首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The immunocytochemical distribution of substance P (SP), gastrin releasing peptide (GRP), vasoactive intestinal polypeptide (VIP), peptide histidine isoleucine (PHI), and neuropeptide Y (NPY) was studied in the ovary and the Fallopian tube (oviduct) of rats, guinea-pigs, cows, pigs and humans. Generally, the nerve supply was better developed in the oviduct than in the ovary. GRP fibers were most scarce in all tissues. Nerves containing SP were particularly numerous in the oviduct of rat and guinea-pig, supplying the muscular wall and blood vessels. VIP and PHI coexisted in dense plexuses of nerves, not only around blood vessels but also in the follicular wall and the interstitial gland of the ovary, as well as within the smooth muscle layers and subepithelially in the oviduct. The general distribution of NPY was similar, but these immunoreactive nerves were even more numerous. Sequential staining for dopamine-beta-hydroxylase and NPY together with results of chemical sympathectomy with 6-hydroxydopamine suggested that NPY was stored in the noradrenergic sympathetic nerves.  相似文献   

2.
Cryostat- and vibratome-cut rat kidney secretions were singly or doubly labeled to visualize immunoreactive calcitonin-gene-related peptide (CGRPI) and substance P (SPI). Rats were perfused with 2-4% paraformaldehyde + 0.15% picric acid then rinsed with buffer. Horseradish peroxidase (HRP) was used to visualize CGRP in vibratome sections, and combined HRP and fluorophore were used to visualize the two peptides simultaneously in cryostat sections. There is a complex, multilayered plexus of CGRP nerves on the renal pelvis and a less dense, single-layered plexus on the major branches of the renal artery and on interlobar arteries and veins. A few axons innervate finer branches of the arterial tree and other intrarenal structures. Results of double immunolabeling suggest that SPI axons comprise a subpopulation of the CGRP axon population in the rat kidney. There was no evidence for a separate population of SPI axons.  相似文献   

3.
Summary The immunocytochemical distribution of substance P (SP), gastrin releasing peptide (GRP), vasoactive intestinal polypeptide (VIP), peptide histidine isoleucine (PHI), and neuropeptide Y (NPY) was studied in the ovary and the Fallopian tube (oviduct) of rats, guinea-pigs, cows, pigs and humans. Generally, the nerve supply was better developed in the oviduct than in the ovary. GRP fibers were most scarce in all tissues. Nerves containing SP were particularly numerous in the oviduct of rat and guinea-pig, supplying the muscular wall and blood vessels. VIP and PHI coexisted in dense plexuses of nerves, not only around blood vessels but also in the follicular wall and the interstitial gland of the ovary, as well as within the smooth muscle layers and subepithelially in the oviduct. The general distribution of NPY was similar, but these immunoreactive nerves were even more numerous. Sequential staining for dopamine--hydroxylase and NPY together with results of chemical sympathectomy with 6-hydroxydopamine suggested that NPY was stored in the noradrenergic sympathetic nerves.  相似文献   

4.
In contrast to the majority of sympathetic neurons which are noradrenergic, the sympathetic neurons which innervate sweat glands are cholinergic. Previous studies have demonstrated that during development the sweat gland innervation initially contains catecholamines which are lost as cholinergic function appears. The neurotransmitter phenotype of sweat gland neurons further differs from the majority in that they contain vasoactive intestinal peptide (VIP) rather than neuropeptide Y (NPY). In the experiments described here, we addressed the question of whether sympathetic targets influence the neurotransmitter-related properties of the neurons which innervate them; in particular, do sweat glands play a role in reducing the expression of noradrenergic properties and inducing the expression of cholinergic properties and VIP in sympathetic neurons? This was accomplished by cotransplanting to the anterior chamber of the eye of host rats the superior cervical ganglia (SCG) which contains neurons that normally innervate targets other than the sweat glands and differentiate noradrenergically and footpad tissue from neonatal rats. Sweat glands developed in the transplanted footpad tissue and became innervated by the cotransplanted SCG neurons. The transplanted neurons and sweat gland innervation initially exhibited catecholamine histofluorescence which declined with further development in the anterior chamber. After 4 weeks, choline acetyltransferase (ChAT) and VIP immunoreactivities were evident. These observations suggest that as in the neurons which innervate the glands in situ, noradrenergic properties were suppressed and cholinergic function was induced in the neurons which innervated the glands in oculo. To distinguish a specific influence of the sweat glands on transmitter choice, SCG were also cotransplanted with the pineal gland, a normal target of the ganglion. Neurons cotransplanted with the pineal gland continued to exhibit catecholamine histofluorescence and contained NPY immunoreactivity. At least some neurons in SCG/pineal cotransplants, however, developed ChAT immunoreactivity. The target-appropriate expression of catecholamines and peptides in these experiments is consistent with the hypothesis that some transmitter properties are influenced by target tissues. The indiscriminant expression of ChAT, however, suggests that at least in oculo, additional factors can influence transmitter choice.  相似文献   

5.
Summary The subcellular distribution of noradrenaline (NA), neuropeptide Y (NPY), Met and Leu-enkephalin (ENK), substance P (SP), somatostatin (SOM), and vasoactive intestinal polypeptide (VIP) was investigated in homogenates of bovine splenic nerve. The distribution of noradrenergic peptide-containing nerves in the bovine celiac ganglion, splenic nerve and terminal areas in spleen was studied by indirect immunofluorescence histochemistry using antisera to tyrosine hydroxylase (TH), dopamine--hydroxylase (DBH), NPY, enkephalin peptides, SP, SOM, VIP and peptide HI (PHI).After density gradient centrifugation, high levels of NPY and ENK-like immunoreactivity (LI) were found in high-density gradient fractions, coinciding with the main NA peak. SP, SOM and VIP were found in fractions with a lower density, VIP being also enriched in a heavy fraction; the latter three peptides were present in low concentrations.Immunohistochemistry revealed that staining for NPYLI and ENK-LI partly overlapped that for TH and DBH in celiac ganglia, splenic nerve axons and terminal areas of spleen. Almost all principal ganglion cells were TH- and DBH-immunoreactive. Many were also NPY-immunoreactive, whereas a smaller number were ENK-positive. In the celiac ganglion patches of dense SP-positive networks and some VIP/PHI- and ENK-immunoreactive fibers were seen around cell bodies.The results indicate that NPY and ENK are stored with NA in large dense-cored vesicles in unmyelinated axons of bovine splenic nerve. SP, SOM and VIP appear in different organelles in axon populations separate from sympathetic noradrenergic nerves.  相似文献   

6.
The distribution of vasoactive intestinal polypeptide (VIP) containing nervous elements in the chicken pancreas was immunohistochemically investigated by light microscopy. Strongly VIP immunoreactive ganglia existed in the interlobular connective tissue. Ganglion containing both VIP immunoreactive and non-immunoreactive nerve cells was occasionally observed in the connective tissue. Almost all the ganglion cells also showed acetylcholinesterase (AChE) activity. No extrapancreatic nerve bundles containing VIP immunoreactive nerve fibres were detected. VIP immunoreactive nerve fibres formed plexuses in the subepithelial layer of secretory ducts and the muscle layer of small arteries. The distribution pattern of VIP immunoreactive nerve fibers was similar to that of AChE-positive nerve fibers on adjacent sections. The exocrine pancreas received a rich supply of varicose nerve fibers showing VIP immunoreactivity. B-islets also were richly innervated by VIP immunoreactive varicose nerve fibers, whereas A-islets, only poorly. These observations suggest that VIP containing nerves in the chicken pancreas have an intrinsic origin, are probably derived from VIP immunoreactive, intrapancreatic ganglion cells and innervate secretory ducts, arteries, acinar cells and B-islets, and that VIP must coexist with acetylcholine in the nervous elements.  相似文献   

7.
The vasoactive intestinal polypeptide (VIP) has been shown to exert effects on endocrine and exocrine pancreatic secretion. Immunocytochemistry reveals that VIP immunoreactive nerves occur in the porcine, canine, feline and avian pancreas. In the pancreas of pig and cat VIP nerves are abundant around non-immunoreactive nerve cell bodies of the intrapancreatic ganglia but scarce in the islets and in the exocrine parenchyma. In the dog pancreas, however, the intrapancreatic ganglia contain strongly immunoreactive VIP nerve cell bodies which give off axons that seem to heavily innervate vessels as well as endocrine and exocrine cells. We suggest that in the pig and cat the pancreatic VIP nerves mainly affect the activity of a second type of intrapancreatic neuron, whose transmitter is unknown, whereas in the dog pancreas VIP nerves directly contact their putative effector structures.  相似文献   

8.
Summary The occurrence of neuropeptide Y (NPY), vasoactive intestinal polypeptide (VIP) and peptide histidine isoleucine (PHI) in the sympathetic and parasympathetic innervation of the nasal mucosa was studied in various species including man. A dense network of NPY-immunoreactive (IR) fibres was present around arteries and arterioles in the nasal mucosa of all species studied. NPY was also located in nerves around seromucous glands in pig and guinea-pig, but not in rat, cat and man. The NPY-IR glandular innervation corresponded to about 20% of the NPY content of the nasal mucosa as revealed by remaining NPY content determined by radioimmunoassay after sympathectomy. These periglandular NPY-positive fibres had a distribution similar to the VIP-IR and PHI-IR nerves but not to the noradrenergic markers tyrosine hydroxylase (TH) or dopamine--hydroxylase (DBH). The NPY nerves around glands and some perivascular fibres were not influenced by sympathectomy and probably originated in the sphenopalatine ganglion where NPY-IR and VIP-IR ganglion cells were present. The venous sinusoids were innervated by NPY-positive fibres in all species except the cat. Dense NPY and DBH-positive innervation was seen around thick-walled vessels in the pig nasal mucosa; the latter may represent arterio-venous shunts. Double-labelling experiments using TH and DBH, and surgical sympathectomy revealed that the majority of NPY-IR fibres around blood vessels were probably noradrenergic. The NPY-positive perivascular nerves that remained after sympathectomy in the pig nasal mucosa also contained VIP/PHI-IR. The major nasal blood vessels, i.e. sphenopalatine artery and vein, were also densely innervated by NPY-IR fibres of sympathetic origin. Perivascular VIP-IR fibres were present around small arteries, arterioles, venous sinusoids and arterio-venous shunt vessels of the nasal mucosa whereas major nasal vessels received only single VIP-positive nerves. The trigeminal ganglion of the species studied contained only single TH-IR or VIP-IR but no NPY-positive ganglion cells. It is concluded that NPY in the nasal mucosa is mainly present in perivascular nerves of sympathetic origin. In some species, such as pig, glandular and perivascular parasympathetic nerves, probably of VIP/PHI nature, also contain NPY.  相似文献   

9.
The immunohistochemical localization of vasoactive intestinal polypeptide (VIP), Neurotensin (NT), cholecystokinin (CCK), Neuropeptide Y (NPY), and calcitonin-gene-related peptide (CGRP) in rat Harderian glands was examined. Numerous VIP- and CCK-like immunoreactive nerves were found in close apposition to the acini. Sparse numbers of NT-, NPY-, and CGRP-like immunoreactive nerves were observed in close proximity to the acini and blood vessels. Some VIP-like immunoreactive nerves were shown to be co-localized with acetylcholinesterase-positive cholinergic nerves.  相似文献   

10.
Immunohistochemistry has been used to demonstrate tyrosine hydroxylase (TH), dopamine--hydroxylase (DBH), phenylethanolamine N-methyltransferase (PNMT), neuropeptide Y (NPY) and vasoactive intestinal polypeptide (VIP) immunoreactivities, and acetylcholinesterase (AChE) activity was demonstrated in rat adrenal glands. The TH, DBH, NPY and VIP immunoreactivities and AChE activity were observed in both the large ganglion cells and the small chromaffin cells whereas PNMT immunoreactivity was found only in chromaffin cells, and not in ganglion cells. Most intraadrenal ganglion cells showed NPY immunoreactivity and a few were VIP immunoreactive. Numerous NPY-immunoreactive ganglion cells were also immunoreactive for TH and DBH; these cells were localized as single cells or groups of several cells in the adrenal cortex and medulla. Use of serial sections, or double and triple staining techniques, showed that all TH- and DBH-immunoreactive ganglion cells also showed NPY immunoreactivity, whereas some NPY-immunoreactive ganglion cells were TH and DBH immunonegative. NPY-immunoreactive ganglion cells showed no VIP immunoreactivity. AChE activity was seen in VIP-immunopositive and VIP-immunonegative ganglion cells. These results suggest that ganglion cells containing noradrenaline and NPY, or NPY only, or VIP and acetylcholine occur in the rat adrenal gland; they may project within the adrenal gland or to other target organs. TH, DBH, NPY, and VIP were colocalized in numerous immunoreactive nerve fibres, which were distributed in the superficial adrenal cortex, while TH-, DBH- and NPY-immunoreactive ganglion cells and nerve fibres were different from VIP-immunoreactive ganglion cells and nerve fibres in the medulla. This suggests that the immunoreactive nerve fibres in the superficial cortex may be mainly extrinsic in origin and may be different from those in the medulla.  相似文献   

11.
Summary The immunohistochemical localization of vasoactive intestinal polypeptide (VIP), Neurotensin (NT), cholestokinin (CCK), Neuropeptide Y (NPY), and calcitonin-gene-related peptide (CGRP) in rat Harderian glands was examined. Numerous VIP- and CCK-like immunoreactive nerves were found in close apposition to the acini. Sparse numbers of NT-, NPY-, and CGRP-like immunoreactive nerves were observed in close proximity to the acini and blood vessels. Some VIP-like immunoreactive nerves were shown to be co-localized with acetylcholinesterasepositive cholinergic nerves.  相似文献   

12.
Summary The pelvic ganglia supply cholinergic and noradrenergic nerve pathways to many organs. Other possible transmitters are also present in these nerves, including peptides. Multiple labelling immunofluorescence techniques were used in this study of the male rat major pelvic ganglion (MPG) to examine: (1) the peptides present in noradrenergic (tyrosine hydroxylase (TH)-positive) and non-noradrenergic (putative cholinergic) neurons, and (2) the types of peptide-containing nerve fibres closely associated with these two groups of neurons. The distribution of the peptide galanin (GAL) within the MPG was also investigated. All of the TH-neurons contained neuropeptide Y (NPY), but none of the other tested peptides. However, many NPY neurons did not contain TH and may have been cholinergic. TH-negative neurons also displayed vasoactive intestinal peptide (VIP), enkephalin (ENK) or GAL. VIP and NPY formed the most common types of putative cholinergic pelvic neurons, but few cells contained both peptides. Many ENK neurons exhibited VIP, NPY or GAL. Varicose nerve terminals surrounding ganglion cells contained ENK, GAL, somatostatin (SOM) and cholecystokinin (CCK). These peptide-immunoreactive fibres were more often associated with the non-noradrenergic (putative cholinergic) than the noradrenergic neurons; two types (SOM and CCK) were preferentially associated with the non-noradrenergic NPY neurons. GAL was distributed throughout the MPG, in small neurons, scattered small, intensely fluorescent (SIF) cells, and both varicose and non-varicose nerve fibres. The nerve fibres were concentrated near the pelvic and penile nerves; most of the varicose fibres formed baskets surrounding individual GAL-negative somata.  相似文献   

13.
Vasoactive intestinal peptide (VIP), peptide histidine isoleucine (PHI) and neuropeptide Y (NPY) are neuropeptides present in all layers of the small intestine. NPY-immunoreactive fibres in the gut seem to derive from two sources. One population is of extramural (sympathetic) origin and contains noradrenaline, another is of intramural origin and does not contain noradrenaline. In the present study of mouse, rat and pig, immunocytochemistry showed immunoreactive PHI to coexist completely with immunoreactive VIP. This was predictable, since VIP and PHI derive from the same precursor. In addition, however, VIP and PHI were found to coexist with immunoreactive NPY in non-adrenergic (but not in adrenergic) nerve fibres and nerve cell bodies. This coexistence was unexpected, since the VIP precursor does not contain NPY-like sequences.  相似文献   

14.
The continuing and even expanding use of genetically modified mice to investigate the normal physiology and development of the enteric nervous system and for the study of pathophysiology in mouse models emphasises the need to identify all the neuron types and their functional roles in mice. An investigation that chemically and morphologically defined all the major neuron types with cell bodies in myenteric ganglia of the mouse small intestine was recently completed. The present study was aimed at the submucosal ganglia, with the purpose of similarly identifying the major neuron types with cell bodies in these ganglia. We found that the submucosal neurons could be divided into three major groups: neurons with vasoactive intestinal peptide (VIP) immunoreactivity (51% of neurons), neurons with choline acetyltransferase (ChAT) immunoreactivity (41% of neurons) and neurons that expressed neither of these markers. Most VIP neurons contained neuropeptide Y (NPY) and about 40% were immunoreactive for tyrosine hydroxylase (TH); 22% of all submucosal neurons were TH/VIP. VIP-immunoreactive nerve terminals in the mucosa were weakly immunoreactive for TH but separate populations of TH- and VIP-immunoreactive axons innervated the arterioles in the submucosa. Of the ChAT neurons, about half were immunoreactive for both somatostatin and calcitonin gene-related peptide (CGRP). Calretinin immunoreactivity occurred in over 90% of neurons, including the VIP neurons. The submucosal ganglia and submucosal arterioles were innervated by sympathetic noradrenergic neurons that were immunoreactive for TH and NPY; no VIP and few calretinin fibres innervated submucosal neurons. We conclude that the submucosal ganglia contain cell bodies of VIP/NPY/TH/calretinin non-cholinergic secretomotor neurons, VIP/NPY/calretinin vasodilator neurons, ChAT/CGRP/somatostatin/calretinin cholinergic secretomotor neurons and small populations of cholinergic and non-cholinergic neurons whose targets have yet to be identified. No evidence for the presence of type-II putative intrinsic primary afferent neurons was found. This work was supported by a grant from the National Health and Medical Research Council of Australia (grant no. 400020) and an Australian Research Council international linkage grant (no. LZ0882269) for collaboration between the Melbourne and Bologna laboratories.  相似文献   

15.
Autonomic nerves supplying mammalian male internal genital organs have an important role in the regulation of reproductive function. To find out the relationships between the neurochemical content of these nerves and the reproductive activity, we performed a histochemical and immunohistochemical study in a species, the water buffalo, exhibiting a seasonal sexual behaviour. The distribution of noradrenergic and nitric oxide synthase (NOS)- and peptide-containing nerves was evaluated during the mating and non-mating periods. Fresh segments of vas deferens and accessory genital glands were collected immediately after slaughter and immersed in 4% paraformaldehyde. Frozen sections were obtained and processed according to single and double labelling immunofluorescent procedures or NADPH-diaphorase histochemistry. During the mating period, a dense noradrenergic innervation was observed to supply the vas deferens as well as the accessory genital glands. NOS- and peptide-containing nerves were also observed but with a lower density. During the non-mating period noradrenergic nerves dramatically reduced. In addition, neuropeptide Y (NPY)- and vasoactive intestinal peptide (VIP)-containing nerves were also reduced. These findings suggest the presence of complex interactions between androgen hormones and the autonomic nerve supply in the regulation of male water buffalo reproductive functions.  相似文献   

16.
We describe the anatomy of the nerves that project from the central nervous system (CNS) to the pro‐ and mesothoracic segments and the cephalopharyngeal skeleton (CPS) for third instar Calliphora larvae. Due to the complex branching pattern we introduce a nomenclature that labels side branches of first and second order. Two fine nerves that were not yet described are briefly introduced. One paired nerve projects to the ventral arms (VAs) of the CPS. The second, an unpaired nerve, projects to the ventral surface of the cibarial part of the esophagus (ES). Both nerves were tentatively labeled after the structures they innervate. The antennal nerve (AN) innervates the olfactory dorsal organ (DO). It contains motor pathways that project through the frontal connectives (FC) to the frontal nerve (FN) and innervate the cibarial dilator muscles (CDM) which mediate food ingestion. The maxillary nerve (MN) innervates the sensory terminal organ (TO), ventral organ (VO), and labial organ (LO) and comprises the motor pathways to the mouth hook (MH) elevator, MH depressor, and the labial retractor (LR) which opens the mouth cavity. An anastomosis of unknown function exists between the AN and MN. The prothoracic accessory nerve (PaN) innervates a dorsal protractor muscle of the CPS and sends side branches to the aorta and the bolwig organ (BO) (stemmata). In its further course, this nerve merges with the prothoracic nerve (PN). The architecture of the PN is extremely complex. It innervates a set of accessory pharyngeal muscles attached to the CPS and the body wall musculature of the prothorax. Several anastomoses exist between side branches of this nerve which were shown to contain motor pathways. The mesothoracic nerve (MeN) innervates a MH accessor and the longitudinal and transversal body wall muscles of the second segment. J. Morphol. 271:969–979, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
The cutaneous nerves of rat, cat, guinea pig, pig, and man were studied by immunocytochemistry to compare the staining potency of general neural markers and to investigate the density of nerves containing peptides. Antiserum to protein gene product 9.5 (PGP 9.5) stained more nerves than antisera to neurofilaments, neuron-specific enolase (NSE), and synaptophysin or histochemistry for acetylcholinesterase (AChE). Peptidergic axons showed species variation in density of distribution and were most abundant in pig and fewest in man. However, the specific peptides in nerves innervating the various structures were consistent between species. Nerve fibers immunoreactive for calcitonin gene-related peptide (CGRP) and/or vasoactive intestinal polypeptide (VIP) predominated in all the species; those immunoreactive to tachykinins (substance P and neurokinin A [NKA]) and neuropeptide tyrosine (NPY) were less abundant. Neonatal capsaicin, at the doses employed in this study, destroyed approximately 70% of CGRP- and tachykinin-immunoreactive sensory axons; whereas 6-hydroxydopamine (6-OHDA) at the doses employed resulted in a complete loss of NPY and tyrosine hydroxylase (TH) immunoreactivity without affecting VIP, CGRP, and tachykinins. Thus, this study confirms that antiserum to PGP 9.5 is the most suitable and practical marker for the demonstration of cutaneous nerves. Species differences exist in the density of peptidergic innervation, but apparently not for specific peptides. Not all sensory axons immunoreactive for CGRP and substance P/NKA are capsaicin-sensitive. However, all sympathetic TH- and NPY-immunoreactive axons are totally responsive to 6-OHDA; but no change was seen in VIP-immunoreactive axons, suggesting some demarcation of cutaneous adrenergic and cholinergic sympathetic fibers.  相似文献   

18.
The distribution of calcitonin gene-related peptide (CGRP), substance P/tachykinin (SP/TK), vasoactive intestinal polypeptide (VIP), neuropeptide Y (NPY) and gastrin-releasing peptide (GRP) immunreactivities (IR) in the rat pancreas was investigated using radioimmunoassay and immunohistochemistry. CGRP, NPY and VIP tissue contents are much higher than GRP and SP/TK concentrations. Peptide-containing nerves are distributed to both the exocrine and endocrine pancreas. However, differences exist in terms of density and targets of innervation for each peptidergic system. In the acini and through the stroma, fibers IR for CGRP, NPY and VIP are greater than GRP- and SP/TK-containing processes. The vasculature is supplied by a prominent NPY, CGRP and, to a lesser extent, SP/TK innervation. VIP-IR is found occasionally, and GRP-IR is never detected, in fibers associated with blood vessels. Around ducts, CGRP- and NPY-positive neurites are greater than SP/TK- greater than or equal to VIP-IR fibers, whereas GRP-containing nerves are not visualized. In the islets, the density of peptidergic nerves is: VIP-, GRP- greater than or equal to CGRP-IR greater than NPY or SP/TK. In intrapancreatic ganglia. VIP- and, to a lesser extent, NPY-IRs are found in numerous neuronal cell bodies and in nerve fibers; GRP-IR is present in numerous nerve processes and in few cell bodies; CGRP- and SP/TK-IRs are detected only in fibers wrapping around unlabeled ganglion cells. The majority of CGRP-IR fibers contain SP/TK-IR. The existence of differential patterns of peptidergic nerves suggests that peptides exert their effects on pancreatic functions via different pathways.  相似文献   

19.
Autonomic innervation of the prostate gland supplies the acini, and non-vascular and vascular smooth muscle. The activity of each of these tissues is enhanced by sympathetic outflow, whereas the role of the parasympathetic nervous system in this organ is unclear. In the present study, a range of methods was applied in rats to determine the location of autonomic neurons supplying this gland, the immunohistochemical properties of these neurons, the spinal connections made with the postganglionic pathways and the distribution of various axon types within the gland. Injection of the retrograde tracer, FluoroGold, into the ventral gland visualised neurons within the major pelvic ganglion and sympathetic chain. Fluorescence immunohistochemical studies on the labelled pelvic neurons showed that most were noradrenergic (also containing neuropeptide Y, NPY), the others being non-noradrenergic and containing either vasoactive intestinal peptide (VIP) or NPY. Sympathetic dyelabelled neurons were identified by the presence of varicose nerve terminals stained for synaptophysin on their somata following lesion of sacral inputs. Parasympathetic innervation of dye-labelled neurons was identified by continued innervation after hypogastric nerve lesion. Most noradrenergic prostate-projecting neurons were sympathetic, as were many of the non-noradrenergic VIP neurons. Parasympathetic prostate-projecting neurons were largely non-noradrenergic and contained either VIP or NPY. All substances found in retrogradely labelled somata were located in axons within the prostate gland but had slightly different patterns of distribution. The studies have shown that there are a significant number of non-noradrenergic sympathetic prostate-projecting neurons, which contain VIP.  相似文献   

20.
The aim of experiments was to characterize the neurons of the autonomic chain that innervates the nipple and the mammary gland of lactating rats using retrograde transynaptic virus labeling and neurotransmitter and neuropeptide immunohistochemistry. Two days after injection of green fluorescence protein labeled virus in two nipples and underlying mammary glands, labeling was observed in the ipsilateral paravertebral sympathetic trunk and the lateral horn. Three days after inoculation the labeling appeared in the brain stem and the hypothalamic paraventricular nucleus. Above the spinal cord the labeling was bilateral. A subpopulation of virus labeled cells in the paraventricular nuclei synthesized oxytocin. Labeled neurons in the lateral horn showed cholinergic immunoreactivity. These cholinergic neurons innervated the paravertebral ganglia where the virus labeled neurons were partially noradrenergic. The noradrenergic fibers in the mammary gland innervate the smooth muscle wall of vessels, but not the mammary gland in rats. The neurons in the lateral horn receive afferents from the brain stem, and paraventricular nucleus and these afferents are noradrenergic and oxytocinergic. New findings in our work: Some oxytocinergic fibers may descend to the neurons of the lateral horn which innervate noradrenergic neurons in the paravertebral sympathetic trunk, and in turn these noradrenergic neurons reach the vessels of the mammary gland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号