gene expression through DNA methylation, chromatin remodelling, and small RNAs. Recently, regulation of epigenetic mechanisms has been recognized as the most promising occurrences during somatic embryogenesis in plants. A few reports demonstrated that the level of DNA methylation can alter in embryogenic cells under in vitro environments. Changes or modification in DNA methylation patterns is linked with regulatory mechanisms of various candidate marker genes, involved in the initiation and development of somatic embryogenesis in plants. This review summarizes the current scenario of the role of epigenetic mechanisms as candidate markers during somatic embryogenesis. It also delivers a comprehensive and systematic analysis of more recent discoveries on expression of embryogenic-regulating genes during somatic embryogenesis, epigenetic variation. Biotechnological applications of epigenetics as well as new opportunities or future perspectives in the development of somatic embryogenesis studies are covered. Further research on such strategies may serve as exciting interaction models of epigenetic regulation in plant embryogenesis and designing novel approaches for plant productivity and crop improvement at molecular levels.  相似文献   

10.
Somaclonal lines of linseed from the parent cultivar Norlin were produced from a callus-based in oitro regeneration system (the R0 generation). In field trials conducted over two seasons, 47 R1 (plants produced from the R0 generation) and 20 R2 somaclonal lines (plants produced from the R1 generation) were compared to the parent cultivar Norlin for quantitative characters. Irrespective of the genotype, traits in R1's and R2's were assessed on the basis of regression analysis as showing heritabilities of between 28% and 64%. Generally, the somaclonal variation assessed during these early generations revealed some detrimental traits, e.g. lower seed yield than the parent (control) cultivar and reduced 1000 seed weights, but a few lines were identified which had early or late flowering dates, improved seed yield and increased 1000 seed weights. It is concluded that somaclonal variation could be of value as an adjunct to classical breeding.  相似文献   

11.
In vitro regenerated plants of rye, Secale cereale L., Ailés and Merced cultivars, were studied to verify if genetic and/or epigenetic changes were promoted by in vitro conditions. Inter-simple sequence repeat (ISSR) fingerprints on HpaII/MspI-digested and uncut DNA were generated. DNA digested with methylation-sensitive isoschizomers revealed epigenetic modifications, while modification of ISSR patterns obtained with undigested DNA indicated genetic changes. With this technique, it was possible to study both genetic and/or epigenetic changes within the same DNA sequences. The frequency of plants with at least one variation was high: 73% and 30% of rye plants showed at least one genetic change, and 50% and 73% carried at least one methylation change, in the Ailés and Merced cultivars, respectively. Further analyses revealed that a considerable number of variable markers showed both types of modifications, indicative of both genetic and epigenetic changes. Moreover, genetic variation was related to the presence of the CCGG target in the analyzed bands. These results indicate the possible existence of a common mechanism connecting both types of variation.  相似文献   

12.
Production of biotic and abiotic resistant conifers is now primarily accomplished through production of embryo-derived transgenics. Furthermore, gene-drive systems like CRISPR/Cas9 are now providing optimistic outlooks for more precise manipulation of genes in the conifer genome. Nonetheless, experimental guidelines suggest that the careless mass production of propagates might result in severe commercial loss because infrequent mutations sometimes go unnoticed until much later stages in plant development or even in offspring. The micropropagation procedure, types of explants, subculture duration, and PGRs, mostly through hypermethylation, can all contribute to variations in mutation frequency. Furthermore, rapidly dividing cells may undergo mutation in genes essential for regeneration, causing genetic instability in offspring as a result. Monitoring the MET1, KYP, H3K4 JMJ14, HAC1, and sRNAs can potentially highlight epigenetic changes during micropropagation. Decrease in frequency of tissue culture-induced variation may be achieved by applying a cocktail of visual inspections, molecular markers, cytogenetic surveys through Mass/Flow cytometery, the consideration of hypo/hypermethylation, and acetylation percentages, assessing key genes involved in this process, and by further related monitoring strategies. Together, scrutinizing different aspects of conifer tissue culture and genetic transformation would contribute to a better understanding of pivotal elements that can boost higher quality and quantity of conifer production. Furthermore, this can prevent unwanted phenotypic plasticity which may sometimes go unnoticed until very late stages in offspring.  相似文献   

13.
14.
Epigenetic aspects of somaclonal variation in plants   总被引:36,自引:0,他引:36  
Somaclonal variation is manifested as cytological abnormalities, frequent qualitative and quantitative phenotypic mutation, sequence change, and gene activation and silencing. Activation of quiescent transposable elements and retrotransposons indicate that epigenetic changes occur through the culture process. Epigenetic activation of DNA elements further suggests that epigenetic changes may also be involved in cytogenetic instability through modification of heterochromatin, and as a basis of phenotypic variation through the modulation of gene function. The observation that DNA methylation patterns are highly variable among regenerated plants and their progeny provides evidence that DNA modifications are less stable in culture than in seed-grown plants. Future research will determine the relative importance of epigenetic versus sequence or chromosome variation in conditioning somaclonal variation in plants.  相似文献   

15.
An in vitro chromosome assay has been developed which utilises an epithelial-like cell line derived from rat liver. The cell line, designed RL1, retains sufficient metabolic enzyme activity to detect chromosome damage induced by a variety of chemical mutagens and carcinogens without the incorporation of an extrinsic metabolising system. The cells are grown on standard glass microscope slides, exposed to the test chemical and processed in situ for metaphase analysis.In a small validation study, chromosome damage was detected in cultures exposed to the direct-acting agents, methyl nitronitrosoguanine, 4-nitroquinolineN-oxide, propylene oxide, epichlorohydrin and 1,2 : 3,4-diepoxybutane and to compounds requiring metabolic activation, including cyclophosphamide, 2-acetylaminofluorene, 3-methylcholanthrene and 7,12-dimethylbenz[α]anthracene. Negative results were obtained with pyrene and carbon tetrachloride.  相似文献   

16.
Intra- and interindividual epigenetic variation in human germ cells   总被引:6,自引:0,他引:6       下载免费PDF全文
Epigenetics represents a secondary inheritance system that has been poorly investigated in human biology. The objective of this study was to perform a comprehensive analysis of DNA methylation variation between and within the germlines of normal males. First, methylated cytosines were mapped using bisulphite modification-based sequencing in the promoter regions of the following disease genes: presenilins (PSEN1 and PSEN2), breast cancer (BRCA1 and BRCA2), myotonic dystrophy (DM1), and Huntington disease (HD). Major epigenetic variation was detected within samples, since the majority of sperm cells of the same individual exhibited unique DNA methylation profiles. In the interindividual analysis, 41 of 61 pairwise comparisons revealed distinct DNA methylation profiles (P=.036 to 6.8 x 10(-14)). Second, a microarray-based epigenetic profiling of the same sperm samples was performed using a 12,198-feature CpG island microarray. The microarray analysis has identified numerous DNA methylation-variable positions in the germ cell genome. The largest degree of variation was detected within the promoter CpG islands and pericentromeric satellites among the single-copy DNA fragments and repetitive elements, respectively. A number of genes, such as EED, CTNNA2, CALM1, CDH13, and STMN2, exhibited age-related DNA methylation changes. Finally, allele-specific methylation patterns in CDH13 were detected. This study provides evidence for significant epigenetic variability in human germ cells, which warrants further research to determine whether such epigenetic patterns can be efficiently transmitted across generations and what impact inherited epigenetic individuality may have on phenotypic outcomes in health and disease.  相似文献   

17.
18.
19.
An in vitro chromosome assay has been developed which utilises an epithelial-like cell line derived from rat liver. The cell line, designed RL1, retains sufficient metabolic enzyme activity to detect chromosome damage induced by a variety of chemical mutagens and carcinogens without the incorporation of an extrinsic metabolising system. The cells are grown on standard glass microscope slides, exposed to the test chemical and processed in situ for metaphase analysis. In a small validation study, chromosome damage was detected in cultures exposed to the direct-acting agents, methyl nitronitrosoguanine, 4-nitroquinoline-N-oxide, propylene oxide, epichlorohydrin and 1,2:3,4-diepoxybutane and to compounds requiring metabolic activation, including cyclophosphamide, 2-acetylaminofluorene, 3-methylcholanthrene and 7,12-dimethylbenz[a]anthracene. Negative results were obtained with pyrene and carbon tetrachloride.  相似文献   

20.
Environmentally induced phenotypic plasticity may be a critical component of response to changing environments. We examined local differentiation and adaptive phenotypic plasticity in response to elevated temperature in half‐sib lines collected across an elevation gradient for the alpine herb, Wahlenbergia ceracea. Using Amplified Fragment Length Polymorphism (AFLP), we found low but significant genetic differentiation between low‐ and high‐elevation seedlings, and seedlings originating from low elevations grew faster and showed stronger temperature responses (more plasticity) than those from medium and high elevations. Furthermore, plasticity was more often adaptive for plants of low‐elevation origin and maladaptive for plants of high elevation. With methylation sensitive‐AFLP (MS‐AFLP), we revealed an increase in epigenetic variation in response to temperature in low‐elevation seedlings. Although we did not find significant direct correlations between MS‐AFLP loci and phenotypes, our results demonstrate that adaptive plasticity in temperature response to warming varies over fine spatial scales and suggest the involvement of epigenetic mechanisms in this response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号