首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Arginase is a binuclear Mn(2+) metalloenzyme that catalyzes the hydrolysis of L-arginine to L-ornithine and urea. X-ray crystal structures of arginase complexed to substrate analogues N(omega)-hydroxy-L-arginine and N(omega)-hydroxy-nor-L-arginine, as well as the products L-ornithine and urea, complete a set of structural "snapshots" along the reaction coordinate of arginase catalysis when interpreted along with the X-ray crystal structure of the arginase-transition-state analogue complex described in Kim et al. [Kim, N. N., Cox, J. D., Baggio, R. F., Emig, F. A., Mistry, S., Harper, S. L., Speicher, D. W., Morris, Jr., S. M., Ash, D. E., Traish, A. M., and Christianson, D. W. (2001) Biochemistry 40, 2678-2688]. Taken together, these structures render important insight on the structural determinants of tight binding inhibitors. Furthermore, we demonstrate for the first time the structural mechanistic link between arginase and NO synthase through their respective complexes with N(omega)-hydroxy-L-arginine. That N(omega)-hydroxy-L-arginine is a catalytic intermediate for NO synthase and an inhibitor of arginase reflects the reciprocal metabolic relationship between these two critical enzymes of L-arginine catabolism.  相似文献   

2.
Arginase is a manganese metalloenzyme that catalyzes the hydrolysis of L-arginine to form L-ornithine and urea. The structure and stability of the binuclear manganese cluster are critical for catalytic activity as it activates the catalytic nucleophile, metal-bridging hydroxide ion, and stabilizes the tetrahedral intermediate and its flanking states. Here, we report X-ray structures of a series of inhibitors bound to the active site of arginase, and each inhibitor exploits a different mode of coordination with the Mn(2+)(2) cluster. Specifically, we have studied the binding of fluoride ion (F(-); an uncompetitive inhibitor) and L-arginine, L-valine, dinor-N(omega)-hydroxy-L-arginine, descarboxy-nor-N(omega)-hydroxy-L-arginine, and dehydro-2(S)-amino-6-boronohexanoic acid. Some inhibitors, such as fluoride ion, dinor-N(omega)-hydroxy-L-arginine, and dehydro-2(S)-amino-6-boronohexanoic acid, cause the net addition of one ligand to the Mn(2+)(2) cluster. Other inhibitors, such as descarboxy-nor-N(omega)-hydroxy-L-arginine, simply displace the metal-bridging hydroxide ion of the native enzyme and do not cause any net change in the metal coordination polyhedra. The highest affinity inhibitors displace the metal-bridging hydroxide ion (and sometimes occupy a Mn(2+)(A) site found vacant in the native enzyme) and maintain a conserved array of hydrogen bonds with their alpha-amino and -carboxylate groups.  相似文献   

3.
Colleluori DM  Ash DE 《Biochemistry》2001,40(31):9356-9362
Arginases catalyze the hydrolysis of L-arginine to yield L-ornithine and urea. Recent studies indicate that arginases, both the type I and type II isozymes, participate in the regulation of nitric oxide production by modulating the availability of arginine for nitric oxide synthase. Due to the reciprocal regulation between arginase and nitric oxide synthase, arginase inhibitors have therapeutic potential in treating nitric oxide-dependent smooth muscle disorders, such as erectile dysfunction. We demonstrate the competitive inhibition of the mitochondrial human type II arginase by N(omega)-hydroxy-L-arginine, the intermediate in the reaction catalyzed by nitric oxide synthase, and its analogue N(omega)-hydroxy-nor-L-arginine, with K(i) values of 1.6 microM and 51 nM at pH 7.5, respectively. We also demonstrate the inhibition of human type II arginase by the boronic acid-based transition-state analogues 2(S)-amino-6-boronohexanoic acid (ABH) and S-(2-boronoethyl)-L-cysteine (BEC), which are known inhibitors of type I arginase. At pH 7.5, both ABH and BEC are classical, competitive inhibitors of human type II arginase with K(i) values of 0.25 and 0.31 microM, respectively. However, at pH 9.5, ABH and BEC are slow-binding inhibitors of the enzyme with K(i) values of 8.5 and 30 nM, respectively. The findings presented here indicate that the design of arginine analogues with uncharged, tetrahedral functional groups will lead to the development of more potent inhibitors of arginases at physiological pH.  相似文献   

4.
Zhang J  Zhang X  Wu C  Lu D  Guo G  Mao X  Zhang Y  Wang DC  Li D  Zou Q 《PloS one》2011,6(10):e26205
Arginase, a manganese-dependent enzyme that widely distributed in almost all creatures, is a urea cycle enzyme that catalyzes the hydrolysis of L-arginine to generate L-ornithine and urea. Compared with the well-studied arginases from animals and yeast, only a few eubacterial arginases have been characterized, such as those from H. pylori and B. anthracis. However, these enzymes used for arginase activity assay were all expressed with LB medium, as low concentration of Mn(2+) was detectable in the medium, protein obtained were partially Mn(2+) bonded, which may affect the results of arginase activity assay. In the present study, H. pylori arginase (RocF) was expressed in a Mn(2+) and Co(2+) free minimal medium, the resulting protein was purified through affinity and gel filtration chromatography and the apo-form of RocF was confirmed by flame photometry analysis. Gel filtration indicates that the enzyme exists as monomer in solution, which was unique as compared with homologous enzymes. Arginase activity assay revealed that apo-RocF had an acidic pH optimum of 6.4 and exhibited metal preference of Co(2+)>Ni(2+)>Mn(2+). We also confirmed that heat-activation and reducing regents have significant impact on arginase activity of RocF, and inhibits S-(2-boronoethyl)-L-Cysteine (BEC) and Nω-hydroxy-nor-Arginine (nor-NOHA) inhibit the activity of RocF in a dose-dependent manner.  相似文献   

5.
Mammals express two isoforms of arginase, designated types I and II. Arginase I is a component of the urea cycle, and inherited defects in arginase I have deleterious consequences in humans. In contrast, the physiologic role of arginase II has not been defined, and no deficiencies in arginase II have been identified in humans. Mice with a disruption in the arginase II gene were created to investigate the role of this enzyme. Homozygous arginase II-deficient mice were viable and apparently indistinguishable from wild-type mice, except for an elevated plasma arginine level which indicates that arginase II plays an important role in arginine homeostasis.  相似文献   

6.
Arginases catalyze the divalent cation-dependent hydrolysis of L-arginine to urea and L-ornithine. There is significant interest in using arginase as a therapeutic anti-neogenic agent against L-arginine auxotrophic tumors and in enzyme replacement therapy for treating hyperargininemia. Both therapeutic applications require enzymes with sufficient stability under physiological conditions. To explore sequence elements that contribute to arginase stability we used SCHEMA-guided recombination to design a library of chimeric enzymes composed of sequence fragments from the two human isozymes Arginase I and II. We then developed a novel active learning algorithm that selects sequences from this library that are both highly informative and functional. Using high-throughput gene synthesis and our two-step active learning algorithm, we were able to rapidly create a small but highly informative set of seven enzymatically active chimeras that had an average variant distance of 40 mutations from the closest parent arginase. Within this set of sequences, linear regression was used to identify the sequence elements that contribute to the long-term stability of human arginase under physiological conditions. This approach revealed a striking correlation between the isoelectric point and the long-term stability of the enzyme to deactivation under physiological conditions.  相似文献   

7.
Arginase is an enzyme which converts arginine to ornithine and urea. Recently, arginase has been implicated in many physiological and pathological processes including vascular diseases. Inhibition of arginase activity by pharmacological inhibitors is a useful tool to study the biology of arginases and their possible role in therapy. There are several arginase-specific inhibitors commercially available. Herein, we show that some of these inhibitors lead to an increase in arginase II protein level and activity. These effects should be anticipated when these inhibitors are in use or during the testing of new arginase inhibitors.  相似文献   

8.
Arginase was purified from Vigna catjang cotyledons and buffalo liver by chromatographic separations using Bio-Gel P-150, DEAE-cellulose and arginine AH Sepharose 4B affinity columns. The native molecular weight of an enzyme estimated on Bio-Gel P-300 column for Vigna catjang was 210 kDa and 120 kDa of buffalo liver, while SDS-PAGE showed a single band of molecular weight 52 kDa for cotyledon and 43 kDa for buffalo liver arginase. The kinetic properties determined for the purified cotyledon and liver arginase showed an optimum pH of 10.0 and pH 9.2 respectively. Optimal cofactor Mn++ ion concentration was found to be 0.6 mM for cotyledon and 2 mM for liver arginase. The Michaelis-Menten constant for cotyledon arginase and hepatic arginase were found to be 42 mM and 2 mM respectively. The activity of guanidino compounds as alternate substrates for Vigna catjang cotyledon and buffalo liver arginase is critically dependent on the length of the amino acid side chain and the number of carbon atoms. In addition to L-arginine cotyledon arginase showed substrate specificity towards agmatine and L-canavanine, whereas the liver arginase showed substrate specificity towards only L-canavanine.  相似文献   

9.
An assay for arginase is described that uses l-[guanido-14C]arginine as substrate. Unhydrolyzed arginine is removed in a batch procedure with sulfonate resin and the [14C]urea product is determined quantitatively in the resin supernatant. The assay requires 5 min and is performed in one tube. The sensitivity is approximately 0.1 munits of arginase. Arginase activities in fetal calf serum and in murine macrophage extract have been determined and the bovine liver enzyme has been used as a reference.  相似文献   

10.
Srivastava A  Sau AK 《IUBMB life》2010,62(12):906-915
Arginase is a binuclear Mn(2+)-metalloenzyme of urea cycle that catalyzes the conversion of L-arginine to L-ornithine and urea. Unlike other arginases, the Helicobacter pylori enzyme is selective for Co(2+), and has lower catalytic activity. To understand the differences in the biochemical properties as well as activity compared to other arginases, we carried out a detailed investigation of different metal reconstituted H. pylori arginases that includes steady-state kinetics, fluorescence measurement, pH-dependent and oligomerization assays. Unlike other arginases (except human at physiological pH), the Co(2+)- and Mn(2+)-reconstituted H. pylori enzymes exhibit cooperative mechanism of arginine hydrolysis, and undergo self-association and activation with increasing concentrations. Analytical gel-filtration assays in conjunction with the kinetic data showed that the protein exists as a mixture of monomer and dimer with monomer being the major form (other arginases exclusively exist as a trimer or hexamer) but the dimer is associated with higher catalytic activity. The proportion of dimer is found to decrease with increasing salt concentrations indicating that salt bridges play important roles in dimerization of the protein. Furthermore, the fluorescence measurement showed that Co(2+) ions play an important role in the local tertiary structure of the protein than Mn(2+). This is consistent with the pH-dependent studies where the Co(2+)-enzyme showed a single ionization compared to the double in the Mn(2+)-enzyme. Thus, this study presents the detailed biochemical and spectroscopic investigations into the differences in the biochemical properties and activity between H. pylori and other arginases.  相似文献   

11.
The urea cycle enzyme arginase (EC 3.5.3.1) hydrolyzes l-arginine to l-ornithine and urea. Mammalian arginases require manganese, have a highly alkaline pH optimum and are resistant to reducing agents. The gastric human pathogen, Helicobacter pylori, also has a complete urea cycle and contains the rocF gene encoding arginase (RocF), which is involved in the pathogenesis of H. pylori infection. Its arginase is specifically involved in acid resistance and inhibits host nitric oxide production. The rocF gene was found to confer arginase activity to Escherichia coli; disruption of plasmid-borne rocF abolished arginase activity. A translationally fused His(6)-RocF was purified from E. coli under nondenaturing conditions and had catalytic activity. Remarkably, the purified enzyme had an acidic pH optimum of 6.1. Both purified arginase and arginase-containing H. pylori extracts exhibited optimal catalytic activity with cobalt as a metal cofactor; manganese and nickel were significantly less efficient in catalyzing the hydrolysis of arginine. Viable H. pylori or E. coli containing rocF had significantly more arginase activity when grown with cobalt in the culture medium than when grown with manganese or no divalent metal. His(6)-RocF arginase activity was inhibited by low concentrations of reducing agents. Antibodies raised to purified His(6)-RocF reacted with both H. pylori and E. coli extracts containing arginase, but not with extracts from rocF mutants of H. pylori or E. coli lacking the rocF gene. The results indicate that H. pylori RocF is necessary and sufficient for arginase activity and has unparalleled features among the arginase superfamily, which may reflect the unique gastric ecological niche of this organism.  相似文献   

12.
Arginase (EC 3.5.3.1; L-arginine amidinohydrolase) is a key enzyme of the urea cycle that catalyses the conversion of arginine to ornithine and urea, which is the final cytosolic reaction of urea formation in the mammalian liver. The recombinant strain of the yeast Saccharomyces cerevisiae that is capable of overproducing arginase I (rhARG1) from human liver under the control of the efficient copper-inducible promoter CUP1, was constructed. The (His)(6)-tagged rhARG1 was purified in one step from the cell-free extract of the recombinant strain by metal-affinity chromatography with Ni-NTA agarose. The maximal specific activity of the 40-fold purified enzyme was 1600 μmol min(-1) mg(-1) protein.  相似文献   

13.
Polyamine biosynthesis enzymes are promising drug targets for the treatment of leishmaniasis, Chagas' disease and African sleeping sickness. Arginase, which is a metallohydrolase, is the first enzyme involved in polyamine biosynthesis and converts arginine into ornithine and urea. Ornithine is used in the polyamine pathway that is essential for cell proliferation and ROS detoxification by trypanothione. The flavonols quercetin and quercitrin have been described as antitrypanosomal and antileishmanial compounds, and their ability to inhibit arginase was tested in this work. We characterized the inhibition of recombinant arginase from Leishmania (Leishmania) amazonensis by quercetin, quercitrin and isoquercitrin. The IC(50) values for quercetin, quercitrin and isoquercitrin were estimated to be 3.8, 10 and 4.3 μM, respectively. Quercetin is a mixed inhibitor, whereas quercitrin and isoquercitrin are uncompetitive inhibitors of L. (L.) amazonensis arginase. Quercetin interacts with the substrate l-arginine and the cofactor Mn(2+) at pH 9.6, whereas quercitrin and isoquercitrin do not interact with the enzyme's cofactor or substrate. Docking analysis of these flavonols suggests that the cathecol group of the three compounds interact with Asp129, which is involved in metal bridge formation for the cofactors Mn(A)(2+) and Mn(B)(2+) in the active site of arginase. These results help to elucidate the mechanism of action of leishmanicidal flavonols and offer new perspectives for drug design against Leishmania infection based on interactions between arginase and flavones.  相似文献   

14.
Increased arginase activity during lymphocyte mitogenesis   总被引:1,自引:0,他引:1  
A sensitive assay for arginase activity was developed using [guanidino-14C]arginine as substrate and measuring the production of 14CO2 from [14C]urea in the presence of urease. Arginase activity was measured in bovine lymphocytes after activation by Concanavalin A. The specific enzymatic activity of arginase doubled in 6 hours and increased nearly 4-fold by 24 hours after stimulation. It is suggested that the role of arginase in these cells is to provide ornithine as substrate for the synthesis of putrescine, precursor of the polyamines spermidine and spermine.  相似文献   

15.
Human type II arginase, which is extrahepatic and mitochondrial in location, catalyzes the hydrolysis of arginine to form ornithine and urea. While type I arginases function in the net production of urea for excretion of excess nitrogen, type II arginases are believed to function primarily in the net production of ornithine, a precursor of polyamines, glutamate, and proline. Type II arginases may also regulate nitric oxide biosynthesis by modulating arginine availability for nitric oxide synthase. Recombinant human type II arginase was expressed in Escherichia coli and purified to apparent homogeneity. The Km of arginine for type II arginase is approximately 4.8 mM at physiological pH. Type II arginase exists primarily as a trimer, although higher order oligomers were observed. Borate is a noncompetitive inhibitor of the enzyme, with a Kis of 0.32 mM and a Kii of 0.3 mM. Ornithine, a product of the reaction catalyzed by arginase and a potent inhibitor of type I arginase, is a poor inhibitor of the type II isozyme. The findings presented here indicate that isozyme-selectivity exists between type I and type II arginases for binding of substrate and products, as well as inhibitors. Therefore, inhibitors with greater isozyme-selectivity for type II arginase may be identified and utilized for the therapeutic treatment of smooth muscle disorders, such as erectile dysfunction.  相似文献   

16.
In germinated loblolly pine (Pinus taeda L.) seeds arginine accumulates in the seedling during its growth immediately following germination. The enzyme arginase (L-arginine amidinohydrolase, EC 3.5.3.1) is responsible for hydrolyzing this arginine into ornithine and urea. Loblolly pine arginase was purified to homogeneity from seedling cotyledons by chromatographic separation on DE-52 cellulose, Matrex Green and arginine-linked Sepharose 4B. The enzyme was purified 148-fold and a single polypeptide band was identified as arginase. The molecular mass was determined to be 140 kDa by FPLC, while the subunit size was shown to be 37 kDa by SDS-PAGE, predicting a homotetramer holoprotein. Removal of manganese from the enzyme abolishes catalytic activity, which can be restored by incubating the protein with Mn2+. Antibodies, raised against the arginase subunit, are able to immunotitrate arginase activity and are monospecific for arginase on immunoblots.  相似文献   

17.
Arginase is an enzyme that converts l-arginine to l-ornithine and urea in the urea cycle. There are two isoforms of arginase in mammals: ARG-1 and ARG-2. l-Arginine level changes occur in patients with various types of affliction. An overexpression of arginase leads to the depletion of arginine and then to inhibition of the growth of T and NK cells, and in effect to the tumor escape of the immune response. Based on those observations, an inhibition of arginase is proposed as a method to improve anti-tumor immune responses (via an activation and proliferation of T and NK cells). Boronic acid derivatives as arginase inhibitors are leading, potential therapeutic agents for the treatment of several diseases. All these compounds are derived from the original 2-(S)-amino-6-boronohexanoic acid (ABH), the first boronic acid arginase inhibitor proposed by Christianson et al. This article focuses on the review of such sub-class of arginase inhibitors and highlights their SAR and PK properties. It covers molecules published until early 2020, including patent applications.  相似文献   

18.
Arginase, which hydrolyzes arginine to urea and ornithine, is a precursor for the synthesis of polyamines and proline, which is abundant in collagen. The supply of proline can be a crucial factor in the process of lung fibrosis. We investigated the induction of arginine metabolic enzymes in bleomycin-induced mouse lung fibrosis. Histological studies and quantification of lung hydroxyproline showed that lung fibrosis develops in up to 14 days after bleomycin treatment. Under these conditions, collagen I mRNA was induced gradually in up to 15 days, and the content of hydroxyproline reached a maximum at 10 days. Arginase I mRNA was undetectable before bleomycin treatment but was induced 5-10 days after this treatment. Arginase I protein was induced at 7 days and remained little changed for up to 10 days and decreased at 14 days. On the other hand, arginase II mRNA that was detectable before treatment was increased gradually for up to 10 days and decreased at 14 days. Arginase II protein began to increase at day 5, increased for up to 10 days, and was decreased at day 14. mRNAs for cationic amino acid transporter-2 and ornithine decarboxylase were induced in a manner similar to that seen with collagen I mRNA. Immunohistochemical analysis showed that arginase I is induced in macrophages, whereas arginase II is induced in various cell types, including macrophages and myofibroblasts, and roughly colocalizes with the collagen-specific chaperone heat shock protein 47. Our findings suggest that arginine metabolic enzymes play an important role in the development of lung fibrosis, at least in mice.  相似文献   

19.
Arginase is an enzyme that catalyses the hydrolysis of arginine to urea and ornithine. It is abundantly present in the liver of ureotelic animals (i.e. those whose excretion is characterized by the excretion of uric acid as the chief end-product of nitrogen metabolism), but its purification has hitherto not been simple, and the yield not high. Starting with a partially truncated cDNA for human liver arginase recently made available, we constructed an expression plasmid that had tandemly linked tac promotors placed upstream of a full-length cDNA. By selecting Escherichia coli strain KY1436 as the host micro-organism, we established an efficient system for the production of human liver arginase protein. Chromatographies on CM-Sephadex G-150, DEAE-cellulose and Sephadex G-150, followed by preparative agar-gel electrophoresis, yielded 10 mg of apparently homogeneous enzyme protein from 1 g (wet wt.) of E. coli cells. E. coli-expressed human liver arginase had chemical, immunological and most catalytic properties indistinguishable from those of purified human erythrocyte arginase. However, E. coli-expressed arginase was a monomer of Mr 35,000, whereas the purified erythrocyte arginase was trimer of Mr 105,000. They differed also in pH- and temperature-stabilities. Gel-filtration experiments with these two purified arginases under various conditions, as well as with unfractionated human liver and erythrocyte cytosol preparations, indicated that the native form of human arginase should be of Mr 35,000, and that the trimeric appearance of human erythrocyte arginase after purification was an artifact of the purification procedures. It was thus concluded that, in Nature, the liver and erythrocyte arginases are identical proteins.  相似文献   

20.
Arginase is a manganese metalloenzyme that catalyzes the hydrolysis of l-arginine to yield l-ornithine and urea. In order to establish a foundation for future neutron diffraction studies that will provide conclusive structural information regarding proton/deuteron positions in enzyme-inhibitor complexes, we have expressed, purified, assayed, and determined the X-ray crystal structure of perdeuterated (i.e., fully deuterated) human arginase I complexed with 2(S)-amino-6-boronohexanoic acid (ABH) at 1.90A resolution. Prior to the neutron diffraction experiment, it is important to establish that perdeuteration does not cause any unanticipated structural or functional changes. Accordingly, we find that perdeuterated human arginase I exhibits catalytic activity essentially identical to that of the unlabeled enzyme. Additionally, the structure of the perdeuterated human arginase I-ABH complex is identical to that of the corresponding complex with the unlabeled enzyme. Therefore, we conclude that crystals of the perdeuterated human arginase I-ABH complex are suitable for neutron crystallographic study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号