共查询到20条相似文献,搜索用时 15 毫秒
1.
Mori T Kitano K Terawaki S Maesaki R Fukami Y Hakoshima T 《The Journal of biological chemistry》2008,283(43):29602-29612
CD44 is an important adhesion molecule that functions as the major hyaluronan receptor which mediates cell adhesion and migration in a variety of physiological and pathological processes. Although full activity of CD44 requires binding to ERM (ezrin/radixin/moesin) proteins, the CD44 cytoplasmic region, consisting of 72 amino acid residues, lacks the Motif-1 consensus sequence for ERM binding found in intercellular adhesion molecule (ICAM)-2 and other adhesion molecules of the immunoglobulin superfamily. Ultracentrifugation sedimentation studies and circular dichroism measurements revealed an extended monomeric form of the cytoplasmic peptide in solution. The crystal structure of the radixin FERM domain complexed with a CD44 cytoplasmic peptide reveals that the KKKLVIN sequence of the peptide forms a beta strand followed by a short loop structure that binds subdomain C of the FERM domain. Like Motif-1 binding, the CD44 beta strand binds the shallow groove between strand beta5C and helix alpha1C and augments the beta sheet beta5C-beta7C from subdomain C. Two hydrophobic CD44 residues, Leu and Ile, are docked into a hydrophobic pocket with the formation of hydrogen bonds between Asn of the CD44 short loop and loop beta4C-beta5C from subdomain C. This binding mode resembles that of NEP (neutral endopeptidase 24.11) rather than ICAM-2. Our results reveal a characteristic versatility of peptide recognition by the FERM domains from ERM proteins, suggest a possible mechanism by which the CD44 tail is released from the cytoskeleton for nuclear translocation by regulated intramembrane proteolysis, and provide a structural basis for Smad1 interactions with activated CD44 bound to ERM protein. 相似文献
2.
R White S E Fawell M G Parker 《The Journal of steroid biochemistry and molecular biology》1991,40(1-3):333-341
Sequences essential for dimerisation have been identified in the hormone binding domain of the mouse oestrogen receptor by insertional and point mutagenesis and sequence comparisons reveal that equivalent residues may be conserved in other members of the nuclear hormone receptor superfamily. To assess functional compatibility of this region between members of the receptor superfamily, peptide sequences corresponding to the equivalent regions of the human androgen receptor and retinoic acid receptor have been substituted for the dimerisation domain of the mouse oestrogen receptor. The resulting chimeric proteins were analysed for high affinity DNA binding using a gel retardation assay and shown to bind with reduced affinity compared to the wild type oestrogen receptor. The reduction in DNA binding observed may result from the intramolecular incompatibility of functional elements within the hormone binding domain of nuclear hormone receptors. 相似文献
3.
4.
V N Dobrynin E F Boldyreva S A Filippov S A Chuvpilo V G Korobko 《Bioorganicheskaia khimiia》1987,13(1):119-121
A plasmid vector (pEK1) coding, in framework of beta-galactosidase gene, for the amino acid sequence (Asp)4Lys which is recognized by bovine enteropeptidase has been constructed. Using this vector and chemically synthesized DNA coding for the [Leu5]-enkephalin, a plasmid (pEK-ENK) has been obtained in which the beta-galactosidase gene is fused, through the enteropeptidase linker, with the gene for [Leu5]enkephalin. The chimeric protein produced by expression of this plasmid has been isolated and then cleaved by the enteropeptidase to give [Leu5]enkephalin with the yield 74%. 相似文献
5.
6.
7.
Ahmi Ben-Yehudah Rami Aqeilan Ruth Belostotsky Yehudith Azar Haya Lorberboum-Galski 《Biochemical and biophysical research communications》2002,290(1):332-338
We recently designed and constructed chimeric proteins for the elimination of specific cell populations. These chimeric proteins are composed of a targeting component fused to an apoptotic protein as the killing moiety. However, chimeric proteins can serve not only to eliminate cell populations, but also as "biological tools" for studying the fate of endogenous proteins. We show here that upon entering their target cell, a variety of chimeric proteins composed of an endogenous protein as their killing moiety reach the subcellular location of their endogenous counterpart. In contrast, bacterial-based killing domains head for the subcellular site of their substrate. Moreover, the chimeric protein acts similarly to the endogenous protein, while causing the cell to die. Therefore, chimeric proteins may serve as a unique tool for investigating cellular proteins and their intracellular localization, without the need to overexpress them. 相似文献
8.
Piepkorn M Hovingh P Bennett KL Linker A 《Biochemical and biophysical research communications》1999,257(3):839-842
Prior analyses of recombinant CD44 fusion proteins have indicated that combinatorial splicing of variant exons exerts distal effects on chondroitin sulfate content and structure, which may regulate the biological properties of the respective CD44 isoforms. The consequences of splicing of variant exons V4-7 on the heparan sulfate moieties were therefore examined, utilizing recombinant chimeras containing exons V3 and V8-10, engineered with or without exons V4-7 and expressed as Ig fusion proteins in COS cells. Splicing of exons V4-7, though they contain no consensus motifs for glycosaminoglycan assembly, resulted in markedly increased polymer sulfation levels of the heparan sulfates. The sulfate groups of both the CD44 V3-10 and V3,8-10 isoforms occurred as di- and tri-sulfated dissacharide units and were restricted to one N-sulfated block domain within the polymers. Compared to native human keratinocyte CD44, the recombinant heparan sulfates were relatively low in sulfate content. Our data indicate that variant exon V4-7 splicing exerts distal effects on the composition of this glycosaminoglycan. These effects may regulate those functions that are mediated through the heparan sulfate moieties, such as the binding of growth factors. 相似文献
9.
Heparan sulfate-modified CD44 promotes hepatocyte growth factor/scatter factor-induced signal transduction through the receptor tyrosine kinase c-Met 总被引:14,自引:0,他引:14
van der Voort R Taher TE Wielenga VJ Spaargaren M Prevo R Smit L David G Hartmann G Gherardi E Pals ST 《The Journal of biological chemistry》1999,274(10):6499-6506
CD44 has been implicated in tumor progression and metastasis, but the mechanism(s) involved is as yet poorly understood. Recent studies have shown that CD44 isoforms containing the alternatively spliced exon v3 carry heparan sulfate side chains and are able to bind heparin-binding growth factors. In the present study, we have explored the possibility of a physical and functional interaction between CD44 and hepatocyte growth factor/scatter factor (HGF/SF), the ligand of the receptor tyrosine kinase c-Met. The HGF/SF-c-Met pathway mediates cell growth and motility and has been implicated in tumor invasion and metastasis. We demonstrate that a CD44v3 splice variant efficiently binds HGF/SF via its heparan sulfate side chain. To address the functional relevance of this interaction, Namalwa Burkitt's lymphoma cells were stably co-transfected with c-Met and either CD44v3 or the isoform CD44s, which lacks heparan sulfate. We show that, as compared with CD44s, CD44v3 promotes: (i) HGF/SF-induced phosphorylation of c-Met, (ii) phosphorylation of several downstream proteins, and (iii) activation of the MAP kinases ERK1 and -2. By heparitinase treatment and the use of a mutant HGF/SF with greatly decreased affinity for heparan sulfate, we show that the enhancement of c-Met signal transduction induced by CD44v3 was critically dependent on heparan sulfate moieties. Our results identify heparan sulfate-modified CD44 (CD44-HS) as a functional co-receptor for HGF/SF which promotes signaling through the receptor tyrosine kinase c-Met, presumably by concentrating and presenting HGF/SF. As both CD44-HS and c-Met are overexpressed on several types of tumors, we propose that the observed functional collaboration might be instrumental in promoting tumor growth and metastasis. 相似文献
10.
The identification of a monoclonal antibody, AF3, which recognizes a single isoform of the cell surface protein CD44 and preferentially blocks binding of serotype 2 poliovirus to HeLa cells, suggested that CD44 might be an accessory molecule to Pvr, the cell receptor for poliovirus, and that it could play a role in the function of the poliovirus receptor site. We show here that only AF3 blocks binding of serotype 2 poliovirus to HeLa cells and, in contrast to a previously published report, that the anti-CD44 monoclonal antibodies A3D8 and IM7 are unable to block binding of poliovirus. To determine whether CD44 is involved in poliovirus infection, we analyzed the replication of all three serotypes of poliovirus in human neuroblastoma cells which lack or express CD44 and in mouse neuroblastoma cells which lack Pgp-1, the mouse homolog of human CD44, and which express Pvr. All three poliovirus serotypes replicate with normal kinetics and to normal levels in the absence or presence of CD44 or in the absence of Pgp-1. Furthermore, the binding affinity constants of all three poliovirus serotypes for Pvr are unaffected by the presence or absence of CD44 in the human neuroblastoma cell line. We conclude that CD44 and Pgp-1 are not required for poliovirus replication and are unlikely to be involved in poliovirus pathogenesis. 相似文献
11.
Kawano Y Okamoto I Murakami D Itoh H Yoshida M Ueda S Saya H 《The Journal of biological chemistry》2000,275(38):29628-29635
CD44 is a cell surface adhesion molecule for several extracellular matrix components. We previously showed that CD44 expressed in cancer cells is proteolytically cleaved at the ectodomain through membrane-anchored metalloproteases and that CD44 cleavage plays a critical role in cancer cell migration. Therefore, cellular signals that promote the migration and metastatic activity of cancer cells may regulate the CD44 ectodomain cleavage. Here, we demonstrate that the expression of the dominant active mutant of Ha-Ras (Ha-Ras(Val-12)) induces redistribution of CD44 to the newly generated membrane ruffling area and CD44 ectodomain cleavage. The migration assay revealed that the CD44 cleavage contributes to the Ha-Ras(Val-12)-induced migration of NIH3T3 cells on hyaluronate substrate. Treatment with LY294002, an inhibitor for phosphoinositide 3-OH kinase (PI3K), significantly inhibits Ha-Ras(Val-12)-induced CD44 cleavage, whereas that with PD98059, an inhibitor for MEK, does not. The active mutant p110 subunit of PI3K has also been shown to enhance the CD44 cleavage, suggesting that PI3K mediates the Ras-induced CD44 cleavage. Moreover, the expression of dominant negative mutants of Cdc42 and Rac1 inhibits the Ha-Ras(Val-12)-induced CD44 cleavage. These results suggest that Ras > PI3K > Cdc42/Rac1 pathway plays an important role in CD44 cleavage and may provide a novel molecular basis to explain how the activated Ras facilitates cancer cell migration. 相似文献
12.
H Ohno T Nakamura H Yagita K Okumura M Taniguchi T Saito 《Journal of immunology (Baltimore, Md. : 1950)》1991,147(7):2100-2106
We have investigated the role of CD2 molecules in Ag-specific T cell activation by using a mouse model system in which the function of CD2 can be analyzed without the apparent influence of major accessory molecules, such as CD4 or LFA-1. Transfection of the CD2 gene into a CD2- T cell hybridoma confers the enhancement of IL-2 production upon Ag stimulation. Anti-CD2 mAb inhibits the Ag-specific response of the CD2-transfectant, not only to the level of CD2- cells but to the background. B cells, but not MHC class II-transfected L cells, serve as APC to induce the inhibition of Ag response. The complete abrogation of the response is observed only upon the stimulation through TCR with Ag in the presence of APC but not through either TCR-CD3 or other molecules such as Thy-1. Furthermore, the inhibition can also be observed when anti-CD2 mAb is immobilized on culture plates, suggesting that the inhibition of Ag response results from transducing the negative signal through the CD2 molecule. The experiments on cytoplasmic domain-deleted CD2-transfected T cells reveal that the cytoplasmic portion is responsible for the CD2-mediated abrogation of Ag responses. These results imply that CD2 has important roles in T cell responses not only as an activation and adhesion molecule but also as a regulatory molecule of Ag-specific responses through the TCR. 相似文献
13.
The rat equilibrative nucleoside transporters rENT1 and rENT2 belong to a family of integral membrane proteins with 11 potential transmembrane segments (TMs) and are distinguished functionally by differences in sensitivity to inhibition by nitrobenzylthioinosine (NBMPR). Structurally, the proteins have a large glycosylated extracellular loop between TMs 1 and 2 and a large cytoplasmic loop between TMs 6 and 7. In the present study, we have generated chimeras between NBMPR-sensitive rENT1 and NBMPR-insensitive rENT2, using splice sites at rENT1 residues 99 (end of TM 2), 171 (between TMs 4 and 5), and 231 (end of TM 6) to identify structural domains of rENT1 responsible for transport inhibition by NBMPR. Transplanting the amino-terminal half of rENT2 into rENT1 rendered rENT1 NBMPR-insensitive. Domain swaps within the amino-terminal halves of rENT1 and rENT2 identified two contiguous regions, TMs 3-4 (rENT1 residues 100-171) and TMs 5-6 (rENT1 residues 172-231), as the major sites of NBMPR interaction. Since NBMPR is a nucleoside analogue and functions as a competitive inhibitor of zero-trans nucleoside influx, TMs 3-6 are likely to form parts of the substrate translocation channel. 相似文献
14.
During the past few years many chimeric proteins have been developed to target and kill cells expressing specific surface molecules. Generally, these molecules carry a bacterial or plant toxin that destroys the unwanted cells. The major obstacle in the clinical application of such chimeras is their immunogenicity and non-specific toxicity. We have developed a new generation of chimeric proteins, taking advantage of apoptosis-inducing proteins, such as the human Bax protein, as novel killing components. The first prototype chimeric protein, IL2-Bax, directed toward IL2R-expressing cells, was constructed, expressed in Escherichia coli and partially purified. IL2-Bax increased the population of apoptotic cells in a variety of target T cell lines, as well as in human fresh PHA-activated lymphocytes, in a dose-dependent manner and had no effect on cells lacking IL2R expression. The IL2-Bax chimera represents an innovative approach for constructing chimeric proteins comprising a molecule that binds a specific cell type and an apoptosis-inducing protein. Such new chimeric proteins could be used for targeted treatment of human diseases. 相似文献
15.
CD44 is the principal cell surface receptor for hyaluronate. 总被引:190,自引:0,他引:190
CD44 is a broadly distributed cell surface protein thought to mediate cell attachment to extracelular matrix components or specific cell surface ligands. We have created soluble CD44-immunoglobulin fusion proteins and characterized their reactivity with tissue sections and lymph node high endothelial cells in primary culture. The CD44 target on high endothelial cells is sensitive to enzymes that degrade hyaluronate, and binding of soluble CD44 is blocked by low concentrations of hyaluronate or high concentrations of chondroitin 4- and 6-sulfates. A mouse anti-hamster hyaluonate receptor antibody reacts with COS cells expressing hamster CD44 cDNA. In sections of all tissues examined, including lymph nodes and Peyer's patches, predigestion with hyaluronidase eliminated CD44 binding. 相似文献
16.
17.
Requirements for translocation of periplasmic domains in polytopic membrane proteins. 总被引:1,自引:1,他引:1 下载免费PDF全文
Periplasmic domains of cytoplasmic membrane proteins require export signals for proper translocation. These signals were studied by using a MalF-alkaline phosphatase fusion in a genetic selection that allowed the isolation of mislocalization mutants. In the original construct, alkaline phosphatase is fused to the second periplasmic domain of the membrane protein, and its activity is thus confined exclusively to the periplasm. Mutants that no longer translocated alkaline phosphatase were selected by complementation of a serB mutation. A total of 11 deletions in the amino terminus were isolated, all of which spanned at least the third transmembrane segment. This domain immediately precedes the periplasmic domain to which alkaline phosphatase was fused. Our results obtained in vivo support the model that amino-terminal membrane-spanning segments are required for translocation of large periplasmic domains. In addition, we found that the inability to export the alkaline phosphatase domain could be suppressed by a mutation, prlA4, in the secretion apparatus. 相似文献
18.
A fundamental role for protein-protein interactions in the organization of signal transduction pathways is evident. Anchoring, scaffolding and adapter proteins function to enhance the precision and directionality of these signaling events by bringing enzymes together. The cAMP signaling pathway is organized by A-kinase anchoring proteins. This family of proteins assembles enzyme complexes containing the cAMP-dependent protein kinase, phosphoprotein phosphatases, phosphodiesterases and other signaling effectors to optimize cellular responses to cAMP and other second messengers. Selected A-kinase anchoring protein signaling complexes are highlighted in this minireview. 相似文献
19.
CD44v6: a target for antibody-based cancer therapy 总被引:15,自引:0,他引:15
The human CD44 gene encodes type 1 transmembrane glycoproteins involved in cell-cell and cell-matrix interactions. The structural heterogeneity of the gene products is caused primarily by alternative splicing of at least 10 out of 20 exons. Certain CD44 variant isoforms, in particular those containing CD44 variant domain 6 (CD44v6), have been implicated in tumourigenesis, tumour cell invasion and metastasis. Here we will give an overview of immunohistochemically determined CD44v6 expression in human malignancies (primary epithelial and nonepithelial tumours as well as metastases) and normal tissues, and review several examples of the clinical use of CD44v6-specific antibodies. In nonmalignant tissues, CD44v6 expression is essentially restricted to a subset of epithelia. Intense and homogeneous expression of CD44v6 was reported for the majority of squamous cell carcinomas and a proportion of adenocarcinomas of differing origin, but was rarely seen in nonepithelial tumours. This expression pattern has made CD44v6 an attractive target for antibody-guided therapy of various types of epithelium-derived cancers.Abbreviations CD44 type 1 transmembrane glycoprotein, cell surface receptor for hyaluronate - CD44s (CD44H) standard form of CD44 - CD44v6 splice variant exon 6 of CD44 - CTC common toxicity criteria - 2F10, VFF4, VFF7, VFF18 (BIWA 1), U36, V6B3, HB-256, Var 3.1 monoclonal antibodies targeting the CD44v6 antigen - SCC squamous cell carcinoma 相似文献
20.
The cytoadhesion of Plasmodium falciparum-infected erythrocytes (IEs) in organ microvessels is a key event in the pathogenesis of cerebral malaria and pulmonary edema. Identification of the molecules involved in the interaction between IEs and endothelial cells has been a major goal of research into severe forms of malaria. In contrast, the consequences of cytoadhesion for endothelial cells have been largely ignored. By combining phenotypic selection, cytoadhesion assays and flow cytometry, we demonstrated that the cytoadhesion of CSA-binding IEs inhibited the cytoadhesion of CD36-binding IEs. We identified CD44 as a signal receptor for CSA-binding IEs cytoadhesion, and demonstrated that the signal was transduced to CD36 through a pathway involving the Src-kinase family and MEK. CD36-mediated cytoadhesion was modulated independently of changes in CD36 expression. These results provide the first evidence that some IEs can downregulate the cytoadhesion of IEs of another phenotype, by modifying endothelial cells via a signaling pathway relating CD44 to CD36. Mimicking this phenomenon may constitute an interesting therapeutic strategy for inhibiting the adhesion of CD36-binding IEs -- the most abundant phenotype among field isolates -- and promoting their degradation in the spleen. 相似文献