首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relationship between the plasma membrane potential and activation of sperm motility and respiration, or induction of the acrosome reaction, was explored in sperm of the sea urchin Strongylocentrotus purpuratus. Plasma and mitochondrial membrane potentials were estimated by measuring the uptake of [14C]thiocyanate ( [14C]SCN-) and [3H]tetraphenylphosphonium ( [3H]TPP+) in intact sperm and sperm made permeant with digitonin. Mitochondrial potentials up to-185 mV were found, consistent with data for TPP+ uptake into mitochondria from other cell types. Values for TPP+ uptake corrected for mitochondrial accumulation and estimates of SCN- uptake both indicated that the plasma membrane potential was about -30 mV for actively respiring sperm in seawater and about -60 mV for quiescent sperm in Na+-free seawater. Activation of sperm motility and respiration induced by Na+ increased the intracellular pH and caused a depolarization of both the plasma membrane and mitochondrial potentials. However, membrane potential depolarization did not occur when the activation was induced by increased extracellular pH or by the peptide speract, although activation was always linked to increased intracellular pH. The acrosome reaction, on the other hand, was always associated with sperm plasma membrane potential depolarization, whether it was induced by the physiological effector from the egg surface or by several artificial triggering regimens. Thus, activation of respiration and motility is primarily controlled by increased intracellular pH (Christen, R., Schackmann, R. W., and Shapiro, B. M. (1982) J. Biol. Chem. 257, 14881-14890), whereas the acrosome reaction also requires depolarization of the plasma membrane potential.  相似文献   

2.
Changes in plasma membrane potential of isolated bovine adrenal chromaffin cells were measured independently by two chemical probe methods and related to corresponding effects on catecholamine secretion. The lipophilic cation tetraphenylphosphonium (TPP+) and the carbocyanine dye 3,3'-dipropylthiadicarbocyanine [DiS-C3-(5)] were used. The necessity of evaluating the subcellular distribution of TPP+ among cytoplasmic, mitochondrial, secretory granule, and bound compartments was demonstrated and the resting plasma membrane potential determined to be -55 mV. The relationship between membrane potential and catecholamine secretion was determined in response to variations in extracellular K+ and to the presence of several secretagogues including cholinergic receptor ligands, veratridine, and ionophores for Na+ and K+. The dependence of potential on K+ concentration fit the Goldman constant field equation with a Na/K permeability ratio of 0.1. The dependence of both K+- and veratridine-evoked catecholamine secretion on membrane potential exhibited a potential threshold of about -40 mV before a significant rise in secretion occurred. This is likely related to the threshold for opening of voltage-sensitive Ca2+ channels. Acetylcholine and nicotine evoked a large secretory response without a sufficiently sustained depolarization to be detectable by the relatively slow potential sensitive chemical probes. Decamethonium induced a detectable depolarization of the chromaffin cells. Veratridine and gramicidin evoked both membrane depolarization and catecholamine release. By contrast the K ionophore valinomycin evoked significant levels of secretion without any depolarization. This is consistent with its utilization of an intracellular source of Ca2+ and the independence of its measured secretory response on extracellular Ca2+.  相似文献   

3.
Using flow cytometric analysis and potential-sensitive fluorescent dye TMRM Ca2+ -induced changes of membrane potential of isolated smooth muscle mitochondria were studied. It was shown, that Ca2+ (100 microM) addition to the incubation medium induced mitochondrial membrane depolarization that probably could be explained by Ca2+/H+ -exchanger activation which functioning lead to membrane potential dissipation. In the case of ruthenium red (10 microM) preliminary presence in incubation medium, Ca2+ (100 microM) addition did not lead to membrane potential dissipation. Hence, membrane potential dissipation was caused by an increase of matrix Ca2+ concentration. In the presence of Mg2+ (3 mM) and ATP (3 mM), Ca2+ addition did not cause depolarization. It was supposed that in this case ATP synthase acted in the opposite direction as H+ -pump and prevented from mitochondrial membrane potential dissipation. Thus, the flow cytometry method allows to register membrane potential of isolated smooth muscle mitochondria and also to test the effectors, capable to modulate this parameter.  相似文献   

4.
(1) A method is presented for continuous and simultaneous monitoring of the 'in situ' mitochondrial membrane potential (delta psi m) and respiration rate of Ehrlich ascites tumor cells. The method involves permeabilization of the plasma membrane, achieved by treatment with low digitonin concentration, and the use of a TPP+ selective electrode attached to an oxygraph vessel. Binding of the probe inside the cells was analyzed assuming a proportional relationship between the amount of bound TPP+ and the free concentration of the lipophilic cation. (2) Evidence is reported that the addition of glucose to digitonin-permeabilized Ehrlich ascites tumor cells causes a decrease of mitochondrial membrane potential that coincided with a transient enhancement of the respiration rate and remained unchanged during the subsequent Crabtree effect. We have characterized the effect of glucose on delta psi m by determining its dependent on the glycolytic pathway and its sensitivity towards oligomycin. The mutual relationships between glucose and ADP effects on the mitochondrial membrane potential were also studied. A plausible mechanism underlying the depolarization of mitochondrial membrane induced by glucose is presented.  相似文献   

5.
Receptor-mediated changes in plasma membrane potential were recorded in rat basophilic leukemia (RBL) cells with the potential-sensitive fluorescent indicator bis-oxonol. Depolarization of the mitochondria with metabolic inhibitors was not detected by bis-oxonol, suggesting that only potential changes across the plasma membrane were being measured. The resting membrane potential of RBL cells was largely generated by the equilibrium distribution of K+ and not through electrogenic activity of the sodium pump. Depolarization was maintained as long as IgE receptors remained aggregated. We believe that at physiologic calcium concentrations a large portion of the measured potential change may be due to calcium influx across the plasma membrane. Prevention of calcium influx by lanthanum, disruption of aggregated receptors, or prior depolarization in a high K+ saline solution completely inhibited the antigen-induced depolarization. The time course of the antigen-stimulated increase in bis-oxonol fluorescence was similar, but not identical, to the antigen-stimulated rise in cytoplasmic free ionized calcium measured with fura-2. Antigen-stimulated depolarization was inhibited by removing both calcium and sodium and could be restored by the addition of either ion. Reduction of total cellular adenosine triphosphate inhibited depolarization in response to antigen stimulation.  相似文献   

6.
Inducible and specific ion fluxes on plasma membranes represent very early events during elicitation of plant cells. The hierarchy of such ion fluxes involved is still unknown. The effect of Phytophthora sojae-derived beta-glucan elicitors on the plasma membrane potential as well as on surface K+, Ca2+, and H+ fluxes has been investigated on soybean roots using ion-selective microelectrodes. Beta-Glucans with different degrees of polymerization transiently depolarized the plasma membrane. The elicitor concentration necessary for half-maximal depolarization closely resembled the corresponding binding affinities of soybean root membranes toward the respective beta-glucans. Upon repeated elicitor treatment, the root cells responded partially refractory, suggesting a complex responsiveness of the system. Within the root hair space, characteristic decreasing K(+)- and Ca(2+)-free concentrations were induced by the elicitors, probably causing depolarization through the influx of positive charges. Whereas K+ fluxes were inverted after passing the K+ equilibrium (Nernst-) potential, Ca2+ influx continued. No anion fluxes sufficient to account for charge compensation were observed under the same experimental conditions. K+ and Ca2+ fluxes as well as depolarization were inhibited by 100 microM or less of the Ca2+ antagonist La3+. Contrasting other systems, in soybean the main cause for elicitor-induced plasma membrane depolarization is the activation of cation instead of anion fluxes.  相似文献   

7.
This study deals with the modulation of the plasma membrane potential (delta psi p) of murine erythroleukemia (MEL) cells by cell-substratum or cell-cell contact. delta psi p was determined by measuring the distribution of tetraphenylphosphonium (TPP+) across the plasma membrane; it appeared strongly, and inversely, influenced by the two types of cell contacts. Contact with the culture surface produced a delta psi p hyperpolarization directly proportional to average distance among the ideal centers of the cells on this surface (d) within the range 10-80 microns. A detailed mathematical analysis of the function delta psi p = f(d) is presented, as well as experiments involving the use of ionophores (valinomycin and A23187) and the conditioning of the culture surface. We concluded that the d-dependent hyperpolarization (dDH) was the result of a complex interplay between the activating properties of substratum on Ca2+-dependent K+ channels (KCa) and some substratum-adherent factors that are shed by MEL cells and antagonize KCa activation (substratum-attached cellular factors = SACF). By contrast, contact of the cells with each other, obtained by incubating MEL cells at d smaller than the average cell diameter (phi = 10 microns), produced a marked delta psi p depolarization. This intercellular contact-dependent depolarization (ICDD) was unaffected by valinomycin; it was abolished by substituting Na+ in the external medium with a nondiffusible cation (choline), which shows that ICDD was sustained by Na+ influxes, probably mediated by stretch-activated (s.a.) cation channels.  相似文献   

8.
This study employed confocal laser scanning microscopy to monitor the effect of H2O2 on cytosolic as well as mitochondrial calcium (Ca2+) concentrations, mitochondrial inner membrane potential (psi m) and flavine adenine dinucleotide (FAD) oxidation state in isolated mouse pancreatic acinar cells. The results show that incubation of pancreatic acinar cells with H2O2, in the absence of extracellular Ca2+ ([Ca2+],) led to an increase either in cytosolic and in mitochondrial Ca2+ concentration. Additionally, H2O2 induced a depolarization of mitochondria and increased oxidized FAD level. Pretreatment of cells with the mitochondrial inhibitors rotenone or cyanide inhibited the response induced by H2O2 on mitochondrial inner membrane potential but failed to block oxidation of FAD in the presence of H2O2. However, the H2O2-evoked effect on FAD state was blocked by pretreatment of cells with the mitochondrial uncoupler, carbonyl cyanide p-trifluoromethoxy-phenylhydrazone (FCCP). On the other hand, perfusion of cells with thapsigargin (Tps), an inhibitor of the SERCA pump, led to an increase in mitochondrial Ca2+ concentration and in oxidized FAD level, and depolarized mitochondria. Pretreatment of cells with thapsigargin inhibited H2O2-evoked changes in mitochondrial Ca2+ concentration but not those in membrane potential and FAD state. The present results have indicated that H2O2 can evoke marked changes in mitochondrial activity that might be due to the oxidant nature of H2O2. This in turn could represent the mechanism of action of ROS to induce cellular damage leading to cell dysfunction and generation of pathologies in the pancreas.  相似文献   

9.
Metabolically competent isolated cerebral cortical nerve terminals were used to determine the effects of triethyllead (TEL) and triethyltin (TET) on cytosolic free calcium ([Ca2+]c), on plasma and mitochondrial membrane potentials, and on oxidative metabolism. In the presence of physiological concentrations of extracellular ions, 20 microM TEL and 20 microM TET increase [Ca2+]c from 185 nM to 390 and 340 nM, respectively. A simultaneous depolarization of plasma membrane potential (delta psi p) by only 3-4 mV occurs, a drop which is insufficient to open the voltage-sensitive Ca2+ channels. In contrast, an instant and substantial depolarization of mitochondrial membrane potential (delta psi m) upon addition of TEL and TET is evident, as monitored with safranine O fluorescence. At the same concentration, TEL and TET stimulate basal respiration of synaptosomes by 45%, induce oxidation of endogenous NAD(P)H, and reduce the terminal ATP/ADP ratio by 45%. Thus, TEL and TET inhibit ATP production of intrasynaptosomal mitochondria by a mechanism consistent with uncoupling of oxidative phosphorylation. This bioenergetic effect by TEL and TET can be prevented by omitting external chloride, and a concomitant reduction of the increase in [Ca2+]c by about 60% is observed. Uncoupling of mitochondrial ATP synthesis from oxidation by TEL and TET, [corrected] a process that is dependent on external chloride, is the main mechanism by which they [corrected] increase [Ca2+]c.  相似文献   

10.
Glucose stimulation of insulin release involves metabolism of the sugar and elevation of cytoplasmic calcium (Ca2+i) in pancreatic B-cells. We compared the dynamic changes of metabolism (fluorescence of endogenous reduced pyridine nucleotides, NAD(P)H), membrane potential (intracellular microelectrodes), and Ca2+i (fura-2 technique), in intact mouse islets. Glucose (15 mM) sequentially triggered an increase in NAD(P)H fluorescence, a depolarization with electrical activity, and a rise in Ca2+i. The change in NAD(P)H was monophasic and regular, whereas the changes in membrane potential and Ca2+i were multiphasic, with steady-state regular oscillations of similar average frequencies (about 2.2/min). Digital image analysis revealed that Ca2+i oscillations were synchronous in all regions of the islets. Omission of extracellular Ca2+ abolished the rise in Ca2+i but not the increase in NAD(P)H. Both electrical and Ca2+i oscillations disappeared in low external Ca2+ (1 mM), and became larger but slower in high Ca2+ (10 mM). Sustained depolarization (by tolbutamide, arginine, or high K+) and hyperpolarization (by diazoxide) of B-cells caused sustained increases and decreases of Ca2+i, respectively. In conclusion, the changes in membrane potential induced by various secretagogues trigger synchronous changes in Ca2+i in all B-cells of the islets. The oscillatory pattern of the electrical and Ca2+i responses induced by glucose is not accompanied by and thus probably not due to similar oscillations of metabolism.  相似文献   

11.
Triggers of Jurkat T cell apoptosis include sphingosine and ceramide. Sphingosine and ceramide further inhibit capacitative Ca2+ entry (ICRAC), an effect leading to inactivation but not death of Jurkat T cells. Mitochondria are key organelles in the machinery leading to apoptosis and on the other hand have been shown to participate in the regulation of Ca2+ entry. The present experiments were performed to explore whether treatment of Jurkat T cells with sphingosine leads to apoptosis and reduced Ca2+ entry and whether those effects are sensitive to expression of the antiapoptotic protein Bcl2, localized in the outer mitochondrial membrane. Exposure of Jurkat T cells to 10 microM spingosine was according to DiOC6 fluorescence followed by mitochondrial depolarization and according to Fura-red/Fluo-3 fluorescence followed by decreased capacitative Ca2+ entry. Mitochondrial depolarization was significantly delayed in cells overexpressing wild type Bcl2 or Bcl2 targeted to the mitochondrial membrane, whereas no significant influence on mitochondrial depolarization was observed in cells expressing Bcl2 lacking the membrane targeting motif or Bcl2 targeted to the endoplasmatic reticulum. In contrast to mitochondrial potential, the blunting of capacitative Ca2+ entry following sphingosine treatment was not sensitive to mitochondrial Bcl2 expression. In conclusion sphingosine exposure leads to both, mitochondrial depolarization and inhibition of capacitative Ca2+ entry. Mitochondrial Bcl2 reverses the effect on mitochondria but not on Ca2+ entry and thus leads to dissociation of those two sequelae of sphingosine treatment.  相似文献   

12.
Rat cortical synaptosomes responded to a reduction of external Ca2+ from pCa 3.5 to pCa 4.8 in the absence of MgCl2 with a slight decrease of internal K+ and an increase of Na+. The effects were prevented by tetrodotoxin or millimolar concentrations of MgCl2. Further lowering of external pCa to 7.7 with N-hydroxyethylethylenediaminetriacetate evoked a rapid fall of internal K+, which was specifically blocked by Ruthenium Red; tetrodotoxin and nifedipine were ineffective. A linear relationship was established between K+ and methyltriphenylphosphonium cation distribution ratios by varying external pCa between 4.8 and 7.7, indicating that K+ efflux resulted from a depolarization of the plasma membrane. An increase of Na+ permeability was suggested by the synaptosomes' gain of Na+ and the disappearance of the depolarization in an Na+-free sucrose medium. According to the constant field equation, the permeability ratio PNa/PK increased from 0.029 at pCa4.8 to 0.090 at pCa 7.7 with plasma membrane potentials of -74mV and -47mV, respectively. Since the plasma membrane responded to variation of external Ca2+ activities in the micromolar range with a graded and sustained depolarization, the use of Ca2+ buffers to control membrane potentials is suggested.  相似文献   

13.
In this study the relationship between the efficiency of endoplasmic reticulum (ER) Ca2+ refilling and the extent of Ca2+ entry was investigated in endothelial cells. ER and mitochondrial Ca2+ concentration were measured using genetically encoded Ca2+ sensors, while the amount of entering Ca2+ was controlled by varying either the extracellular Ca2+ or the electrical driving force for Ca2+ by changing the plasma membrane potential. In the absence of an agonist, ER Ca2+ replenishment was fully accomplished even if the Ca2+ concentration applied was reduced from 2 to 0.5mM. A similar strong efficiency of ER Ca2+ refilling was obtained under condition of plasma membrane depolarization. However, in the presence of histamine, ER Ca2+ refilling depended on mitochondrial Ca2+ transport and was more susceptible to membrane depolarization. Store-operated Ca2+ entry (SOCE), was strongly reduced under low Ca2+ and depolarizing conditions but increased if ER Ca2+ uptake was blocked or if ER Ca2+ was released continuously by IP(3). A correlation of the kinetics of ER Ca2+refilling with cytosolic Ca2+ signals revealed that termination of SOCE is a rapid event that is not delayed compared to ER refilling. Our data indicate that ER refilling occurs in priority to, and independently from the cytosolic Ca2+ elevation upon Ca2+ entry and that this important process is widely achieved even under conditions of diminished Ca2+entry.  相似文献   

14.
Low concentrations of beta-bungarotoxin or bee-venom phospholipase A2 cause a progressive Ca2+-dependent increase in the proton permeability of the mitochondria within the synaptosomal cytosol, manifested as an increase in oligomycin-insensitive respiration and a partial depolarization of the mitochondrial membrane potential. This uncoupling appears to be a consequence of fatty acids liberated by phospholipase A2 activity at the plasma membrane, since it can be mimicked by the addition of oleate-albumin complexes, in which case there is no requirement for external Ca2+. Dendrotoxin does not affect the mitochondrial proton permeability in situ, but protects partially against the uncoupling action of beta-bungarotoxin. In contrast, this effect of bee-venom phospholipase A2 is unaffected by dendrotoxin. beta-Bungarotoxin, but not bee-venom phospholipase A2, induces a slow progressive depolarization of the plasma membrane. The action of beta-bungarotoxin at the plasma membrane appears not to be related to fatty acid production, since it is augmented rather than inhibited by raising albumin concentrations in the medium. It is concluded that beta-bungarotoxin has at least two actions on intact synaptosomes, both of which may involve interaction at the plasma membrane with a site common to dendrotoxin: first, a mitochondrial uncoupling mediated by fatty acids and, secondly, a depolarization at the plasma membrane.  相似文献   

15.
Signals of cytosolic Ca2+ (Ca2+c) and mitochondrial Ca2+ (Ca2+m) evoked by the activation of purinoreceptors of Ehrlich ascites tumor cells at different extents of inhibition of the mitochondrial Na+/Ca2+ exchanger by tetraphenylphosphonium (TPP+) were investigated. [Ca2+c] was measured by Fura-2 fluorescence, and [Ca2+m] changes were inferred from NAD(P)H fluorescence. The addition of ATP to the cell suspension induced a NAD(P)H response, which replicated Ca2+c signal with some retardation of the peak and a slower decay. In the presence of increasing TPP+ concentrations, NAD(P)H responses evidenced that the rate of [Ca2+m] decay strongly decreases, while the phase of initial rise does not change. The maximal TPP+ dose did not affect [Ca2+c] and NAD(P)H fluorescence in the resting state, as well as ATP-induced [Ca2+c] responses. These data are described in a mathematical model, which accounts for Ca2+ transport through the membranes of endoplasmic reticulum and mitochondria, as well as through the plasma membrane. The model indicates a low rate of the mitochondrial cycle of Ca2+ uptake/efflux at rest and a strong activation of the uptake with increasing [Ca2+c] to which a Hill coefficient of no less than 4 corresponds. Furthermore, the rise of the uptake rate changes in a short time to a decline, and the peak of the rate is markedly ahead of the peak of [Ca2+c].  相似文献   

16.
Quantitative studies of MCF-7 cells (derived from human breast adenocarcinoma) and CV-1 cells (from normal African green monkey kidney epithelium), using the permeant cationic compound tetraphenylphosphonium (TPP), in conjunction with fluorescence microscopy using rhodamine 123 (Rh123), indicate that the mitochondrial and plasma membrane potentials affect both uptake and retention of these compounds. Under conditions that depolarize the plasma membrane, uptake and retention of TPP and Rh123, driven only by the mitochondrial membrane potential, is greater in MCF-7 than in CV-1. An ionophore that dissipates the mitochondrial membrane potential of MCF-7 cells causes them to resemble CV-1 cells by decreasing uptake and retention. Hyperpolarizing the mitochondrial membrane of CV-1 increases accumulation and prolongs retention; hyperpolarization of the plasma membrane further heightens this effect, causing the uptake of CV-1 cells to resemble that of MCF-7 cells even more closely. The greater uptake and retention by MCF-7 appears to be a consequence of elevated mitochondrial and plasma membrane potentials. The plasma membrane potential affects mitochondrial retention of TPP and Rh123 and its role in enhancing the effect of a difference in mitochondrial membrane potential is explained.  相似文献   

17.
Cyclopiazonic acid (CPA), a fungal metabolite produced by Aspergillus and Penicillium, potentiated the accumulation of the quaternary cation tetraphenylphosphonium (TPP+) in cultured pig renal epithelial cells. This is the first report of a natural product mediating the tight and apparently nonsaturable binding of a membrane potential probe to subcellular compartments. The potentiated TPP+ accumulation was dose dependent, nonsaturable, and not a result of hyperpolarization across the plasma membrane. Cyclopiazonic acid-potentiated accumulation was completely inhibited by the protonophore carbonylcyanide-m-chlorophenylhydrazone (CCCP). Dinitrophenol (DNP), tetrahexylammonium (THA), and n-ethylmaleimide (NEM) were also effective inhibitors of CPA-potentiated TPP+ accumulation. Although CPA-potentiated TPP+ uptake appeared to be energy dependent, TPP+ efflux (in the presence of CCCP) from CPA-treated cells was incomplete and most of the TPP+ accumulated in the presence of CPA was tightly bound. Dicyclohexylcarbodiimide (DCC), verapamil, and monensin also stimulated TPP+ accumulation, but the TPP+ which accumulated in the presence of these compounds was not tightly bound. As with controls, fractionation of cells which had accumulated TPP+ in the presence of DCC, verapamil, or monensin always resulted in near complete recovery (greater than 93%) of the TPP+ in the cytosolic fraction, whereas with CPA, greater than 88% of the TPP+ was recovered noncovalently bound in the plasma membrane and mitochondrial fractions. These results are consistent with the hypothesis that CPA-potentiated TPP+ accumulation is a result of potentiated partitioning of TPP+ into the plasma membranes and mitochondria of LLC-PK1 cells.  相似文献   

18.
Effect of Bilirubin on the Membrane Potential of Rat Brain Synaptosomes   总被引:1,自引:0,他引:1  
The effect of the neurotoxic pigment bilirubin on the membrane potential of rat brain synaptosomes was studied by using the tetraphenylphosphonium ion (TTP+) technique. Bilirubin induces a rapid depolarization of synaptosomes, as reflected by an efflux of previously accumulated [3H]TTP+. This phenomenon persisted when the membrane potential across either the plasma membrane of the synaptosome or the inner membrane of the entrapped mitochondria was selectively depressed, thus indicating that both components of the synaptosomal membrane potential were affected by bilirubin. Bovine serum albumin, used at a albumin/bilirubin molar ratio of 1:1, had the capacity to completely prevent and reverse the effect of bilirubin. This fact demonstrates that the bilirubin-induced TPP+ release from synaptosomes is a reversible process that requires the presence of bilirubin interacting with the synaptosomal membranes. These results, together with the inhibition by bilirubin of [3H]TPP+ and [2-14C]acetate uptake by synaptosomal plasma membrane vesicles isolated from rat brain, suggest that bilirubin depresses the membrane potential across the synaptosomal plasma membrane by a mechanism involving alterations in ion permeability. This effect could be of relevance in the pathogenesis of bilirubin encephalopathy.  相似文献   

19.
Depolarization of plasma membrane potential has a potent inhibitory effect on divalent cation influx catalyzed by the carboxylic ionophores ionomycin and A23187. This effect is observed in different cell models and does not depend on either inhibition of Ca2+-activated cation channels or activation of Ca2+ extrusion mechanisms as suggested previously. A dependence of divalent cation influx on the magnitude of membrane potential is observed also in artificial liposomes. The inhibition of ionophore-dependent divalent cation transport by membrane potential depolarization can be modified varying the ionophore concentration and the external pH. These findings suggest that both neutral and positively charged ionophore-cation complexes can cross the plasma membrane and that their contribution to the overall transport process can be varied according to the experimental conditions.  相似文献   

20.
The role of the plasma membrane potential (delta psi p) in the commitment to differentiation of murine erythroleukemia (MEL) cells has been studied by analyzing the ionic basis and the time course of this potential in the absence or the presence of different types of inducers. delta psi p was determined by measuring the distribution of tetraphenylphosphonium (TPP+) across the plasma membrane and displayed a 22-hour depolarization phase (from -28 to +5 mV) triggered by factors contained in foetal calf serum (FCS) and followed by a nearly symmetrical repolarization phase. After measuring the electrochemical equilibrium potential of Na+, K+, and Cl-, the relative contribution of these ions to delta psi p was evaluated by means of ion substitution experiments and by the addition of ion flux inhibitors (tetrodotoxin [TTX], 4-acetoamide-4'-isothiocyanostilbene-2,2'-disulfonate [SITS]) and ionophores (Valinomycin, A23187). The Na+ contribution to delta psi p appeared negligible, the potential being essentially generated by K+ and Cl- fluxes. When evaluated by a new mathematical approach, the effects of Valinomycin and A23187 at different times of incubation provided evidence that both the depolarization and the repolarization phase were due to variations of the K+ permeability across the plasma membrane (PK) mediated by Ca2+-activated K+ channels. All the inducers tested (dimethylsulfoxide [DMSO], hexamethylen-bis-acetamide [HMBA], diazepam), although they did not modify the ionic basis of delta psi p, strongly attenuated the depolarization rate of this potential. This attenuation was not brought about when the inducers were added to noninducible MEL cell clonal sublines. Cell commitment occurred only during the depolarization phase and increased proportionally to the attenuation of this phase up to a threshold beyond which the further increase of the attenuation was associated with the inhibition of commitment. The major role of the inducers apparently consisted of the stabilization of the Ca2+-activated K+ channels, suggesting that a properly modulated delta psi p depolarization through these channels is primarily involved in the signal generation for MEL cell commitment to differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号