首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of bacterial lipopolysaccharide on the Fc-receptor-mediated respiratory burst in murine peritoneal macrophages has been examined. After treatment overnight with small quantities of LPS, macrophages exhibited dramatic diminution of their capacity to generate and secrete H2O2 when triggered with immune complexes. The effect of LPS treatment was dependent on the state of macrophage functional activation; only cells that were primed or fully activated in vivo or were treated with interferon-gamma in vitro were sensitive to this effect of LPS. The LPS-mediated loss of secretory function was both dose and time dependent and could be reproduced with the lipid A moiety of LPS. The effect was selective for H2O2 secretion triggered through the Fc receptor; the respiratory burst stimulated by phorbol diesters remained unaltered. Furthermore, LPS treatment did not alter either binding or ingestion of radiolabeled immune complexes in parallel with the change in H2O2 secretion, indicating that the suppressive effect was not due to compromised endocytic function. These results indicate that LPS treatment of primed macrophages regulates the function of Fc receptors and may uncouple receptor occupancy from generation and secretion of H2O2.  相似文献   

2.
To compare the kinetics of the O-2-generating enzyme in nonactivated and activated macrophages and granulocytes from the mouse peritoneal cavity, we sought conditions in which the activity of this enzyme in cell lysates was comparable to that in intact cells. Pretreatment of macrophages with 10 mM diethyldithiocarbamate inhibited endogenous superoxide dismutase by 70% and enhanced O-2 secretion up to 15-fold, so that it was comparable to H2O2 secretion. O-2 secretion was terminated by detergent lysis and reconstituted by addition of NAD(P)H to the lysates. Optimal detection of O-2 production in lysates depended on prior stimulation of the respiratory burst, lysis with 0.05% deoxycholate rather than any of 4 other detergents or sonication, acetylation of the cytochrome c used as an indicator, and addition of NADPH rather than NADH. Kinetic analysis using NADPH-reconstituted deoxycholate lysates, together with spectra of oxidized and reduced cells, failed to reveal either marked differences in the Vmax of the O-2-generating enzyme or correlations between O-2 secretion and cytochrome b559 content among 5 macrophage populations whose H2O2 secretion ranged from 0 to 365 nmol/90 min/mg of protein. In contrast, the Km of the oxidase for NADPH varied markedly and inversely with the capacity of the intact cells to secrete O-2 or H2O2: J774G8 histiocytoma cells, 1.43 mM; resident macrophages, 0.41 mM; proteose peptone-elicited macrophages, 0.20 mM; casein-activated macrophages, 0.05 mM; NaIO4-activated macrophages, 0.05 mM; and granulocytes, 0.04 mM. These results suggest that macrophage activation, a process that enhances oxygen-dependent antitumor and antimicrobial functions, may equip the cell to secrete increased amounts of reactive oxygen intermediates largely by increasing the affinity of the oxidase for NADPH.  相似文献   

3.
Alveolar macrophages (AM) are the first line of defense against infection in the lungs. We previously showed that the production of superoxide and hydrogen peroxide, i.e., the respiratory burst, is stimulated by adenine nucleotides (ADP > ATP) in rat AM through signaling pathways involving calcium and protein kinase C. Here, we further show that ADP induces a rapid increase in the tyrosine phosphorylation of several proteins that was reduced by the tyrosine kinase inhibitor genistein, which also inhibited the respiratory burst. Interestingly, ADP did not trigger the activation of the mitogen-activated protein kinases ERK1 and ERK2, or that of protein kinase B/AKT, a downstream target of the phosphatidylinositol 3-kinase (PI3K) pathway. This is in contrast to another stimulus of the respiratory burst, zymosan-activated serum (ZAS), which activates both the ERK and PI3K pathways. Thus, this study demonstrates that the receptor for ADP in rat AM is not coupled to the ERK and AKT pathways and, that neither the ERK pathway nor AKT is essential to induce the activation of the NAPDH oxidase by ADP in rat AM while tyrosine kinases appeared to be required. The rate and amount of hydrogen peroxide released by the ADP-stimulated respiratory burst was similar to that produced by ZAS stimulation. The absence of ERK activation after ADP stimulation therefore suggests that hydrogen peroxide is not sufficient to activate the ERK pathway in rat AM. Nonetheless, as hydrogen peroxide was necessary for ERK activation by ZAS, this indicates that, in contrast to ADP, ZAS stimulates a pathway that is targeted by hydrogen peroxide and leads to ERK activation.  相似文献   

4.
A factor in medium conditioned by mouse tumor cells was shown previously to suppress the capacity of mouse peritoneal macrophages to undergo a respiratory burst and to kill protozoal pathogens (macrophage deactivation factor, MDF). Recently, pure transforming growth factor-beta (TGF-beta) proved to be a potent macrophage deactivator as well. Two lines of evidence suggest that MDF is not identical with TGF-beta. First, rabbit anti-TGF-beta IgG neutralized the respiratory burst-suppressing activity of TGF-beta without affecting the bioactivity of MDF, even when the latter was treated with acid to activate potentially latent TGF-beta. Second, in contrast to MDF, which decreases the affinity of the NADPH oxidase for NADPH, permeabilized macrophages that had been deactivated with TGF-beta displayed the same Km and Vmax of the oxidase as activated macrophages. As with MDF, TGF-beta had no effect on two other potential control points over the secretion of respiratory burst products, namely, hydrogen peroxide catabolism or glucose uptake. Finally, neither MDF nor TGF-beta affected the extent or affinity of binding of phorbol diesters to macrophages, the activity or cofactor requirements for protein kinase C, or the ability of protein kinase C to translocate quantitatively from cytosol to membrane fractions in response to phorbol diesters. Thus, 1) MDF is not identical with TGF-beta, and 2) in contrast to the activation or deactivation of macrophages by numerous other agents, TGF-beta regulates macrophage respiratory burst capacity at a level other than the apparent affinity of the oxidase for its substrate.  相似文献   

5.
The capacity of macrophage colony-stimulating factor (M-CSF) to enhance respiratory burst activity in peritoneal macrophages was measured. Macrophages incubated for 48 hr or more with concentrated L cell-conditioned medium as a source of M-CSF released two to three times as much O2- in response to PMA as did unexposed macrophages. Stimulation was noted at concentrations of colony-stimulating activity from 0.1 to 2000 U/ml and was maximal at 10 to 100 U/ml. Purified, endotoxin-free CSF enhanced secretion to a similar degree as unpurified L cell-conditioned medium. Release of O2- by M-CSF macrophages occurred over 60 min and was triggered by opsonized zymosan as well as PMA. H2O2 release was also enhanced in macrophages exposed to both unpurified and purified M-CSF. These data indicate that M-CSF enhances the capacity of mature macrophages to release oxygen reduction products, and they are consistent with reports that CSF can stimulate the release of other secretory products.  相似文献   

6.
Activated T cells are known to stimulate macrophage oxidative metabolism and antimicrobial activity through release of interferon-gamma (IFN-gamma). In contrast, the role of nonactivated T cells in regulating macrophage effector functions is less well defined. We have previously reported that a low molecular weight soluble factor derived from resident (nonactivated) thymocytes enhances macrophage receptor-mediated phagocytosis. In the present study, we examined the capacity of resident murine thymocytes to stimulate the respiratory burst and microbicidal activity of peritoneal macrophages. Macrophages cultured for 1-2 days with cell-free thymocyte supernatant (TS) released two to three times more H2O2 in response to PMA or opsonized zymosan than did control macrophages. The H2O2-stimulating factor in TS was distinguished from IFN-gamma by its heat stability (100 degrees C, 20 min), approximate MW of 2400 Da (gel filtration high-pressure liquid chromatography), and absence of interferon activity in both antiviral and enzyme-linked immunosorbent assays. TS-treated macrophages, however, did not exhibit a greater capacity to kill or inhibit the intracellular growth of Toxoplasma gondii, indicating that the thymocyte factor did not fully activate macrophage microbicidal mechanisms. These data suggest that thymocytes can increase the respiratory burst capacity of macrophages in the absence of antigen-specific immune responses.  相似文献   

7.
Addition of chemical oxidants to cells in culture has been shown to induce binding of low-molecular-weight thiols to reactive sulfhydryls on proteins in a process termed S-thiolation. We found that stimulation of the respiratory burst in mouse macrophages, with release of O2-, resulted in S-thiolation of several proteins, most prominently three with molecular weights of 74, 33, and 22 kDa. One protein (28 kDa) was S-thiolated without addition of an exogenous stimulus. Exposure of cells to concentrations of hydrogen peroxide like those released in the respiratory burst induced S-thiolation of these same proteins. S-thiolation and release of O2- began at approximately the same time. Stimulation of LPS-elicited macrophages induced prominent S-thiolation of three different proteins (38, 30, and 21 kDa). Under the conditions of these experiments, there was no detectable increase in glutathione disulfide and a negligible decrease in glutathione, which suggests that S-thiolation can occur without significant perturbation of the glutathione peroxidase/reductase cycle. S-thiolation of proteins could help protect the macrophage against the autoxidative damage associated with the respiratory burst. Modification of specific proteins by S-thiolation might serve to modulate cellular metabolic events.  相似文献   

8.
Inflammatory macrophages elicited from the peritoneal cavity of mice injected with endotoxin can avidly ingest E opsonized with IgG antibody (EIgG) or with IgM antibody and C (EIgMC). However, only ingestion of EIgG is associated with activation of the respiratory burst and release of superoxide anion. We compared the endogenous phosphorylation of proteins from macrophages stimulated by interaction with EIgG or EIgMC on the premise that proteins phosphorylated after stimulation by EIgG but not EIgMC could play a role in activating the enzyme (oxidase) responsible for the respiratory burst. Proteins were separated by one-dimensional and two-dimensional electrophoresis in polyacrylamide gels. We found that proteins with approximate Mr of 20 kDa, 23 kDa, 46 kDa, 48 kDa (three proteins), 67 kDa, and 130 kDa were more heavily phosphorylated after EIgG stimulation than after EIgMC stimulation. Exposure to PMA, which activates the respiratory burst oxidase, induced phosphorylation of the 23-kDa, 48-kDa group, and 130-kDa proteins that were phosphorylated after stimulation by EIgG. Activity of protein kinase C was found to be significantly increased in the particulate fraction of macrophages stimulated by EIgG but not in the particulate fraction of EIgMC-stimulated cells. These data are compatible with the hypotheses that phosphorylation of specific cellular proteins, especially with a Mr of approximately 48 kDa, is involved in activation of the respiratory burst oxidase, and that function of protein kinase C also plays a part in this activation process.  相似文献   

9.
The study of [3H]-uridine uptake by mouse peritoneal macrophages showed that this is an active, temperature- and protein synthesis-dependent phenomenon, which is early altered when are exposed to a variety of stimuli. Murine recombinant interferon-gamma, a stimulus able to activate macrophage and to induce the production of tumor necrosis factor-alpha, within few hours markedly increased [3H]-uridine uptake by mouse macrophage. Other stimuli devoid of activation capacity, such as inert phagocytable latex beads, did not affect this phenomenon, which appeared to be related to macrophage activation. The increase in [3H]-uridine uptake may be an useful phenomenon in studying the early biochemical events associated with macrophage activation.  相似文献   

10.
A protein kinase C inhibitor, 1-(5-isoquinolinesulfonyl)-2-methylpiperazine dihydrochloride (H-7), inhibited phorbol ester (12-o-tetradecanoylphorbol 13-acetate)-induced and Fc gamma receptor-mediated superoxide anion (O2-) generations in guinea pig macrophages, but the inhibitory effect on Fc gamma receptor-mediated O2- generation was only partial. Both O2- generations were inhibited extensively by a phospholipase A2 inhibitor, 4-p-bromophenacyl bromide (4-pBPB). It was confirmed in control experiments that H-7 and 4-pBPB had no direct inhibitory effect on NADPH-oxidase activity. Dose-dependent stimulation of O2- generation was induced by arachidonate in macrophages, and the arachidonate-induced O2- generation was not inhibited by H-7. Arachidonate could also induce NADPH-oxidase activation in a post-nuclear fraction obtained from unstimulated macrophages and this activation was not inhibited by H-7, indicating that protein kinase C activation was not involved in this cellfree system. These results support the hypothesis that the O2- generation induced by Fc gamma receptor stimulation is mainly mediated by arachidonic acid which is released by the action of phospholipase A2 activated by receptor stimulation. Arachidonic acid seems to be acting rather directly in activating the NADPH-oxidase system of macrophage membrane. Protein kinase C may have a significant role in Fc gamma receptor-mediated O2- generation but it is not obligatory, and protein kinase C seems to activate NADPH-oxidase rather indirectly, probably by inducing the arachidonic acid release.  相似文献   

11.
This investigation describes the ability of Leishmania promastigotes to enhance activation of bone marrow-derived murine macrophages in vitro if added together with rIFN-gamma in the presence or absence of LPS. Activation was defined as the capacity for arginine-derived NO2- production and the killing of intracellular Leishmania. Enhanced NO2- production was observed for either CBA or C3H/HeJ macrophages undergoing phagocytosis at the time of activation. Other phagocytic stimuli including inert polystyrene latex beads were as effective as Leishmania. No correlation could be demonstrated between the enhanced NO2- release and secretion of products of the respiratory burst or PGE2. However, TNF-alpha secretion was elevated in cultures undergoing phagocytosis and a relationship between hexosemonophosphate shunt activity and NO2- levels was evident. These studies confirm and extend previous reports that phagocytosis plays an important role in the regulation of macrophage physiology.  相似文献   

12.
The sensitivity of Vibrio anguillarum serogroup O2a to killing by rainbow trout macrophages in the presence or absence of specific antibodies and complement components was evaluated using an in vitro assay. Fluorescence microscopy revealed that V. anguillarum serogroup O2a was phagocytosed by rainbow trout macrophages. In the absence of specific antibodies and complement components the bacteria were killed to a limited extent by the macrophages and there was no increased killing if the bacteria were opsonised with either antibodies or antibodies and complement. Furthermore, activated macrophages did not show enhanced ability to kill the bacteria. Vibrio anguillarum serogroup O2a were susceptible to both cell-free superoxide anion (O2-) and hydrogen peroxide (H2O2), which might be generated during the macrophage respiratory burst and the bacteria did not quench cell-free O2-. However, the production of O2- by macrophages was undetectable during the first 30 min following infection and no respiratory burst was inducible by phorbol myristate acetate (PMA) 4 h after infection with V. anguillarum. This suggests that the bacteria were able to inhibit the production of O2- by the infected macrophages. Naive fish were protected when passively immunised with anti-V. anguillarum serogroup O2a antiserum. However, previous results suggest that antibodies are unlikely to provide the fish with protective immunity directly through activation of the complement system and lysis of the bacterial cells. The present in vitro findings suggest that the protective mechanisms of antibody against V. anguillarum serogroup O2a may not involve the opsonising effect of antibodies for enhanced killing by macrophages. However, the possibility exists that such antibodies may prevent the attachment of the pathogen to the host's tissues.  相似文献   

13.
Macrophage responses to recombinant IFN-gamma decline during aging, as measured by two criteria of macrophage activation, O2- and TNF-alpha secretion. The production of O2- by macrophages in response to opsonized-zymosan and recombinant rat IFN-gamma is 75% lower in 23-month-old rats than in 3-month-old rats. Furthermore, the secretion of TNF-alpha in response to IFN-gamma and LPS is almost absent in macrophages from aged rats. Production of both O2- and TNF-alpha by resident peritoneal macrophages from specific pathogen-free aged rats in response to priming and triggering stimuli was partially or fully restored by implantation of syngeneic pituitary grafts from young rats. These data demonstrate that macrophages from aged rats are defective in their response to a priming signal induced by IFN-gamma, and they suggest that impaired macrophage responses during aging may be reversible.  相似文献   

14.
The role of H2O2 as a second messenger in signal transduction pathways is well established. We show here that the NADPH oxidase-dependent production of O2*(-) and H2O2 or respiratory burst in alveolar macrophages (AM) (NR8383 cells) is required for ADP-stimulated c-Jun phosphorylation and the activation of JNK1/2, MKK4 (but not MKK7) and apoptosis signal-regulating kinase-1 (ASK1). ASK1 binds only to the reduced form of thioredoxin (Trx). ADP induced the dissociation of ASK1/Trx complex and thus resulted in ASK1 activation, as assessed by phosphorylation at Thr845, which was enhanced after treatment with aurothioglucose (ATG), an inhibitor of Trx reductase. While dissociation of the complex implies Trx oxidation, protein electrophoretic mobility shift assay detected oxidation of Trx only after bolus H2O2 but not after ADP stimulation. These results demonstrate that the ADP-stimulated respiratory burst activated the ASK1-MKK4-JNK1/c-Jun signaling pathway in AM and suggest that transient and localized oxidation of Trx by the NADPH oxidase-mediated generation of H2O2 may play a critical role in ASK1 activation and the inflammatory response.  相似文献   

15.
Like neutrophils, phagocytizing macrophages undergo a "respiratory burst" in which significant quantities of oxygen are drawn into the cell. The consumed oxygen is not used in oxidative phosphorylation but, rather, in the formation of superoxide anion (O2) and H2O2. These oxygen metabolites and the products of their interaction, in particular hydroxyl radical (OH), have been implicated in the killing of ingested bacteria by neutrophils. Their role in macrophage microbicidal activity has not been fully defined. However, activated macrophages, which mediate increased resistance to infection in vivo, have a markedly increased capacity to generate O2 and H2O2 in vitro when stimulated by phagocytosis or surface perturbation. The enhanced capacity of activated macrophages to generate highly reactive oxygen metabolites during phagocytosis could contribute to the improved microbicidal and tumoricidal activity of these cells.  相似文献   

16.
Oxygen radicals are thought to play an important role in the promotion phase of carcinogenesis and the action of phorbol esters. Inflammatory cells are an abundant source of reactive oxygen intermediates (ROI) in the body and release large quantities of ROI when exposed to phorbol esters. Both protein kinase C (PKC), the receptor for phorbol esters, and the NADPH oxidase which generates ROI are Ca2+- and Mg2+-dependent. We investigated the requirements for Ca2+ and Mg2+ of macrophages from strains of mice sensitive and resistant to the promotion of tumors by phorbol esters. Macrophages from SENCAR mice, which are sensitive to phorbol ester promotion, required much lower levels of Ca2+ or Mg2+ to mount a full respiratory burst, as measured by the release of H2O2 in response to phorbol ester stimulation, than macrophages from C57BL/6 mice, which are resistant to promotion by phorbol esters. Conversely, when the particulate stimulus zymosan was used, there was little difference between macrophages from the two strains in requirements for Ca2+ and Mg2+ to release H2O2. Lowering the concentration of either cation in the absence of the other was more inhibitory than in the presence of the other cation. The studies demonstrate that differences in sensitivity to divalent cations by macrophages from these two strains is selective for phorbol ester stimulation and that lower requirements for Ca2+ and Mg2+ for ROI release correlates with sensitivity to the promotion of tumors by phorbol esters.  相似文献   

17.
The role of the activation of phosphoinositide turnover and of the increase in cytosolic free calcium, [Ca2+]i, in the phagocytosis and associated activation of the respiratory burst was investigated. We report the results obtained on the phagocytosis of yeast cells mediated by Con A in normal and in Ca2+-depleted human neutrophils. In normal neutrophils the phagocytosis was associated with a respiratory burst, a stimulation in the formation of [3H] inositol phosphates and [32P]phosphatidic acid, the release of [3H]arachidonic acid, and a rise in [Ca2+]i. Ca2+-depleted neutrophils are able to perform the phagocytosis of yeast cells mediated by Con A and to activate the respiratory burst without stimulation of [3H]inositol phosphates and [32P]phosphatidic acid formation, [3H]arachidonic acid release, and rise in [Ca2+]i. In both normal and Ca2+-depleted neutrophils the phagocytosis and the associated respiratory burst, 1) were inhibited by cytochalasin B; 2) were insensitive to H-7, an inhibitor of protein kinase C; and 3) did not involve GTP-binding protein sensitive to pertussis toxin. These findings indicate that the activation of phosphoinositide turnover, the liberation of arachidonic acid, the rise in [Ca2+]i, and the activity of protein kinase C are not necessarily required for ingestion of Con A-opsonized particles and for associated activation of the NADPH oxidase, the enzyme responsible for the respiratory burst. The molecular mechanisms of these phosphoinositide and Ca2+-independent responses are discussed.  相似文献   

18.
H(2)O(2) produced by stimulation of the macrophage NADPH oxidase is involved both in bacterial killing and as a second messenger in these cells. Protein tyrosine phosphatases (PTPs) are targets for H(2)O(2) signaling through oxidation of their catalytic cysteine, resulting in inhibition of their activity. Here, we show that, in the rat alveolar macrophage NR8383 cell line, H(2)O(2) produced through the ADP-stimulated respiratory burst induces the formation of a disulfide bond between PTP1B and GSH that was detectable with an antibody to glutathione-protein complexes and was reversed by DTT addition. PTP1B glutathionylation was dependent on H(2)O(2) as the presence of catalase at the time of ADP stimulation inhibited the formation of the conjugate. Interestingly, other PTPs, i.e., SHP-1 and SHP-2, did not undergo glutathionylation in response to ADP stimulation of the respiratory burst, although glutathionylation of these proteins could be shown by reaction with 25 mM glutathione disulfide in vitro. While previous studies have suggested the reversible oxidation of PTP1B during signaling or showed PTP1B glutathionylation in vitro, the present study directly demonstrates that physiological stimulation of H(2)O(2) production results in PTP1B glutathionylation in intact cells, which may affect downstream signaling.  相似文献   

19.
The exposure of [3H]arachidonate-radiolabelled murine peritoneal macrophages to alpha 2-macroglobulin-methylamine or alpha 2-macroglobulin-trypsin but not native alpha 2-macroglobulin (alpha 2M) results in the rapid secretion of [3H]eicosanoids. Resident peritoneal macrophages stimulated with 0.1 microM alpha 2M-methylamine exhibited an enhanced secretion within 10 min. The ability of alpha 2M 'fast' forms to stimulate secretion of [3H]eicosanoids was similar to that observed in the presence of the murine macrophage chemoattractant platelet-activating factor. As observed for total [3H]eicosanoid secretion, alpha 2M 'fast' forms also rapidly enhanced the secretion of the cAMP-elevating prostanoid, prostaglandin E2, from resident peritoneal macrophages. Stimulated secretion of prostaglandin E2 in response to 0.1 microM alpha 2M-methylamine was less rapid than that observed using 0.1 microM platelet-activating factor. Similar amounts of secreted prostaglandin E2 were present in media of macrophage cultures after 1 h exposure to the two stimuli. In the presence of 0.1 microM alpha 2M-methylamine, secreted prostaglandin E2 remained elevated, compared to the appropriate buffer control, for at least 24 h. The present results indicate that receptor recognition of alpha 2M 'fast' forms by macrophages results in the rapid stimulation of eicosanoid secretion and suggest that secretion of prostaglandin E2 and other eicosanoids may be involved in the ability of alpha 2 M 'fast' forms to regulate various macrophage functional responses.  相似文献   

20.
The effect of LPS on the respiratory burst in resident rat peritoneal macrophages has been examined. Rat macrophages secreted high levels of both O2- and H2O2 in response to triggering with phorbol esters, opsonized zymosan, and immune complexes. After culture in vitro with LPS these macrophages exhibited a marked diminution in their capacity to secrete high levels of respiratory burst products. The LPS-mediated loss of secretory activity was apparent after 2 hr of exposure to LPS and was inhibitable by polymyxin B in a dose-dependent fashion. The effect was not selective for any triggering agent type as inhibition of secretory activity occurred after triggering with PMA, zymosan and immune complexes. PGE2 added at levels secreted by the macrophages in response to LPS also inhibited respiratory burst product secretion. In addition, indomethacin prevented the LPS-mediated inhibition of secretion. Because the inhibition of secretion was common to all triggering agents tested, this suggested that the basis for the impaired secretion was at a level other than the receptor for the triggering agent. Both LPS and PGE2 treatment of the macrophages increased the Km of the oxidase for NADPH (1.7- to 2.3-fold) without affecting significantly the Vmax of the enzyme. These data suggest that stimulation of rat peritoneal macrophages by LPS results in an impaired ability to secrete respiratory burst products as a result of a PGE2-mediated decrease in NADPH oxidase affinity and that this alteration is independent of alterations in tumoricidal activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号