首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dopamine transporter mRNA levels in the rat substantia nigra were quantified using a sensitive nuclease protection assay with a highly homologous human dopamine transporter cDNA clone. The same probe was also used to visualize dopamine transporter mRNA in the substantia nigra by in situ hybridization. Repeated cocaine administration (15 mg/kg, twice a day for 6.5 days) resulted in a greater than 40% decrease in nigral dopamine transporter mRNA levels. In contrast, dopamine transporter mRNA levels were unchanged after either acute treatment (4 h before death) or repeated cocaine treatment followed by a 72-h withdrawal period. Thus, blockade of the dopamine transporter by repeated cocaine administration may result in the down-regulation of dopamine transporter gene expression in dopamine neurons.  相似文献   

2.
The activity of the dopamine transporter is an important mechanism for the maintenance of normal dopaminergic homeostasis by rapidly removing dopamine from the synaptic cleft. In kidney-derived COS-7, COS-1 and HEK-293 but not in other mammalian cell lines (CHO, Y1, Ltk-), we have characterized a putative functional dopamine transporter displaying a high affinity (Km approximately 250 nM) and a low capacity (approximately 0.1 pmol/10(5) cells/min) for [3H]dopamine uptake. Uptake displayed a pharmacological profile clearly indicative of the neuronal dopamine transporter. Estimated Ki values of numerous substrates and inhibitors for the COS-dopamine transporter and the cloned human neuronal transporter (human dopamine transporter) correlate well with the exception of a few notable compounds, including the endogenous neurotransmitter dopamine, the dopamine transporter inhibitor GBR 12,909 and the dopaminergic agonist apomorphine. As with native neuronal and cloned dopamine transporters, the uptake velocity was sodium-sensitive and reduced by phorbol ester pre-treatment. Two mRNA species of 3.8 and 4.0 kb in COS-7 cells were revealed by Northern blot analysis similar in size to that seen in native neuronal tissue. A reverse-transcribed PCR analysis confirmed the existence of a processed dopamine transporter. However, no immunoreactive proteins of expected dopamine transporter molecular size or [3H]WIN 35,428 binding activity were detected. A partial cDNA of 1.3 kb, isolated from a COS-1 cDNA library and encoding transmembrane domains 1-6, displayed a deduced amino acid sequence homology of approximately 96% to the human dopamine transporter. Taken together, the data suggest the existence of a non-neuronal endogenous high affinity dopamine uptake system sharing strong functional and molecular homology to that of the cloned neuronal dopamine transporter.  相似文献   

3.
Termination of dopamine neurotransmission is primarily controlled by the plasma membrane-localized dopamine transporter. In this study, we investigated how this transporter is regulated by tyrosine kinases in neuronal preparations. In rat dorsal striatal synaptosomes, inhibition of tyrosine kinases by genistein or tyrphostin 23 resulted in a rapid (5-15 min), concentration-dependent decrease in [(3)H]dopamine uptake because of a reduction in maximal [(3)H]dopamine uptake velocity and dopamine transporter cell surface expression. The reduced transporter activity was associated with a decrease in phosphorylated p44/p42 mitogen-activated protein kinases. In primary rat mesencephalic neuronal cultures, the tyrosine kinase inhibitors similarly reduced [(3)H]dopamine uptake. When cultures were serum-deprived, acute activation of tyrosine kinase-coupled TrkB receptors by 100 ng/mL brain-derived neurotrophic factor significantly increased [(3)H]dopamine uptake; the effects were complex with increased maximal velocity but reduced affinity. The facilitatory effect of brain-derived neurotrophic factor on dopamine transporter activity depended on both the mitogen-activated protein kinase and phosphatidylinositol 3-kinase pathways. Taken together, our results suggest that striatal dopamine transporter function and cell surface expression is constitutively up-regulated by tyrosine kinase activation and that brain-derived neurotrophic factor can mediate this type of rapid regulation.  相似文献   

4.
Abstract: To investigate the regulation of norepinephrine transporter mRNA in vivo, we analyzed the effects of reserpine on its expression in the rat adrenal medulla and locus ceruleus. First, PCR was used to clone a 0.5-kb rat cDNA fragment that exhibits 87% nucleotide identity to the corresponding human norepinephrine transporter cDNA sequence. In situ, the cDNA hybridizes specifically within norepinephrine-secreting cells, but in neither dopamine nor serotonin neurons, suggesting strongly it is a partial rat norepinephrine transporter cDNA. Reserpine, 10 mg/kg administered 24 h premortem, decreased steady-state levels of norepinephrine transporter mRNA in the adrenal medulla by ∼65% and in the locus ceruleus by ∼25%, as determined by quantitative in situ hybridization. Northern analysis confirmed the results of the in situ hybridization analysis in the adrenal medulla but did not detect the smaller changes observed in the locus ceruleus. Both analyses showed that reserpine increased tyrosine hydroxylase expression in the adrenal medulla and locus ceruleus. These results suggest that noradrenergic neurons and adrenal chromaffin cells can coordinate opposing changes in systems mediating catecholamine uptake and synthesis, to compensate for catecholamine depletion.  相似文献   

5.
6.
The human dopamine transporter was expressed in Xenopus laevis oocytes following injection of mRNA isolated from human brain substantia nigra. The specific accumulation of [3H]dopamine into these oocytes was time and Na+ dependent. Furthermore, [3H]dopamine accumulation was prevented by coincubation of oocytes with dopamine (100 microM) or with the dopamine uptake inhibitors GBR 12909 (1 microM) or cocaine (3 microM). In contrast, oocyte injection of mRNA isolated from human globus pallidus, an area devoid of dopamine neuron perikarya, did not elicit expression of the dopamine transporter. Oocyte expression of the human dopamine transporter can be used for the further characterization and cloning of this low-abundance membrane protein.  相似文献   

7.
Parkinson's disease is characterized by preferential degeneration of the dopamine-producing neurons of the brain stem substantia nigra. Imbalances between mechanisms governing dopamine transport across the plasma membrane and cellular storage vesicles increase the level of toxic pro-oxidative cytosolic dopamine. The microtubule-stabilizing protein p25α accumulates in dopaminergic neurons in Parkinson's disease. We hypothesized that p25α modulates the subcellular localization of the dopamine transporter via effects on sorting vesicles, and thereby indirectly affects its cellular activity. Here we show that co-expression of the dopamine transporter with p25α in HEK-293-MSR cells increases dopamine uptake via increased plasma membrane presentation of the transporter. No direct interaction between p25α and the dopamine transporter was demonstrated, but they co-fractionated during subcellular fractionation of brain tissue from striatum, and direct binding of p25α peptides to brain vesicles was demonstrated. Truncations of the p25α peptide revealed that the requirement for stimulating dopamine uptake is located in the central core and were similar to those required for vesicle binding. Co-expression of p25α and the dopamine transporter in HEK-293-MSR cells sensitized them to the toxicity of extracellular dopamine. Neuronal expression of p25α thus holds the potential to sensitize the cells toward dopamine and toxins carried by the dopamine transporter.  相似文献   

8.
X Wu  H H Gu 《Gene》1999,233(1-2):163-170
Drug abuse is a serious problem in the United States and in the world. Cocaine and amphetamines, widely used drugs of abuse, bind to dopamine (DA), serotonin, and norepinephrine transporters with high affinity and block their functions. It is believed that the dopamine transporter plays a key role in the mechanism of cocaine addiction. Because a good portion of our knowledge about drug addiction is derived from studying mouse as an animal model, it is essential to compare the properties of dopamine transporter from human and mouse. We report here the cloning of the mouse dopamine transporter (mDAT) cDNA and its expression and comparison with the human DAT. The 3.4 kilobase (kb) cDNA encodes a polypeptide that is 93.5% identical to the hDAT, with 619 amino acid residues and a calculated molecular weight of 68.8kDa. Dopamine transporters from mouse and human were stably expressed in the same parental MDCK cells and their properties were compared. The Michaelis-Menten constant Km values are 2.0 microM for mDAT and 2.4 microM for hDAT. Mouse and human DAT were also compared for drug inhibition profiles. Dopamine transporters from the two species have the same sensitivity to amphetamine (Kd: 0.75 microM) and bupropion (Kd: 1.5 microM). However, hDAT is more sensitive than mDAT to cocaine (Kd: 0.14 microM and 0. 29 microM respectively) and to ritalin (Kd: 0.038 microM and 0. 12 microM respectively). The cloning of mDAT cDNA provides an important tool for further study of the mechanism of drug addiction using mouse as an animal model.  相似文献   

9.
Using a degenerative probe designed according to the most conservative region of a known Lys- and His-specific amino acid transporter (LHT1) from Arabidopsis, we isolated a full-length cDNA named OsHT (histidine transporter of Oryza sativa L.) by screening the rice cDNA library. The cDNA is 1.3kb in length and the open reading frame encodes for a 441 amino acid protein with a calculated molecular mass of 49 kDa. Multiple sequence alignments showed that OsHT shares a high degree of sequence conservation at the deduced amino acid level with the Arabidopsis LHT1 and six putative lysine and histidine transporters. Computational analysis indicated that OsHT is an integral membrane protein with 11 putative transmembrane helices. This was confirmed by the transient expression assay because the OsHT-GFP fusion protein was, indeed, localized mainly in the plasma membrane of onion epidermal cells. Functional complementation experiments demonstrated that OsHT was able to work as a histidine transporter in Saccharomyces cerevisiae, suggesting that OsHT is a gene that encodes for a histidine transporter from rice.This is the first time that an LHT-type amino acid transporter gene has been cloned from higher plants other than A rabidopsis.  相似文献   

10.
The dopamine transporter is an essential component of the dopaminergic synapse. It is located in the presynaptic neurons and regulates extracellular dopamine levels. We generated a transgenic mouse line expressing the Cre recombinase under the control of the regulatory elements of the dopamine transporter gene, for investigations of gene function in dopaminergic neurons. The codon-improved Cre recombinase (iCre) gene was inserted into the dopamine transporter gene on a bacterial artificial chromosome. The pattern of expression of the bacterial artificial chromosome-dopamine transporter-iCre transgene was similar to that of the endogenous dopamine transporter gene, as shown by immunohistochemistry. Recombinase activity was further studied in mice carrying both the bacterial artificial chromosome-dopamine transporter-iCre transgene and a construct expressing the beta-galactosidase gene after Cre-mediated recombination. In situ studies showed that beta-galactosidase (5-bromo-4-chloroindol-3-yl beta-D-galactoside staining) and the dopamine transporter (immunofluorescence) had identical distributions in the ventral midbrain. We used this animal model to study the distribution of dopamine transporter gene expression in hypothalamic nuclei in detail. The expression profile of tyrosine hydroxylase (an enzyme required for dopamine synthesis) was broader than that of beta-galactosidase in A12 to A15. Thus, only a fraction of neurons synthesizing dopamine expressed the dopamine transporter gene. The bacterial artificial chromosome-dopamine transporter-iCre transgenic line is a unique tool for targeting Cre/loxP-mediated DNA recombination to dopamine neurons for studies of gene function or for labeling living cells, following the crossing of these mice with transgenic Cre reporter lines producing fluorescent proteins.  相似文献   

11.
Individuals with the plasmalemmal high-affinity carnitine transporter defect present with progressive infantile-onset carnitine-responsive cardiomyopathy, lipid storage myopathy, recurrent hypoglycemic hypoketotic encephalopathy, and failure to thrive. The carnitine uptake defect (CUD) has been documented in their cultured skin fibroblasts, lymphoblasts, and/or myoblasts. The cDNA encoding the high-affinity sodium-dependent human carnitine transporter OCTN2 has recently been cloned. We used the green fluorescent protein (GFP) as a living marker for positively transfected cells in our expression studies of the high-affinity carnitine transporter OCTN2 cDNA in cell lines with the CUD. Transfection of cell lines from 12 unrelated patients (nine fibroblast and three lymphoblastoid) with a GFP construct harboring the wild-type full-length OCTN2 cDNA was done using LipoTAXI. Transient and stable expression of the recombinant GFP-human carnitine transporter OCTN2 cDNA was surveyed, and transient transfection of the fibroblast and stable transfection of the lymphoblastoid cell lines were achieved. There was functional restoration of carnitine uptake in the transfected mutant cell lines, thereby confirming the identity of the transfected cDNA. In addition, we report the first demonstration of the subcellular localization of an in-frame fusion GFP-human high-affinity carnitine transporter OCTN2 protein in the plasma membrane by confocal laser-scanning fluorescence microscopy.  相似文献   

12.
It has been shown recently that the N-terminal domain of the dopamine transporter (DAT) plays a role in several transporter functions. Here we provide evidence for a possible cellular mechanism of how the N-terminus of dopamine transporter might be removed in vivo. We isolated a recombinant N-terminal protein region of human dopamine transporter and cleaved it with calpain protease. Peptide fragment analysis revealed the existence of two calpain cleavage sites at positions Thr43/Ser44 and Leu71/Ser72 of the DATN-terminus. We show that calpain activation in rat striatal synaptosomes leads to a rapid decrease of dopamine transporter N-terminal epitopes corresponding to the protein sequences removed by a calpain cleavage at Thr43/Ser44 and that the process is totally blocked by a calpain inhibitor. Calpain truncation of the DATN-terminus abolishes its interaction with the receptor of activated protein kinase C, RACK1 and removes protein sequences previously implicated in amphetamine-induced dopamine release, PKC-dependent endocytosis and the interaction of DAT with the dopamine D2 receptor. The above suggests that cleavage of DAT by calpain may significantly modify dopamine homeostasis under pathological or physiological conditions.  相似文献   

13.
A glucose transporter cDNA (GLUT) clone was isolated from mouse 3T3-L1 adipocytes and sequenced. The nucleotide and deduced amino acid sequences were, respectively, 95 and 99% homologous to those of the rat brain transporter. The mouse cDNA and a polyclonal antibody recognizing the corresponding in vitro translation product were used to compare changes in transporter mRNA and protein levels during differentiation, glucose starvation, and chronic insulin exposure of 3T3-L1 preadipocytes. The respective cellular content of transporter mRNA and protein were increased 6.6- and 7.8-fold during differentiation, and 3.8- and 2.5-fold from chronic insulin exposure of differentiated adipocytes. Glucose starvation increased transporter mRNA and protein levels 2.2- and 3.5-fold in undifferentiated preadipocytes and 1.8- and 3.1-fold in differentiated adipocytes. Starvation of undifferentiated cells completely converted the native transporter to an incompletely glycosylated form, while increasing basal transport rates 4.5-fold. Either full glycosylation is not required to produce a functionally active transporter, or starvation causes a unique predifferentiation induction of the normally absent "responsive" transporter. The changes in transporter protein expression elicited by differentiation were attributed primarily to increased rates of transporter synthesis, while the disproportionate changes in mRNA and protein expression from chronic insulin treatment and starvation suggested these conditions increase synthesis and decrease turnover rates in regulating transporter protein expression. Although chronic insulin exposure and glucose starvation each raised the expression of transporter protein greater than 3-fold and basal transport rates 2.5- to 4.5-fold, no significant increase in the insulin responsiveness of 3T3-L1 preadipocytes or differentiated adipocytes was observed. Thus, the changes in the transporter mRNA and protein expression observed in this study were most consistent with their being associated with the regulated expression of a basal or low level insulin-responsive transporter.  相似文献   

14.
Although L-DOPA is the drug of choice for Parkinson's disease, prolonged L-DOPA therapy results in decreased drug effectiveness and the appearance of motor complications. This may be due in part to the progressive loss of the enzyme, aromatic L-amino acid decarboxylase (AADC). We have developed an adeno-associated virus vector (AAV-hAADC) that contains human AADC cDNA under the control of the cytomegalovirus promoter. Infusion of this vector into the striatum of parkinsonian rats and monkeys improves L-DOPA responsiveness by improving AADC-mediated conversion of L-DOPA to dopamine. This is now the basis of a proposed therapy for advanced Parkinson's disease. A key concern has been that over-production of dopamine in striatal neurons could cause dopamine toxicity. To investigate this possibility in a controlled system, mixed striatal primary rat neuronal cultures were prepared. Exposure of cultures to high concentrations of L-DOPA induced the following changes: cell death in nigral and striatal neurons, aggregation of neurofilaments and focal axonal swellings, abnormal expression of DARPP-32, and activation of astroglia and microglial cells. Transduction of cultures with AAV-hAADC resulted in efficient and sustained neuronal expression of the AADC protein and prevented all the L-DOPA-induced toxicities. The protective effects were due primarily to AADC-dependent conversion of L-DOPA to dopamine and an increase in induction of vesicular monoamine transporter resulting in dopamine storage in cultured cells. These results suggest a neuroprotective role for AADC gene transfer against L-DOPA toxicity.  相似文献   

15.
Using a degenerative probe designed according to the most conservative region of a known Lys- and His-specific amino acid transporter (LHT 1) from Arabidopsis, we isolated a full-length cDNA named OsHT (histidine transporter of Oryza sativa L.) by screening the rice cDNA library. The cDNA is 1.3 kb in length and the open reading frame encodes for a 441 amino acid protein with a calculated molecular mass of 49 kDa. Multiple sequence alignments showed that OsHT shares a high degree of sequence conservation at the deduced amino acid level with the Arabidopsis LHT1 and six putative lysine and histidine transporters. Computational analysis indicated that OsHT is an integral membrane protein with 11 putative transmembrane helices. This was confirmed by the transient expression assay because the OsHT-GFP fusion protein was, indeed, localized mainly in the plasma membrane of onion epidermal cells. Functional complementation experiments demonstrated that OsHT was able to work as a histidine transporter in Saccharomyces cerevisiae, suggesting that OsHT is a gene that encodes for a histidine transporter from rice.This is the first time that an LHT-type amino acid transporter gene has been cloned from higher plants other than Arabidopsis.  相似文献   

16.
The dopamine transporter plays an essential role in the modulation of dopaminergic neurotransmission by mediating the reuptake of dopamine into presynaptic neurons. In cells expressing the dopamine transporter, activation of protein kinase C by phorbol esters results in a significant reduction in dopamine uptake. This phorbol ester-mediated inhibition of dopamine transport is associated with a decrease in V(max), although the apparent affinity of the transporter for dopamine remains unchanged. Using a green fluorescent protein-tagged dopamine transporter stably expressed in Madin-Darby canine kidney cells, we show in live cells that the decrease in transporter activity is caused by the rapid internalization of carriers from the plasma membrane. This redistribution of the transporter is specific to phorbol ester activation and is unaffected by the presence of either substrates or inhibitors of the carrier. Upon the addition of phorbol esters, transporters at the cell surface are rapidly endocytosed through a clathrin-mediated and dynamin-dependent mechanism into early endosomes, where they colocalize with transferrin. The internalized carrier is targeted to the endosomal/lysosomal pathway and is completely degraded within 2 h of protein kinase C activation. Phorbol ester-mediated alterations in the trafficking of the dopamine transporter may serve as a mechanism for controlling extracellular dopamine levels in the central nervous system.  相似文献   

17.
Gamma-aminobutyric acid (GABA) is the predominant inhibitory neurotransmitter in the mammalian brain. Although initially thought to be confined to the central nervous system, GABAergic activity has also been described in other tissues throughout the body. In the present study, we report the cloning and localization of human GABA transporter cDNA and document its expression in various human tissues. A human liver cDNA library was initially screened by a 32P-labeled murine brain GABA transporter 3 (GAT-3) cDNA probe, and full-length cDNA was cloned by employing Marathon-Ready human kidney cDNA. The human GABA transporter cDNA encoded a 569 amino acid hydrophobic protein with 12 transmembrane domains (TMs). Search of published sequences revealed high homology with rat GAT-2, murine GAT-3 cDNA, human solute carrier family 6 member 13 (SLC6A13), and a human peripheral betaine/GABA transporter. Northern blot analyses demonstrated that the human GABA transporter is expressed strongly in the kidney and to a lesser extent in the liver and brain. The sequence was well matched with human chromosome 12p13.3, suggesting the human GABA transporter contains 14 exons. The above findings confirm the existence of and further characterize a specific GABA transporter in human tissues.  相似文献   

18.
The dopamine transporter (DAT) removes dopamine from the extracellular milieu and is potently inhibited by number of psychoactive drugs, including cocaine, amphetamines, and methylphenidate (Ritalin). Multiple lines of evidence demonstrate that protein kinase C (PKC) down-regulates dopamine transport, primarily by redistributing DAT from the plasma membrane to endosomal compartments, although the mechanisms facilitating transporter sequestration are not defined. Here, we demonstrate that DAT constitutively internalizes and recycles in rat pheochromocytoma (PC12) cells. Temperature blockades demonstrated basal internalization and reliance on recycling to maintain DAT cell surface levels. In contrast, recycling blockade with bafilomycin A1 significantly decreased transferrin receptor (TfR) surface expression but had no effect on DAT surface levels, suggesting that DAT and TfR traffic via distinct endosomal mechanisms. Kinetic analyses reveal robust constitutive DAT cycling to and from the plasma membrane, independent of transporter expression levels. In contrast, phorbol ester-mediated PKC activation accelerated DAT endocytosis and attenuated transporter recycling in a manner sensitive to DAT expression levels. These data demonstrate constitutive DAT trafficking and that PKC-mediated DAT sequestration is achieved by a combination of accelerated internalization and reduced recycling. Additionally, the differential sensitivity to expression level exhibited by constitutive and regulated DAT trafficking suggests that these two processes are mediated by independent cellular mechanisms.  相似文献   

19.
D(3) dopamine receptors are expressed by dopamine neurons and are implicated in the modulation of presynaptic dopamine neurotransmission. The mechanisms underlying this modulation remain ill defined. The dopamine transporter, which terminates dopamine transmission via reuptake of released neurotransmitter, is regulated by receptor- and second messenger-linked signaling pathways. Whether D3 receptors regulate dopamine transporter function is unknown. We addressed this issue using a fluorescent imaging technique that permits real time quantification of dopamine transporter function in living single cells. Accumulation of the fluorescent dopamine transporter substrate trans-4-[4-(dimethylamino)styryl]-1-methylpyridinium (ASP(+)) in human embryonic kidney cells expressing human dopamine transporter was saturable and temperature-dependent. In cells co-expressing dopamine transporter and D3 receptors, the D2/D3 agonist quinpirole produced a rapid, concentration-dependent, and pertussis toxin-sensitive increase of ASP(+) uptake. Similar agonist effects were observed in Neuro2A cells and replicated in human embryonic kidney cells using a radioligand uptake assay in which binding to and activation of D3 receptors by [(3)H]dopamine was prevented. D3 receptor stimulation activated phosphoinositide 3-kinase and MAPK. Inhibition of either kinase prevented the quinpirole-induced increase in uptake. D3 receptor activation differentially affected dopamine transporter function and subcellular distribution depending on the duration of agonist exposure. Biotinylation experiments revealed that the rapid increase of uptake was associated with increased cell surface and decreased intracellular expression and increased dopamine transporter exocytosis. In contrast, prolonged agonist exposure reduced uptake and transporter cell surface expression. These results demonstrate that D3 receptors regulate dopamine transporter function and identify a novel mechanism by which D3 receptors regulate extracellular dopamine concentrations.  相似文献   

20.
A cDNA encoding a high-affinity Na(+)/anion(-)-dependent octopamine transporter (OAT) was isolated via an RT-PCR-based approach from caterpillars of the cabbage looper, Trichoplusia ni. The deduced amino acid sequence of the OAT cDNA predicts a 670 amino acid protein bearing strong homology to previously cloned monoamine transporters. The expression pattern of OAT mRNA in the central nervous system revealed by in situ hybridization closely resembles that of OA-ergic neurons identified by the presence of mRNA for tyramine beta-hydroxylase, a marker enzyme for OA-ergic neurons in invertebrates. In vitro, insect cells infected with OAT-expressing baculovirus accumulated both (3)H-OA and (3)H-dopamine with saturation kinetics typical of carrier-mediated processes. (3)H-dopamine uptake by OAT was most inhibited by tyramine, OA, dopamine and the tricyclic antidepressants desipramine and imipramine. Substitution studies for Na(+) and Cl(-) indicate that OAT has a strong requirement for Na(+) and a less stringent requirement for Cl(-). The pharmacological profile of OAT is distinct from those of other cloned monoamine transporters and makes OAT a potential target for neuro-active pest control agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号