首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of soil pH and calcium on mycorrhizas of Picea abies   总被引:3,自引:0,他引:3  
The effects of lime, increased soil pH and increased soil Ca concentration on the mycorrhizas of Norway spruce. [Picea abies (L.) Karst.] were studied independently of each other to elucidate the different mechanisms through which lime may influence mycorrhizas in acidic soil. In a field experiment (mature Norway spruce in podzol), lime was applied as CaCO3; increased Ca concentration without an increase in pH was achieved with CaSO4; and soil pH was increased without calcium by means of Na2CO3 and K2CO3 (Na+K treatment). Treatments were done in October, and mycorrhizas were counted from samples collected in the following June and September. All treatments increased the percentage of dead short root tips compared to controls in September, and Na+K already in June. Cenococcum geophilum Fr. increased in proportion in plots treated with Na+K.In a sand culture experiment, Norway spruce seedlings were grown from seed and inoculated with Cenococcum geophilum, or root inoculum, or left uninoculated. When mycorrhizas were beginning to form, CaCO3 and CaSO4 treatments were applied. Six weeks later, the percent of dead short root tips in both salt treatments was significantly increased from control, but formation of mycorrhizas was not inhibited by treatments.As all the treatments increased the proportion of dead short root tips, it is concluded that lime directly and adversely affected mycorrhizas of Norway spruce in sand culture and in mor humus. Both increased ionic strength and increased pH may be reasons for this rather than Ca2+ specifically.  相似文献   

2.
Effects of liming and boron fertilization on boron uptake of Picea abies   总被引:1,自引:0,他引:1  
The effects of liming on concentrations of boron and other elements in Norway spruce [Picea abies (L) Karst.] needles and in the mor humus layer were studied in long-term field experiments with and without B fertilizer on podzolic soils in Finland. Liming (2000+4000 kg ha-1 last applied 12 years before sampling) decreased needle B concentrations in the four youngest needle age classes from 6–10 mg kg-1 to 5 mg kg-1. In boron fertilized plots the corresponding concentrations were 23–35 mg kg-1 in control plots and 21–29 mg kg-1 in limed plots. Both liming and B fertilizer decreased the Mn concentrations of needles. In the humus layer, total B concentration was increased by both lime and B fertilizer, and Ca and Mg concentrations and pH were still considerably higher in the limed plots than controls. Liming decreased the organic matter concentration in humus layer, whilst B fertilizer increased it.The results about B uptake were confirmed in a pot experiment, in which additionally the roles of increased soil pH and increased soil Ca concentration were separated by means of comparing the effects of CaCO3 and CaSO4. Two-year-old bare-rooted Norway spruce seedlings were grown in mor humus during the extension growth of the new shoot. The two doses of lime increased the pH of soil from 4.1 to 5.6 to 6.1, and correspondingly decreased the B concentrations in new needles from 22 to 12 to 9 mg kg-1. However, CaSO4 did not affect the pH of the soil or needle B concentrations. Hence the liming effect on boron availability in these soils appeared to be caused by the increased pH rather than increased calcium concentration.  相似文献   

3.
Z. Dou  R. H. Fox  J. D. Toth 《Plant and Soil》1994,158(2):203-210
Colonization of sorghum by Macrophomina phaseolina in field plots was determined at nitrogen fertilization rates of 0, 56, 112, and 168 kg ha-1 in 1988 and 0, 84, 168, and 256 kg ha-1 in 1989. Above ground plant tissue and roots were sampled monthly to determine total nitrogen and percent colonization of root segments by natural inoculum. Root infection was not affected by nitrogen treatment, but was affected by growth stage and environment. High root infection occurred before reproductive development (growth stage 3) in 1988 and was associated with hot, dry weather early in the growing season. In 1989, when the weather was cool and wet, root infection began after reproductive development (growth stage 4). The effect of nitrogen treatments on lesion length was determined in sorghum stalks artificially inoculated with M. phaseolina. Lesion lengths were significantly affected by both nitrogen treatments and growth stage. Lesions were significantly longer with all nitrogen treatments at growth stage 9 than with the no-nitrogen treatment, and lesions tended to increase with increased levels of nitrogen fertilization. Significant increases in lesion length occurred between growth stages 5, 7, and 9 in 1988 and between 7 and 9 in 1989. This study demonstrates that nitrogen fertilization affects colonization of sorghum stalks but not root infection by M. phaseolina.  相似文献   

4.
Soybeans [Glycine max (L.) Merr. cv. Essex] were grown in nonsterile acid (pH. 5.2) infertile Wynnville silt loam (Glossic Fragiudult) in a glasshouse. The effects of P fertilization and lime were determined by inoculation with two VAM-fungi (VAMF): Glomus fasciculatum (Gf) and Glomus etunicatum (Ge). An important factor affected by the interaction between applied lime (soil acidity), applied P, and VAMF inoculation was the soil Al. Five application rates of P as KH2PO4 and three rates of lime were tested. Potassium was equalized with KCl (muriate of potash). P-efficiency (g seed/mg P kg-1 soil) by vesicular-arbuscular mycorrhiza (VAM) was maximal at 20 mg P kg-1 soil at all lime and VAMF treatments. VAMF inoculation increased plant survival and protected the soybeans from leaf scorch, thereby substituting for the effects of lime and P. The Ge inoculum was superior in ameliorating leaf scorch in the nonlimed soil. The Gf inoculum required more lime and P than the Ge inoculum to increase seed yield relative to the noninoculated controls containing only native VAMF. Both inocula increased root Al uptake and extractable soil Al in the acid soil without apparent adverse effects on root or shoot. The ability of the VAMF inocula to enhance the efficiency of applied P and decrease seed Cl concentration was increased by lime. Seed yield (Y) was negatively related to seed Cl concentration (X) where Y=aX-b. Both VAMF inoculation and lime application reduced this negative relationship and may have increased the tolerance to both Cl and soil Al.  相似文献   

5.
Summary Seedlings of Pinus sylvestris L. were grown on defined nutrient solutions on carbon filters, either sterile or infected with the basidiomycete Suillus variegatus O. Kuntze. After mycorrhizas were established, the shoot of the seedling was subjected to 14CO2 photosynthesis. 14C-labelled photoassimilates were translocated to both mycorrhizas and non-infected root tips. Microautoradiographs of mycorrhizas indicated that omission of external sugars did not affect the formation of mycorrhizas; 14C-photoassimilates were supplied to cortex, Hartig net and the mantle of hyphae surrounding the rootlet. Nutrient solution containing sugars (malt extract, glucose) enhanced the growth of the fungus. As a consequence, 14C-photoassimilates from the seedling were accumulated in the mantle, but defence mechanisms of the host cannot be excluded. When soluble nitrogen was omitted from the nutrient solution and replaced by chitin precipitated on the filter-bearing mycorrhizas, the fungus appeared strongly labelled in the mantle, where the fungal chitinase provided soluble nitrogen compounds, necessary for the growth of the seedling.  相似文献   

6.
Root turnover in a beech and a spruce stand of the Belgian Ardennes   总被引:8,自引:0,他引:8  
The theoretical basis of fine root turnover estimation in forest soils is discussed, in relation to appropriate experimental techniques of measurement. After sequential coring, the correct expression is the sum of significant positive increments of live and dead roots of the various diameter categories, to which the transfer of dead roots to organic matter derived from roots, OMDR, has to be added. This should not be confounded with dead root mineralization. The transfer rates should first be estimated in root dimensions and not in weight of dry matter. The measurements were carried out in a 120 year old beech (Fagus sylvatica L.) stand and a 35 year old Norway spruce (Picea abies Karst) stand, in the Eastern Ardennes, Belgium. The turnover rate of fine roots (diam. <5 mm) was 4393 kg ha−1 year−1 (root dry weight), including 711.2 kg ha−1 year−1 for dead root transfer to OMDR, for beech. For spruce, turnover rate was 7011 kg ha−1 year−1 (root dry weight), including 1498 kg ha−1 year−1 for dead root transfer to OMDR. Under beech, there was a slight root density increase in spring. No seasonal fluctuations were observed under spruce, but a strong irreversible drop in live root growth was found in the later season 1980–1981, corresponding to a decrease of tree height growth and trunk radius increment. Turnover rates were further expressed in dry weight and in amounts of elements (kg ha−1 year−1) (Ca, Mg, K, Na, Al, N, P, S). Correlative relations between root dimensions and dry weight and element concentrations show that the derived values, and in particular root specific density (dry weight volume−1) vary according to species, root category, and seasonal sampling. Various schemes of seasonal variations of root growth, described in Europe, show that the major dependance on general climate is obscured by environmental factors (soil, exposure, species). It is suggested that root density fluctuation approach the steady state on an annual basis under mild Atlantic conditions.  相似文献   

7.
Results are presented from a fertilization experiment with wood bark ash (0, 1, 2, 5, 10, 20 Mg ha-1) applied to prevent and cure visible nutrient disorders of young Scots pine established on a peatland field. 13 years after fertilization, dieback of trees and other symptoms of nutrient disorders were substantially reduced or even eliminated, especially where higher doses had been applied. The volume of the growing stock was more than 70 m3 ha-1 for the highest dose while control plots produced less than 15 m3 ha-1. Vegetation characteristics changed following ash treatments with high ash doses favouring grasses and low ash doses promoting mosses. Some major changes in soil and foliar nutrient concentrations were evident due to ash fertilization. K and B, however, were clearly the most limiting nutrients that could be cycled where high doses of ash were used. This was particularly the case with a dose of 20 Mg ha-1. Decomposition of the topsoil was at its highest on plots with ash doses of 5 and 10 Mg ha-1 ash and at its lowest when the dose was 2 Mg ha-1. This was partly due to differences in the C/N ratio of the soil. All decomposition parameters indicated a high degree of humification in the topsoil. High N content (of organic material), low C/N in the soil and optimum levels of foliar N concentrations suggested sufficient N mineralization for tree growth to have occurred in the soil.  相似文献   

8.
Prunings of Calliandra calothyrsus, Grevillea robusta, Leucaena diversifolia and farm yard manure were applied each cropping season at 3 and 6 t dry matter ha−1 to an Oxisol in Burundi. The field plots also received basal applications of nitrogen (N), phosphorus (P) and potassium (K). Application of the tree prunings or farm yard manure decreased the concentration of monomeric inorganic aluminium (Al) in soil solution from 2.92 mg Al dm−3 in the control plots to 0.75 mg Al dm−3 in the plots receiving 6 t ha−1 Calliandra prunings. The other organic materials also decreased the concentration of monomeric inorganic aluminium in the soil solution. The lowered Al concentration led to a corresponding decrease in the percentage Al saturation of the 0–10 cm soil layer from 80% to 68%. Grain yields of maize and beans were strongly inversely related to the percentage Al saturation of the soil. This confirms that soil acidity was the main constraint to maize and beans production. The yield improvement was mainly attributed to the ameliorating effects of the organic matter application on Al toxicity. The nutrient content had less effect presumably because of fertilizer use. In the best treatments, the yield of maize increased from 0.9 to 2.2 t ha−1 and the corresponding beans yield increased from 0.2 to 1.2 t ha−1. A C Borstlap Section editor  相似文献   

9.
The effects of liquid and solid fertilizers on fine-root development were studied in a 130-year-old Scots pine (Pinus sylvestris L.) stand. Ingrowth cores,viz. initially root-free mesh bags with sieved mineral soil taken outside the plots and driven to a depth of 30 cm from the soil surface, were subsequently resampled and the amount of fine roots was estimated. The total accretion of both fine-root length and dry weight was comparatively high in the liquid fertilization plot. The most substantial net accretion, however, during the 1984 period was in the control plot. The results of the study is that the ramification pattern of the fine roots was strongly influenced by fertilization. The average number of root tips per unit length was 9.9 cm−1 in the control plot cm−1, compared with both the solid (A and B) and liquid fertilization plots (2.3, 3.2 and 3.3 cm−1, respectively) due to a greater occurrence of mycorrhizal aggregates (‘ball mycorrhiza’). The effects of fertilization on the mineral nutrient concentrations in the fine roots were limited—the strongest effects were in the liquid-fertilized area. The observed increase in the concentration of most mineral nutrients in the latter experimental area, however, may be due to a change in the growth pattern of the fine roots rather than an effect of the fertilizers themselves.  相似文献   

10.
Long-term fertilization of acidic tussock tundra has led to changes in plant species composition, increases in aboveground production and biomass and substantial losses of soil organic carbon (SOC). Root litter is an important input to SOC pools, although little is known about fine root demography in tussock tundra. In this study, we examined the response of fine root production and live standing fine root biomass to short- and long-term fertilization, as changes in fine root demography may contribute to observed declines in SOC. Live standing fine root biomass increased with long-term fertilization, while fine root production declined, reflecting replacement of the annual fine root system of Eriophorum vaginatum, with the long-lived fine roots of Betula nana. Fine root production increased in fertilized plots during an unusually warm growing season, but remained unchanged in control plots, consistent with observations that B. nana shows a positive response to climate warming. Calculations based on a few simple assumptions suggest changes in fine root demography with long-term fertilization and species replacement could account for between 20 and 39% of the observed declines in SOC stocks.  相似文献   

11.
Effects of inoculation of wheat (Triticum aestivum L.) with the rhizobacterium Pseudomonas chlororaphis subsp. aurantiaca strain SR1 (termed SR1) were studied at an experimental field site in Río Cuarto, Argentina. Treatments involved SR1 inoculation with or without nitrogen/phosphorus fertilization. Inoculation produced a significant increase in plant height and root length in early growth stages. Inoculation plus fertilization with 40 kg ha−1 urea/30 kg ha−1 diamonic phosphate (“50% dose”) gave a yield increase of 636 kg ha−1 relative to control, and an increase of 472 kg ha−1 relative to fertilization with 80 kg ha−1 urea/60 kg ha−1 phosphate without inoculation. SR1 inoculation without fertilization, compared to control, produced increases of 6% in weight of 1,000 grains, 13% in number of spikes per plant, and 30% in number of grains per spike. Inoculation plus 50% dose fertilization also improved these parameters. Results of the study indicate that inoculation of wheat with SR1 improves various growth and yield parameters, and allows reduced dosage of nitrogen/phosphorus fertilizers in the field.  相似文献   

12.
Leader dieback associated with B deficiency in P. radiata D. Don plantations was treated with borax applied at rates of 50, 100 and 150 kg ha−1. This initially increased B in foliage from 5 to 40, 80 and 110 μg g−1 respectively, and was followed by a rapid decline and stabilisation at around 25 μg g−1 for the duration of the study. Annual fluctuations in foliage B levels were strongly correlated with rainfall during the preceding spring and summer. Uptake of N, P and K increased as a result of applied B and comparison of the distribution of these nutrients in crowns of fertilized and unfertilised trees six years after application indicated continued uptake of these nutrients probably as a result of improved root growth due to B. Foliage concentrations of B like N, P and K, increased in young needles towards the upper crown and this, together with a decline in needle concentrations of B as foliage aged, indicated some redistribution of B from older to new foliage. A limit of 5 μg g−1 was found below which little redistribution seems to occur. Application of B prevented further leader dieback, improved apical dominance and height growth and increased volume production by 25 m3 ha−1 at age 8 years. Differences between application rates of B were not significant in terms of growth.  相似文献   

13.
A field study was carried out near Zürich (Switzerland) to determine the yield of symbiotically fixed nitrogen (15N dilution) from white clover (Trifolium repens L.) grown with perennial ryegrass (Lolium perenne L) and from red clover (Trifolium pratense L.) grown with Italian ryegrass (Lolium multiflorum Lam.). A zero N fertilizer treatment was compared to a 30 kg N/ha per cut regime (90 to 150 kg ha−1 annually). The annual yield of clover N derived from symbiosis averaged 131 kg ha−1 (49 to 227 kg) without N fertilization and 83 kg ha−1 (21 to 173 kg) with 30 kg of fertilizer N ha−1 per cut in the seeding year. Values for the first production year were 308 kg ha−1 (268 to 373 kg) without N fertilization and 232 kg ha−1 (165 to 305 kg) with 30 kg fertilizer N ha−1 per cut. The variation between years was associated mainly with the proportion of clover in the mixtures. Apparent clover-to-grass transfer of fixed N contributed up to 52 kg N ha−1 per year (17 kg N ha−1 on average) to the N yield of the mixtures. Percentage N derived from symbiosis averaged 75% for white and 86% for red clover. These percentages were affected only slightly by supplemental nitrogen, but declined markedly during late summer for white clover. It is concluded that the annual yield of symbiotically fixed N from clover/grass mixtures can be very high, provided that the proportion of clover in the mixtures exceeds 50% of total dry mass yield.  相似文献   

14.
Summary Termite mound densities in typical guinea savanna, Detarium, and grassland (boval) habitats in northern guinea savanna were determined by random quadratting of 2–3 sites in each habitat (100, 10x10 m quadrats per habitat). Dominant species in guinea savanna were T. geminatus (46 mounds ha-1) and T. oeconomus (21 mounds ha-1), in Detarium T. geminatus (59 mounds ha-1) and C. curtatus (45 mounds ha-1) and in boval C. curtatus (72 mounds ha-1) and T. geminatus (22 mounds ha-1). Only C. curtatus densities and total densities differed significantly between sites within habitats, but all species differed significantly in abundance between habitats. The composition of each community was related to general environment but no particular environmental variable was shown to be a major determinant of termite distribution. Evidence for the limitation of termite populations was obtained from indirect evidence of competition between colonies in Detarium, and by experimental manipulation of fire regimes in the typical guinea savanna habitat. Harvester termites increased four-five fold over two years in fire-protected plots as a result of increased food supplies. Total termite densities in the fire-protected community equilibrated to the new population density (100 mounds ha-1) after only two-three years.  相似文献   

15.
Summary In paired cultures with two mycorrhizal fungi, the root pathogen Cylindrocarpon destructans (Zinsm.) Scholten had an inhibitional effect on mycelial growth of Laccaria laccata (Scop, ex Fr.) Bk. & Br. but was inhibited itself by Paxillus involutes (Batsch.) Fr. A similar pathogen-symbiont interaction scheme was observed in triaxenic cultures with Picea abies Karst. seedlings but only in the vicinity of the mycorrhizal root tips. Both mycorrhizas similarly increased the endogenous plant resistance against the infection of C. destructans. This suggests that direct pathogen-symbiont interactions are an important factor for population dynamics in the mycorrhizo sphere. Moreover, endogenous plant resistance constitutes one of the key factors for an effective defence against pathogenic fungi.  相似文献   

16.
Douglas fir seedlings grown under aseptic conditions in a peat-vermiculite substrate were inoculated with four pairs of ectomycorrhizal fungi to assess the relative inoculum dosages needed to establish two mycorrhizal fungi simultaneously in the same root system. The dual fungal combinations tested were: Pisolithus arhizus + Rhizopogon subareolatus, P. arhizus + R. roseolus, Laccaria bicolor + P. arhizus and L. bicolor + R. subareolatus. A total of 12 ml of inocula per plant was applied at the rates: 0+12, 3+9, 6+6, 9+3, 12+0, and 0+0 (v+v) for each combination. After 3 months growth, the number of mycorrhizas and uninfected short roots as well as the total plant biomass produced were recorded. Inoculations were successful with the fungal combinations P. arhizus + R. subareolatus and L. bicolor + P. arhizus. Plants developed P. arhizus and R. subareolatus mycorrhizas only at the rate 9Pa + 3Rs; at other rates tested, only monospecific mycorrhizas were formed. Plants developed L. bicolor and P. arhizus mycorrhizas at the three rates containing both fungi. L. bicolor behaved as an aggressive root colonizer and its level of root colonization remained constant at increasing rates of P. arhizus inoculum. L. bicolor displaced R. subareolatus at all inocula rates. P. arhizus displaced R. roseolus except at the rate 3Pa + 9Rr, with only a low number of mycorrhizas formed by either fungus. Total plant biomass was significantly increased by the presence of any fungal combination up to four times the values for uninoculated controls. P. arhizus and R. subareolatus were more effective in promoting plant growth and stimulating short root formation than either L. bicolor or R. roseolus.  相似文献   

17.
[3H]iso-Pentenyladenine ([3H]iP) was fed for 24 h to the tips of intact and root tip-decapitated Pinus pinea seedlings. Twelve and 24 h after application to the roots of intact plants most of the applied radioactivity (±60%) was transported to the shoot. Root tip removal increased transport of the applied radioactivity to the shoot, but the overall pattern of distribution of radioactivity in the seedling did not change. Large amounts of radioactivity were recovered from the elongation zone of the root. Some radioactivity also accumulated in the older part of the root with well-developed lateral roots. When [3H]iP was applied one day after decapitation, no significant changes in the pattern of radioactivity distribution were found between the intact and decapitated root systems. However, when applied 7 days after decapitation there was a significant increase of radioactivity in the region of the root where lateral roots were emerging. HPLC separation of extracts from the different root sections showed that [3H]iP was extensively metabolized in the root. Six peaks of radioactivity, which co-chromatographed with authentic cytokinin standards, were detected.Abbreviations ABA abscisic acid - ADE adenine - IAA indole-acetic acid - iP iso-pentenyladenine - HPLC high performance liquid chromatography - [OG]DHZ O-glycosyldihydrozeatin - [9R-MP]DHZ ribosyldihydrozeatin monophosphate - [9G]iP iso-pentenyladenine-9-glucoside - [9R]Z ribosylzeatin - [9R]iP iso-pentenyladenosine - TLC thin layer chromatography  相似文献   

18.
Aboveground biomass and litterfall ofPinus pumila scrubs, growing on the Kiso mountain range in central Japan, were investigated from 1984 to 1985. The biomass of two research plots (P1 and P2) with different scrub heights was estimated by two methods, the stratified clip technique and the allometric method. Aboveground total biomass estimated by the latter method reached 181 ton d.w. ha−1 in P1 and 132 ton d.w. ha−1 in P2. Creeping stems contributed to about half of the total biomass. Although estimates of woody organs differed between the two plots, leaf biomass estimates were almost the same at 15.5 ton d.w. ha−1. The canopies of the twoP. pumila scrubs were characterized by a large mean leaf area density of 5.0 m2 m−3. Despite this large area density, relatively moderate attenuation of light intensity was observed. Specific leaf area generally increased with reduced leaf height. Annual total litterfall was estimated to be 3.60 ton d.w. ha−1 yr−1 in P1 and 2.39 ton d.w. ha−1 yr−1 in P2. Annual leaf fall in both plots was approximately 2.0 ton d.w. ha−1 yr−1. Leaves fell mainly in early autumn. Annual loss rates of branches, estimated as the sum of annual branch litterfall and the amount of newly formed attached dead branches, were 0.29 ton d.w. ha−1 yr−1 in P1 and 0.37 ton d.w. ha−1 yr−1 in P2.  相似文献   

19.
Vanlauwe  B.  Sanginga  N  Merckx  R. 《Plant and Soil》2001,231(2):201-210
Crop and tree roots are crucial in the nutrient recycling hypotheses related to alley cropping systems. At the same time, they are the least understood components of these systems. The biomass, total N content and urea-derived N content of the Senna and maize roots in a Senna-maize alley cropping system were followed for a period of 1.5 years (1 maize-cowpea rotation followed by 1 maize season) to a depth of 90 cm, after the application of 15N labeled urea. The highest maize root biomass was found in the 0–10 cm layer and this biomass peaked at 38 and 67 days after planting the 1994 maize (DAP) between the maize rows (112 kg ha–1, on average) and at 38, 67 and 107 DAP under the maize plants (4101 kg ha–1, on average). Almost no maize roots were found below 60 cm at any sampling date. Senna root biomass decreased with time in all soil layers (from 512 to 68 kg ha–1 for the 0–10 cm layer between 0 and 480 DAP). Below 10 cm, at least 62% of the total root biomass consisted of Senna roots and this value increased to 87% between 60 and 90 cm. Although these observations support the existence of a Senna root `safety net' between the alleys which could reduce nutrient leaching losses, the depth of such a net may be limited as the root biomass of the Senna trees in the 60–90 cm layer was below 100 kg ha–1, equivalent to a root length density of only < 0.05 cm cm–3. The proportion of maize root N derived from the applied urea (%Ndfu) decreased significantly with time (from 21% at 21 DAP to 8% at 107 DAP), while %Ndfu of the maize roots at the second harvest (480 DAP) was only 0.6%. The %Ndfu of the Senna roots never exceeded 4% at any depth or sampling time, but decreased less rapidly compared to the %Ndfu of the maize roots. The higher %Ndfu of the maize roots indicates that maize is more efficient in retrieving urea-derived N. The differences in dynamics of the %Ndfu also indicate that the turnover of N through the maize roots is much faster than the turnover of N through the Senna roots. The recovery of applied urea-N by the maize roots was highest in the top 0–10 cm of soil and never exceeded 0.4% (at 38 DAP) between the rows and 7.1% (at 67 DAP) under the rows. Total urea N recovery by the maize roots increased from 1.8 to 3.2% during the 1994 maize season, while the Senna roots never recovered more than 0.8% of the applied urea-N at any time during the experimental period. These values are low and signify that the roots of both plants will only marginally affect the total recovery of the applied urea-N. Measurement of the dynamics of the biomass and N content of the maize and Senna roots helps to explain the observed recovery of applied urea-N in the aboveground compartments of the alley cropping system.  相似文献   

20.
Tarré  R.  Macedo  R.  Cantarutti  R.B.  de Rezende  C. P.  Pereira  J.M.  Ferreira  E.  Alves  B.J.R.  Urquiaga  S.  Boddey  R.M. 《Plant and Soil》2001,234(1):15-26
The impact of forest clearance, and its replacement by Brachiaria pastures, on soil carbon reserves has been studied at many sites in the Brazilian Amazonia, but to date there appear to be no reports of similar studies undertaken in the Atlantic forest region of Brazil. In this study performed in the extreme south of Bahia, the changes in C and N content of the soil were evaluated from the time of establishment of grass-only B. humidicola and mixed B. humidicola/Desmodium ovalifolium pastures through 9 years of grazing in comparison with the C and N contents of the adjacent secondary forest. The decline in the content of soil C derived from the forest (C3) vegetation and the accumulation of that derived from the Brachiaria (C4) were followed by determining the 13C natural abundance of the soil organic matter (SOM). The pastures were established in 1987, 10 years after deforestation, and it was estimated that until 1994 there was a loss in forest-derived C in the top 30 cm of soil of approximately 20% (9.1 Mg C ha–1). After the establishment of the pastures, C derived from Brachiaria accumulated steadily such that at the final sampling (1997) it was estimated 13.9 Mg ha–1 was derived from this source under the grass-only pasture (0–30 cm). Samples taken from all pastures and the forest in 1997 to a depth of 100 cm showed that below 40 cm depth there was no significant contribution of the Brachiaria-derived C and that total C reserves under the grass/legume and the grass-only pastures were slightly higher than under the forest (not significant at P=0.05). The more detailed sampling under the pastures showed that to a depth of 30 cm there was significantly (P<0.05) more C under the mixed pasture than the grass-only pasture. It was estimated that from the time of establishment the apparent rate of C accumulation (0–100 cm depth) under the grass/legume pastures (1.17 Mg ha–1 yr–1) was almost double that under the grass-only pastures (0.66 Mg ha–1 yr–1). The data indicated that newly incorporated SOM derived from the Brachiaria had a considerably higher C:N ratio than that present under the forest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号