首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Subacute sclerosing panencephalitis is a slowly progressing fatal human disease of the central nervous system which is a delayed sequel of measles virus (MV) infection. A typical pathological feature of this disease is the presence of viral ribonucleocapsid structures in the form of inclusion bodies and the absence of infectious virus or budding viral particles. The mechanisms governing the establishment and maintenance of a persistent MV infection in brain cells are still largely unknown. To understand the mechanisms underlying MV persistence in neuronal cells, a tissue culture model was studied. Clone NS20Y/MS of the murine neuroblastoma C1300 persistently infected with the wild-type Edmonston strain of MV secretes relatively high levels of alpha/beta interferon (IFN). As shown previously, treatment of the persistently infected cultures with anti-IFN serum converted the persistent state into a productive infection indicated by the appearance of multinucleated giant cells. In this study, we have investigated whether alpha/beta IFN produced by NS20Y/MS cells activates cellular protein tyrosine kinases which will induce tyrosine phosphorylating activity specific to virus-infected cells. We present data to show augmented protein tyrosine kinase activity in the persistently infected cells. We demonstrate that the MV N protein is phosphorylated on tyrosine in addition to serine and threonine in the persistent state but not in NS20Y cells acutely infected with MV.  相似文献   

2.
E Norrby 《Microbios》1972,5(17):31-40
  相似文献   

3.
4.
We report an analysis of the interaction between the P protein and the RNA-associated N protein (N-RNA) for both measles and mumps viruses with proteins produced in a bacterial expression system. During this study, we verified that the C-terminal tail of the N protein is not required for nucleocapsid formation. For both measles and mumps virus N, truncated proteins encompassing amino acids 1 to 375 assemble into nucleocapsid-like particles within the bacterial cell. For measles virus N, the binding site for the P protein maps to residues 477 to 505 within the tail of the molecule, a sequence relatively conserved among the morbilliviruses. For mumps virus N, a binding site for the P protein maps to the assembly domain of N (residues 1 to 398), while no strong binding of the P protein to the tail of N was detected. These results suggest that the site of attachment for the polymerase varies among the paramyxoviruses. Pulldown experiments demonstrate that the last 50 amino acids of both measles virus and mumps virus P (measles virus P, 457 to 507; mumps virus P, 343 to 391) by themselves constitute the nucleocapsid-binding domain (NBD). Spectroscopic studies show that the NBD is predominantly alpha-helical in both viruses. However, only in measles virus P is the NBD stable and folded, having a lesser degree of tertiary organization in mumps virus P. With isothermal titration calorimetry, we demonstrate that the measles virus P NBD binds to residues 477 to 505 of measles virus N with 1:1 stoichiometry. The dissociation constant (K(d)) was determined to be 13 microM at 20 degrees C and 35 microM at 37 degrees C. Our data are consistent with a model in which an alpha-helical nucleocapsid binding domain, located at the C terminus of P, is responsible for tethering the viral polymerase to its template yet also suggest that, in detail, polymerase binding in morbilliviruses and rubulaviruses differs significantly.  相似文献   

5.
Semliki Forest virus capsid (C) protein molecules (Mr, 33,000) can be introduced efficiently into the cytoplasm of various target cells by electroporation, liposome, and erythrocyte ghost-mediated delivery (M. Elgizoli, Y. Dai, C. Kempf, H. Koblet, and M.R. Michel, J. Virol. 63:2921-2928, 1989). Here, we show that the transferred C protein molecules partition rapidly from the cytosolic compartment into the nucleus. Transport of the C protein molecules into the nucleus was reversibly arrested by metabolic inhibitors, indicating that the transfer process is energy dependent. Fractionation of isolated nuclei revealed that the delivered C protein preferentially associates with the nucleoli. This finding was confirmed by morphological studies, showing that in an in vitro system containing ATP isolated nuclei rapidly accumulated rhodamine-labeled C protein in their nucleoli. Furthermore, in this assay system, the lectin wheat germ agglutinin prevented transfer of C protein through nuclear pores. These results are in agreement with our observation that nucleoli contain measurable amounts of newly synthesized C protein as early as 5 h after infection of cells with SFV. Thereafter, nucleolar-associated C protein increased progressively during the course of infection.  相似文献   

6.
Measles virus has a single‐stranded RNA genome that is organized into a helical complex by the viral N protein. The resulting structure is termed the nucleocapsid and is traversed by the viral polymerase during RNA synthesis. The P protein, the noncatalytic subunit of the polymerase, provides the “legs and feet” that allow the polymerase to walk along its protein‐RNA template. The polymerase feet are very simple three‐helix bundles, only 50 amino acids in size. Previously, we have shown that these feet grasp the viral N protein during movement by attaching to a short sequence (amino acids 487–503) within the disordered and surface‐exposed tail of N, causing it to fold into a helix. The result is a weak‐affinity complex with a short lifetime, which would allow the polymerase to take rapid steps forward. The structure of the complex was determined using X‐ray crystallography. This simple model of binding was challenged by a paper in this journal, claiming that a downstream sequence in the tail of N (amino acids 517–525) was also critical for the association. Its presence was reported to enhance the overall affinity of the polymerase feet for N by three orders of magnitude. We have, therefore, examined binding of the polymerase foot domain to amino acids 477–525 of N using quantitative biophysical techniques, and compared the results to our previous binding studies, performed using amino acids 477–505 of N. We find no evidence that the sequence downstream of amino acid 505 influences binding, validating the original single‐site binding model.  相似文献   

7.
8.
Measles virus nucleocapsid protein protects rats from encephalitis.   总被引:7,自引:6,他引:1  
Lewis rats immunized with recombinant vaccinia virus expressing the nucleocapsid (N) protein of measles virus were protected from encephalitis when subsequently challenged by intracerebral infection with neurotropic measles virus. Immunized rats revealed polyvalent antibodies to the N protein of measles virus in the absence of any neutralizing antibodies as well as an N protein-specific proliferative lymphocyte response. Depletion of CD8+ T lymphocytes did not abrogate the protective potential of the N protein-specific cell-mediated immune response in rats, while protection could be adoptively transferred with N protein-specific CD4+ T lymphocytes. These results indicate that a CD4+ cell-mediated immune response specific for the N protein of measles virus is sufficient to control measles virus infections of the central nervous system.  相似文献   

9.
Recombinant measles virus nucleoprotein-RNA (N-RNA) helices were analyzed by negative-stain electron microscopy. Three-dimensional reconstructions of trypsin-digested and intact nucleocapsids coupled to the docking of the atomic structure of the respiratory syncytial virus (RSV) N-RNA subunit into the electron microscopy density map support a model that places the RNA at the exterior of the helix and the disordered C-terminal domain toward the helix interior, and they suggest the position of the six nucleotides with respect to the measles N protomer.  相似文献   

10.
11.
Sendai virus nucleocapsid protein NP synthesized in the absence of other viral components assembled into nucleocapsid-like particles. They were identical in density and morphology to authentic nucleocapsids but were smaller in size. The reduction in size was probably due to the fact that they contained RNA only 0.5 to 2 kb in length. Nucleocapsid assembly requires NP-NP and NP-RNA interactions. To identify domains on NP protein involved in nucleocapsid formation, 29 NP protein mutants were tested for the ability to assemble. Any deletion between amino acid residues 1 and 399 abolished formation of nucleocapsid-like particles, but mutants within this region exhibited two different phenotypes. Deletions between positions 83 and 384 completely abolished all interactions. Deletions between residues 1 and 82 and between residues 385 and 399, at the N- and C-terminal ends of the region from 1 to 399, resulted in unstructured aggregates of NP protein, indicating only a partial loss of function. Deletions within the C-terminal 124 amino acids were the only ones that did not affect assembly. The results suggest that NP protein can be divided into at least two separate domains which function independently of each other. Domain I (residues 1 to 399) seems to contain all of the structural information necessary for assembly, while domain II (residues 400 to 524) is not involved in nucleocapsid formation.  相似文献   

12.
Synthetic gene for the hepatitis C virus nucleocapsid protein.   总被引:2,自引:0,他引:2       下载免费PDF全文
A synthetic gene encoding the hepatitis C virus (HCV) nucleocapsid protein was constructed and expressed in E. coli. To synthesize this gene, we developed a new method that results in the enzymatic synthesis of long polydeoxyribonucleotides from oligodeoxyribonucleotides. The method, designated as the 'Exchangeable Template Reaction' (ETR), uses oligonucleotides as templates for DNA polymerase. A special mechanism was designed to exchange the templates during the polymerase reaction. The mechanism relies on the formation of a single-stranded 3'-protrusion at the 'growing point' of the elongating DNA such that it can be subsequently annealed, in a sequence-specific manner, with the next synthetic oligonucleotide. When annealed to the 3'-protrusion, the added oligonucleotide becomes a template for DNA polymerase, and the protruding 3'-end of the double-stranded DNA is used as the primer. The HCV nucleocapsid gene was assembled with DNA ligase from three fragments synthesized by ETR. The data verify that this method is efficient. The main advantage of ETR is the ability to combine more than two oligonucleotides in one tube together with polymerase and an enzymatic activity that produces a 3'-protrusion (e.g., BstXI) rather than the sequential addition of each component. The data demonstrate that as many as five oligonucleotides can be used simultaneously, resulting in a synthesized DNA fragment of designed sequence. The synthetic gene expressed in E. coli produced a 27 kDa protein that specifically interacted with antibodies from sera obtained from HCV-infected individuals.  相似文献   

13.
Paget's disease (PD) of bone is characterized by increased activity of large abnormal osteoclasts (OCLs) which contain paramyxoviral nuclear and cytoplasmic inclusions. MVNP gene expression has been shown to induce pagetic phenotype in OCLs. We previously characterized the osteoclast inhibitory peptide-1 (OIP-1/hSca) which inhibits OCL formation/bone resorption. OIP-1 is a glycophosphatidylinositol (GPI)-linked membrane protein containing a 79 amino acid extra cellular peptide and a 32 amino acid carboxy terminal GPI-linked peptide (c-peptide) which is critical for OCL inhibition. In this study, we demonstrate that OIP-1 c-peptide significantly decreased (43%) osteoclast differentiation of peripheral blood mononuclear cells from patients with PD. Also, OIP-1 treatment to normal human bone marrow mononuclear cells transduced with the MVNP inhibited (41%) osteoclast precursor (CFU-GM) growth in methyl-cellulose cultures. We further tested if OIP-1 overexpression in the OCL lineage in transgenic mice inhibits MVNP stimulated OCL formation. MVNP transduction and RANKL stimulation of OIP-1 mouse bone marrow cells showed a significant decrease (43%) in OCL formation and inhibition (38%) of bone resorption area compared to wild-type mice. Western blot analysis identified that OIP-1 decreased (3.5-fold) MVNP induced TRAF2 expression during OCL differentiation. MVNP or OIP-1 expression did not affect TRAF6 levels. Furthermore, OIP-1 expression resulted in a significant inhibition of MVNP stimulated ASK1, Rac1, c-Fos, p-JNK, and NFATc1 expression during OCL differentiation. These results suggest that OIP-1 inhibits MVNP induced pagetic OCL formation/activity through suppression of RANK signaling. Thus, OIP-1 may have therapeutic utility against excess bone resorption in patients with PD.  相似文献   

14.
Amino acid sequence of the human respiratory syncytial (RS) virus nucleocapsid (NC) protein, deduced from the DNA sequence of a recombinant plasmid, is presented. The cDNA plasmid (pRSB11) has 1412 bp of RS viral NC sequence and lacks six nucleotides of the 5' end of mRNA. There is a single long open reading frame encoding 467 amino acids. This 51540 dal protein is rich in basic amino acids and has no homologies with other known viral capsid proteins.  相似文献   

15.
16.
17.
18.
Analysis of the radiolabeled tryptic peptides derived from the nucleocapsid proteins of two serotypes of mouse hepatitis virus showed each to have a small number of unique peptides; however, two biologically distinct variants of the JHM strain appeared identical. Analysis of [32P]-labeled nucleocapsid-derived peptides showed that phosphorylation occurs at only a few sites and that all three viruses differed in the sites of phosphorylation. No differences in the sites of phosphorylation were found between the nucleocapsid proteins derived from purified virions and the membranes or the cytosol of infected cells, suggesting that post-translational phosphorylation plays no role in the regulation of viral assembly. These data show unequivocal evidence that the nucleocapsid proteins of mouse hepatitis virus strains differ in the sites of phosphorylation.  相似文献   

19.
Low stability of nucleocapsid protein in SARS virus   总被引:2,自引:0,他引:2  
Wang Y  Wu X  Wang Y  Li B  Zhou H  Yuan G  Fu Y  Luo Y 《Biochemistry》2004,43(34):11103-11108
The nucleocapsid protein (N protein) is one of the major virion structural proteins of a newly identified coronavirus, which has been confirmed as the causative agent of severe acute respiratory syndrome (SARS). The major function of N protein is to assemble the RNA of coronavirus. In the present study, the gene encoding the N protein was cloned and the protein was expressed, purified, and refolded as shown by (1)H NMR measurement. The maximal Trp emission wavelength occurs near 331 nm, suggesting substantial burial of Trp residues. Circular dichroism measurements indicate that N protein contains little alpha-helical structure. Acid titration shows that N protein begins to unfold near pH 5 and is fully denatured near pH 2.7, and the acid unfolding process is reversible. The physical and chemical properties of N protein indicate that its stability is low. N protein is denatured reversibly at pH 7.4 either by urea (with C(m) of 2.77 M and m value of 2.74 kcal mol(-1) M(-1)) or GdmCl (with C(m) of 1.46 M and m value of 4.50 kcal mol(-1) M(-1)). In the heat-induced denaturation in phosphate-buffered saline buffer, N-protein starts to unfold at 35 degrees C and is completely denatured at 55 degrees C, where SARS virus was also reported to be inactivated. We propose that the low stability of N protein may be critical for the stability and function of SARS virus.  相似文献   

20.
Summary Various insect cell lines were grown as suspension cultures in spinner vessels and infected with a recombinant baculovirus vector expressing the measles virus nucleoprotein. The highest yields of recombinant protein production were achieved using Trichoplusia ni (BTI-Tn 5B1-4) cells growing as natural aggregates in suspension and cell line Mb as a single cell suspension culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号