首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The development of addictive states in response to chronic opioid use may be regulated partially by the release of endogenous peptides. These anti-opiate peptides (AOP) are secreted or released into the CNS and produce diverse actions that counterbalance the effects of prolonged opiate exposure. Though the mechanism(s) by which these peptides exert their physiological properties remain largely unknown, there is some indication that AOP’s modulate opioid receptor levels. In this study, we investigated the effects of chronically infused α-melanocyte stimulating hormone (α-MSH), dynorphin1-8 (DYN1-8), dynorphin A (DYNA), and NPFF antibodies on δ-opioid receptor expression in rat brains. Quantitative autoradiographic experiments revealed that antibodies directed against α-MSH and DYNA produced significant increases in delta receptor levels in the caudate, claustrum, and cingulate cortex of the rat brain. Conversely, NPFF monoclonal antibodies caused significant decreases in the caudate, nucleus accumbens, olfactory tubercle, and cingulate cortex. These results suggest that the density of δ-opioid receptors is affected by changes in the levels of the anti-opioid peptides in the extracelluar fluid in the rat brain.  相似文献   

2.
Orexin is one of the orexigenic neuropeptides in the hypothalamus. Orexin neurons in the lateral hypothalamus (LH) project into the cerebral cortex and hippocampus in which the receptors are distributed in high concentrations. Therefore, to elucidate the actions of orexin in the cerebral cortex, we examined its effects on the mRNA expressions of N-methyl-d-aspartate (NMDA) receptor subunits (NR1, NR2A, NR2B) and α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor subunits (GluR1, GluR2) following 6-day application of orexin-A or orexin-B to rat primary cortical neuron cultures. The mRNAs of NR1 and NR2A subunits were significantly decreased by orexin-A and orexin-B at concentrations over 0.1 μM and 0.01 μM, respectively. The mRNA expression of NR2B subunit was also significantly decreased by orexin-A and orexin-B only at the concentration of 1 μM. Moreover, orexin-A and orexin-B at concentrations over 0.01 μM significantly decreased the mRNA expressions of AMPA receptor subunits, GluR1 and GluR2. The present study demonstrated that orexins significantly suppressed RNA expressions of NMDA and AMPA receptor subunits in cortical neuron cultures, suggesting that orexin may regulate the higher functions of the cerebral cortex as well as be involved in energy regulation in the hypothalamus.  相似文献   

3.
One of the many pharmacological targets of ethanol is the GABA inhibitory system, and chronic ethanol (CE) is known to alter the polypeptide levels of the GABAA receptor subunits in rat brain regions. In the present study, we investigated the regulation of the tyrosine kinase phosphorylation of the GABAA receptor α1-, β2- and γ2-subunits in the rat cerebellum, cerebral cortex and hippocampus following chronic administration of ethanol to the rats. We observed either down-regulation or no change in the tyrosine kinase phosphorylation of the α1 subunit, whereas there was an up-regulation or no change in the case of β2- and γ2-subunits of the GABAA receptors depending on the brain region following chronic administration of ethanol to the rats. These changes reverted back to the control level following 48 h of ethanol-withdrawal. These results suggest that tyrosine kinase phosphorylation of GABAA receptors may play a significant role in ethanol dependence.  相似文献   

4.
The major inhibitory neurotransmitter in the brain, γ-aminobutyric acid (GABA), has only partial efficacy at certain subtypes of GABAA receptors. To characterize these minor receptor populations in rat and mouse brains, we used autoradiographic imaging of t-butylbicyclophosphoro[35S]thionate ([35S]TBPS) binding to GABAA receptors in brain sections and compared the displacing capacities of 10 mM GABA and 1 mM 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP), a competitive GABA-site agonist. Brains from GABAA receptor α1, α4, δ, and α4 + δ subunit knockout (KO) mouse lines were used to understand the contribution of these particular receptor subunits to “GABA-insensitive” (GIS) [35S]TBPS binding. THIP displaced more [35S]TBPS binding than GABA in several brain regions, indicating that THIP also inhibited GIS-binding. In these regions, GABA prevented the effect of THIP on GIS-binding. GIS-binding was increased in the cerebellar granule cell layer of δ KO and α4 + δ KO mice, being only slightly diminished in that of α1 KO mice. In the thalamus and some other forebrain regions of wild-type mice, a significant amount of GIS-binding was detected. This GIS-binding was higher in α4 KO mice. However, it was fully abolished in α1 KO mice, indicating that the α1 subunit was obligatory for the GIS-binding in the forebrain.Our results suggest that native GABAA receptors in brain sections showing reduced displacing capacity of [35S]TBPS binding by GABA (partial agonism) minimally require the assembly of α1 and β subunits in the forebrain and of α6 and β subunits in the cerebellar granule cell layer. These receptors may function as extrasynaptic GABAA receptors.  相似文献   

5.
Large-conductance Ca2+-activated (BK) channels, expressed in a variety of tissues, play a fundamental role in regulating and maintaining arterial tone. We recently demonstrated that the slow voltage indicator DiBAC4(3) does not depend, as initially proposed, on the β1 or β4 subunits to activate native arterial smooth muscle BK channels. Using recombinant mslo BK channels, we now show that the β1 subunit is not essential to this activation but exerts a large potentiating effect. DiBAC4(3) promotes concentration-dependent activation of BK channels and slows deactivation kinetics, changes that are independent of Ca2+. Kd values for BK channel activation by DiBAC4(3) in 0 mM Ca2+ are approximately 20 μM (α) and 5 μM (α+β1), and G-V curves shift up to −40mV and −110 mV, respectively. β1 to β2 mutations R11A and C18E do not interfere with the potentiating effect of the subunit. Our findings should help refine the role of the β1 subunit in cardiovascular pharmacology.  相似文献   

6.
Bhargava, H. N., S. Kumar and J. T. Bian. Up-regulation of brain N-methyl- -aspartate receptors following multiple intracerebroventricular injections of [ -Pen2, -Pen5]enkephalin and [ -Ala2, Glu4]deltorphin II in mice. Peptides 18(10) 1609–1613, 1997.—The effects of chronic administration of [ -Pen2, -Pen5]enkephalin and [ -Ala2, Glu4]deltorphin II, the selective agonists of the δ1- and δ2-opioid receptors, on the binding of [3H]MK-801, a noncompetitive antagonist of the N-methyl- -aspartate receptor, were determined in several brain regions of the mouse. Male Swiss-Webster mice were injected intracerebroventricularly (i.c.v.) with [ -Pen2, -Pen5]enkephalin or [ -Ala2, Glu4]deltorphin II (20 μg/mouse) twice a day for 4 days. Vehicle injected mice served as controls. Previously we have shown that the above treatment results in the development of tolerance to their analgesic activity. The binding of [3H]MK-801 was determined in brain regions (cortex, midbrain, pons and medulla, hippocampus, striatum, hypothalamus and amygdala). At 5 nM concentration, the binding of [3H]MK-801 was increased in cerebral cortex, hippocampus, and pons and medulla of [ -Pen2, -Pen5]enkephalin treated mice. In [ -Ala2, Glu4]deltorphin II treated mice, the binding of [3H]MK-801 was increased in cerebral cortex and hippocampus. The changes in the binding were due to increases in the Bmax value of [3H]MK-801. It is concluded that tolerance to δ1- and δ2-opioid receptor agonists is associated with up-regulation of brain N-methyl- -aspartate receptors, however, some brain areas affected differ with the two treatments. The results are consistent with the recent observation from this laboratory that N-methyl- -aspartate receptors antagonists block tolerance to the analgesic action of δ1- and δ2-opioid receptor agonists.  相似文献   

7.
Receptors for α2-macroglobulin-proteinase complexes have been characterized in rat and human liver membranes. The affinity for binding of 125I-labelled α2-macroglobulin · trypsin to rat liver membranes was markedly pH-dependent in the physiological range with maximum binding at pH 7.8–9.0. The half-time for association was about 5 min at 37°C in contrast to about 5 h at 4°C. The half-saturation constant was about 100 pM at 4°C and 1 nM at 37°C (pH 7.8). The binding capacity was approx. 300 pmol per g protein for rat liver membranes and about 100 pmol per g for human membranes. Radiation inactivation studies showed a target size of 466 ± 71 kDa (S.D., n = 7) for α2-macroglobulin · trypsin binding activity. Affinity cross-linking to rat and human membranes of 125I-labelled rat α1-inhibitor-3 · chymotrypsin, a 210 kDa analogue which binds to the α2-macroglobulin receptors in hepatocytes (Gliemann, J. and Sottrup-Jensen, L. (1987) FEBS Lett. 221, 55–60), followed by SDS-polyacrylamide gel electrophoresis, revealed radioactivity in a band not distinguishable from that of cross-linked α2-macroglobulin (720 kDa). This radioactivity was absent when membranes with bound 125I-α1-inhibitor-3 complex were treated with EDTA before cross-linking and when incubation and cross-linking were carried out in the presence of a saturating concentration of unlabelled complex. The saturable binding activity was maintained when membranes were solubilized in the detergent 3-[(3-cholamidopropyl)dimethylammonio]profane sulfonate (CHAPS) and the size of the receptor as estimated by cross-linking experiments was shown to be similar to that determined in the membranes. It is concluded that liver membranes contain high concentrations of an approx. 400–500 kDa α2-macroglobulin receptor soluble in CHAPS. The soluble preparation should provide a suitable material for purification and further characterization of the receptor.  相似文献   

8.
The ability of methyllycaconitine (MLA) to inhibit the binding of [125I]α-bungarotoxin to rat brain membranes, frog and human muscle extracts and the human muscle cell line TE671 has been measured. MLA showed a markedly higher affinity for the rat brain site (Ki 1.4 × 10−9 M) than for the muscle receptors (Ki; 10−5-10−6 M). Structure modelling techniques were used to fit the structure of MLA to a nicotinic pharmacophore model. MLA is the first low molecular weight ligand to be shown to discriminate between muscle nicotinic receptors and their α-bungarotoxinbinding counterpart in the brain, and as such may be a useful structural probe for pursuing the structural and functional properties of the neuronal protein.  相似文献   

9.
Two γ-aminobutyric acidA (GABAA) receptor chimeras were designed in order to elucidate the structural requirements for GABAA receptor desensitization and assembly. The (α1/γ2) and (γ2/α1) chimeric subunits representing the extracellular N-terminal domain of α1 or γ2 and the remainder of the γ2 or α1 subunits, respectively, were expressed with β2 and β2γ2 in Spodoptera frugiperda (Sf-9) cells using the baculovirus expression system. The (α1/γ2)β2 and (α1/γ2)β2γ2 but not the (γ2/α1)β2 and (γ2/α1)β2γ2 subunit combinations formed functional receptor complexes as shown by whole-cell patch–clamp recordings and [3H]muscimol and [3H]flunitrazepam binding. Moreover, the surface immunofluorescence staining of Sf-9 cells expressing the (α1/γ2)-containing receptors was pronounced, as opposed to the staining of the (γ2/α1)-containing receptors, which was only slightly higher than background. To explain this, the (α1/γ2) and (γ2/α1) chimeras may act like α1 and γ2 subunits, respectively, indicating that the extracellular N-terminal segment is important for assembly. However, the (α1/γ2) chimeric subunit had characteristics different from the α1 subunit, since the (α1/γ2) chimera gave rise to no desensitization after GABA stimulation in whole-cell patch–clamp recordings, which was independent of whether the chimera was expressed in combination with β2 or β2γ2. Surprisingly, the (α1/γ2)(γ2/α1)β2 subunit combination did desensitize, indicating that the C-terminal segment of the α1 subunit may be important for desensitization. Moreover, desensitization was observed for the (α1/γ2)β2γ2 receptor with respect to the direct activation by pentobarbital. This suggests differences in the mechanism of channel activation for pentobarbital and GABA.  相似文献   

10.
Subunit-specific antibodies to all the γ subunit isoforms described in mammalian brain (γ1, γ2S, γL, and γ3) have been made. The proportion of GABAA receptors containing each γ subunit isoform in various brain regions has been determined by quantitative immunoprecipitation. In all tested regions of the rat brain, the γ1, and γ3 subunits are present in considerable smaller proportion of GABAA receptor than the γ2 subunit. Immunocytochemistry shows that γ1 immunoreactivity concentrates in the stratum oriens and stratum radiatum of the CA1 region of the hippocampus. In the dentate gyrus, γ1 immunoreactivity concentrates on the outer 2/3 of the molecular layer coinciding with the localization of the axospinous synapses of the perforant pathway. In contrast, γ3 immunoreactivity concentrates on the basket cells and other GABAergic local circuit neurons of the hilus. These cells are also rich in γ2S. In the cerebellu, γ1 immunolabeling was localized on the Bergmann glia. The γ2S and γ2L subunits are differentially expressed in various brain regions. Thus the γ2S is highly expressed in the olfactory bulb and hippocampus whereas the γ2L is very abundant in inferior colliculus and cerebellum, particularly in Purkinje cells, as immunocytochemistry, in situ hybridization and immunoprecipitation techniques have revealed. The γ2S and γ2L coexist in some brain areas and cell types. Moreover, the γ2S and γ2L subunits can coexist in the same GABAA receptor pentamer. We have shown that this is the case in some GABAA receptors expressed in cerebellar granule cells. These GABAA receptors also have α and β subunits forming the pentamer. Immunoblots have shown that the rat γ1, γ2S, γ2L and γ3 subunits are peptides of 47, 45, 47 and 44 kDa respectively. Results also indicate that there are aging-related changes in the expression of the γ2S and γ2L subunits in various brain regions which suggest the existence of aging-related changes in the subunit composition of the GABAA receptors which in turn might lead to changes in receptor pharmacology. The results obtained with the various γ subunit isoforms are discussed in terms of the high molecular and binding heterogeneity of the native GABAA receptors in brain. Special issue dedicated to Dr. Kinya Kuriyama  相似文献   

11.
In voltage-dependent Ca2+ channels, the α1 and β subunits interact via two cytoplasmic regions defined as the Alpha Interaction Domain (AID) and Beta Interaction Domain (BID). Several novel amino acids for that interaction have now been mapped in both domains by point mutations. It was found that three of the nine amino acids in AID and four of the eight BID amino acids tested were essential for the interaction. Whereas the important AID amino acids were clustered around five residues, the important BID residues were more widely distributed within a larger 16 amino acid sequence. The affinity of the AIDA GST fusion protein for the four interacting β1b BID mutants was not significantly altered compared with the wild-type β1b despite the close localization of mutated residues to disruptive BID amino acids. Expression of these interactive β mutants with the full-length α1A subunit only slightly modified the stimulation efficiency when compared with the wild-type β1b subunit. Our data suggest that non-disruptive BID sequence alterations do not dramatically affect the β subunit-induced current stimulation.  相似文献   

12.
The full length sequence of the Xenopus integrin α5 subunit is reported. Analysis of cloned cDNA fragments reveals that alternative polyadenylation of α5 mRNA occurs in the embryo. Furthermore, a variant form of the α5 mRNA is expressed which encodes an integrin α5 subunit with a truncated cytoplasmic domain. Integrin α5 mRNA and protein are expressed in oocytes, eggs and throughout development. Spatial expression of α5 mRNAs is first detected by whole mount in situ hybridization in presumptive neural crest cells and in the somitic mesoderm from the midgastrula stage onwards. In contrast, the α5 protein is present on newly formed plasma membranes beginning at first cleavage. During neurulation, the integrin α5 subunit disappears from the outer layer of the ectoderm, the notochord and the neural tube and accumulates in the sensorial layer of the ectoderm, the somites and the neural crest cells. These results provide evidence for the position specific regulation of α subunit expression in early vertebrate embryos.  相似文献   

13.
The Type I interferon receptor (IFN-αR) interacts with all IFN-αs, IFN-β and IFN-ω, and seems to be a multisubunit receptor. To investigate the role of a cloned receptor subunit (IFN-αR1), we have examined the intrinsic ligand binding properties of the bovine and human IFN-αR1 polypeptides expressed in Xenopus laevis oocytes. Albeit with different efficiencies, Xenopus oocytes expressing either the human or bovine IFN-αR1 polypeptide exhibit significant binding and formation of crosslinked complexes with human IFN-αA and IFN-αB. Thus, the IFN-αR1 polypeptide most likely plays a direct role in ligand binding.  相似文献   

14.
The immunologic cross-reactivity of the α and α+ forms of the large subunit and the β subunit of the (Na+ + K+)-ATPase from brain and kidney preparations was examined using rabbit antiserum prepared against the purified holo lamb kidney enzyme. As previously reported by Sweadner ((1979) J. Biol. Chem. 254, 6060–6067) phosphorylation of the large subunit of the (Na+ + K+)-ATPase in the presence of Na+, Mg2+, and [γ-32P]ATP revealed that dog and, very likely, rat brain contain two forms of the large subunit (designated α and α+) while dog, rat, and lamb kidney contain only one form (α). The cross-reactivity of the α and α+ forms in these preparations was investigated by resolving the subunits by SDS-polyacrylamide gel electrophoresis. The separated polypeptides were transferred to unmodified nitrocellulose paper, and reacted with rabbit anti-lamb kidney serum, followed by detection of the antigen-antibody complex with 125I-labeled protein A and autoradiography. By this method, the α and α+ forms of rat and dog brain, as well as the α form found in kidney, were shown to cross-react. In addition, membranes from human cerebral cortex were shown to contain two immunoreactive bands corresponding to the α and α+ forms of dog brain. In contrast, the brain of the insect Manduca sexta contains only one immunoreactive polypeptide with a molecular weight intermediate to the α and α+ forms of dog brain. The β subunit from lamb, dog and rat kidney and from dog and rat brain cross-reacts with anti-lamb kidney (Na+ + K+)-ATPase serum. The mobility of the β subunit from dog and rat brain on SDS-polyacrylamide electrophoresis gels is greater than the mobility of the β subunit from lamb, rat or dog kidney.  相似文献   

15.
γ-Aminobutyraldehyde dehydrogenase from Escherichia coli K-12 has been purified and characterized from cell mutants able to grow in putrescine as the sole carbon and nitrogen source. The enzyme has an Mr of 195 000±10 000 in its dimeric form with an Mr of 95 000±1000 for each subunit, a pH optimum at 5.4 in sodium citrate buffer, and does not require bivalent cations for its activity. Km values are 31.3±6.8 μM and 53.8±7.4 μM for Δ-1-pyrroline and NAD+, respectively. An inhibitory capacity for NADH is also shown using the purified enzyme.  相似文献   

16.
Gephyrin and collybistin are key components of GABAA receptor (GABAAR) clustering. Nonetheless, resolving the molecular interactions between the plethora of GABAAR subunits and these clustering proteins is a significant challenge. We report a direct interaction of GABAAR α2 and α3 subunit intracellular M3–M4 domain (but not α1, α4, α5, α6, β1–3, or γ1–3) with gephyrin. Curiously, GABAAR α2, but not α3, binds to both gephyrin and collybistin using overlapping sites. The reciprocal binding sites on gephyrin for collybistin and GABAAR α2 also overlap at the start of the gephyrin E domain. This suggests that although GABAAR α3 interacts with gephyrin, GABAAR α2, collybistin, and gephyrin form a trimeric complex. In support of this proposal, tri-hybrid interactions between GABAAR α2 and collybistin or GABAAR α2 and gephyrin are strengthened in the presence of gephyrin or collybistin, respectively. Collybistin and gephyrin also compete for binding to GABAAR α2 in co-immunoprecipitation experiments and co-localize in transfected cells in both intracellular and submembrane aggregates. Interestingly, GABAAR α2 is capable of “activating ” collybistin isoforms harboring the regulatory SH3 domain, enabling targeting of gephyrin to the submembrane aggregates. The GABAAR α2-collybistin interaction was disrupted by a pathogenic mutation in the collybistin SH3 domain (p.G55A) that causes X-linked intellectual disability and seizures by disrupting GABAAR and gephyrin clustering. Because immunohistochemistry in retina revealed a preferential co-localization of collybistin with α2 subunit containing GABAARs, but not GlyRs or other GABAAR subtypes, we propose that the collybistin-gephyrin complex has an intimate role in the clustering of GABAARs containing the α2 subunit.  相似文献   

17.
Dehydroepiandrosterone (DHEA) is 7α-hydroxylated by the cytochome P450 7B1 (CYP7B1) in the human brain and liver. This produces 7α-hydroxy-DHEA that is a substrate for 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) which exists in the same tissues and carries out the inter-conversion of 7α- and 7β-hydroxy-DHEA through a 7-oxo-intermediary. Since the role of 11β-HSD1 is to transform the inactive cortisone into active cortisol, its competitive inhibition by 7α-hydroxy-DHEA may support the paradigm of native anti-glucocorticoid arising from DHEA. Therefore, our objective was to use human tissues to assess the presences of both CYP7B1 and 11β-HSD1. Human skin was selected then and used to test its ability to produce 7α-hydroxy-DHEA, and to test the interference of 7α- and 7β-hydroxy-DHEA and 7-oxo-DHEA with the 11β-HSD1-mediated oxidoreduction of cortisol and cortisone. Immuno-histochemical studies showed the presence of both CYP7B1 and 11β-HSD1 in the liver, skin and tonsils. DHEA was readily 7α-hydroxylated when incubated using skin slices. A S9 fraction of dermal homogenates containing the 11β-HSD1 carried out the oxidoreduction of cortisol and cortisone. Inhibition of the cortisol oxidation by 7α-hydroxy-DHEA and 7β-hydroxy-DHEA was competitive with a Ki at 1.85 ± 0.495 and 0.255 ± 0.005 μM, respectively. Inhibition of cortisone reduction by 7-oxo-DHEA was of a mixed type with a Ki at 1.13 ± 0.15 μM. These findings may support the previously proposed native anti-glucocorticoid paradigm and suggest that the 7α-hydroxy-DHEA production is a key for the fine tuning of glucocorticoid levels in tissues.  相似文献   

18.
Oxidative deamination of putrescine, the precursor of polyamines, gives rise to γ-aminobutyraldehyde (ABAL). In this study an aldehyde dehydrogenase, active on ABAL, has been purified to electrophoretic homogeneity from rat liver cytoplasm and its kinetic behaviour investigated. The enzyme is a dimer with a subunit molecular weight of 51,000. It is NAD+-dependent, active only in the presence of sulphhydryl compounds and has a pH optimum in the range 7.3–8.4. Temperatures higher than 28°C promote slow activation and the process is favoured by the presence of at least one substrate. Km for aliphatic aldehydes decreases from 110 μM for ABAL and acetaldehyde to 2–3 μM for capronaldehyde. The highest relative V-values have been observed with ABAL (100) and isobutyraldehyde (64), and the lowest with acetaldehyde (14). Affinity for NAD+ is affected by the aldehyde present at the active site: Km for NAD+ is 70 μM with ABAL, 200 μM with isobutyraldehyde and capronaldehyde, and>800 μM with acetaldehyde. The kinetic behaviour at 37°C is quite complex; according to enzymatic models, NAD+ activates the enzyme (Kact 500 μM) while NADH competes for the regulatory site (Kin 70 μM). In the presence of high NAD+ concentrations (4 mM), ABAL promotes further activation by binding to a low-affinity regulatory site (Kact 10 mM). The data show that the enzyme is probably an E3 aldehyde dehydrogenase, and suggest that it can effectively metabolize aldehydes arising from biogenic amines.  相似文献   

19.
1. Over three experiments, separate groups of adult male Sprague–Dawley rats received intracerebroventricular (ICV) injections of either vehicle, recombinant rat leptin (1 μg), or leptin (4 μg), then two ICV injections, 30 min apart of vehicle/vehicle, leptin (4 μg)/vehicle, vehicle/α-MSH (300 ng), or leptin/α-MSH, and then vehicle/vehicle, leptin (4 μg)/vehicle, vehicle/ SHU-9119 (200 ng; a MC 3/4 receptor antagonist), or leptin/SHU-9119. Core temperatures (Tc), food intake and body weights were monitored.
2. Four microgram leptin resulted in the induction of fever, an effect blocked by injection of α-MSH. Antagonism of MC 3/4 receptors with SHU-9119 did not augment leptin-induced fever, but did block the inhibitory actions of leptin on food intake.
3. These data demonstrate the inhibitory effects of exogenous α-MSH on leptin-induced fever, but suggest that endogenous melanocortin action at MC 3/4 receptors does not tonically inhibit febrigenesis caused by leptin administration.
Keywords: Leptin; Core temperature; α-melanocyte stimulating hormone; Rats  相似文献   

20.
The synthesis of new analogues of allopregnanolone with a bridged sulfamidate ring over the β-face of ring A has been achieved from easily available precursors, using an intramolecular aziridination strategy. The methodology also allows the synthesis of 3α-substituted analogues such as the 3α-fluoro derivative. GABAA receptor activity of the synthetic analogues was evaluated by assaying their effect on the binding of [3H]flunitrazepam and [3H]muscimol. The 3α-hydroxy-2,19-sulfamoyl analogue and its N-benzyl derivative were more active than allopregnanolone for stimulating binding of [3H]flunitrazepam. For the binding of [3H]muscimol, both synthetic analogues and allopregnanolone stimulated binding to a similar extent, with the N-benzyl derivative exhibiting a higher EC50. The 3α-fluoro derivative was inactive in both assays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号