首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Objectives: The number of germ cells and somatic cells in human embryonic and foetal gonads has previously been estimated by stereological methods, which are time‐ and labour‐consuming with little information concerning cell proliferation. Here, we studied whether flow cytometry could be applied as an easier method, also enabling estimation of the fraction of cells in S or S+G2+M (SG2M) cell‐cycle phases as indicators of cell proliferation. Methods: Cell suspensions from 35 human embryonic gonads at days 37 to 68 post‐conception (pc) were immunomagnetically sorted into C‐KIT positive (germ) cells and negative (somatic) cells. They were stained for DNA content and analysed by flow cytometry. S and SG2M fractions could be measured for 13 of the female and 20 of the male gonads. The number of cells was estimated using fluorescent reference beads. Results: During the period from 37 to 68 days pc, female germ and somatic cells had a stable S and SG2M fractions indicating steady growth of both subpopulations, whereas they decreased in both male germ and somatic cells. The number of germ and somatic cells estimated by flow cytometry was significantly lower than in stereological estimates, suggesting loss of cells during preparation. Conclusions: Cell proliferation as indicated by S and SG2M fractions could be estimated specifically for primordial germ and somatic cells. Estimation of total number of germ and somatic cells was not feasible.  相似文献   

2.
Germ cells normally differentiate in the context of encapsulating somatic cells. However, the mechanisms that set up the special relationship between germ cells and somatic support cells and the signals that mediate the crucial communications between the two cell types are poorly understood. We show that interactions between germ cells and somatic support cells in Drosophila depend on wild-type function of the stet gene. In males, stet acts in germ cells to allow their encapsulation by somatic cyst cells and is required for germ cell differentiation. In females, stet function allows inner sheath cells to enclose early germ cells correctly at the tip of the germarium. stet encodes a homolog of rhomboid, a component of the epidermal growth factor receptor signaling pathway involved in ligand activation in the signaling cell. The stet mutant phenotype suggests that stet facilitates signaling from germ cells to the epidermal growth factor receptor on somatic cells, resulting in the encapsulation of germ cells by somatic support cells. The micro-environment provided by the surrounding somatic cells may, in turn, regulate differentiation of the germ cells they enclose.  相似文献   

3.
Ahmed S 《Aging cell》2006,5(6):559-563
A dichotomy exists between germ and somatic cells in most organisms, such that somatic cell lineages proliferate for a single generation, whereas the germ cell lineage has the capacity to proliferate from one generation to the next, indefinitely. Several theories have been proposed to explain the unlimited replicative life span of germ cells, including the elimination of damaged germ cells by apoptosis or expression of high levels of gene products that prevent aging in somatic cells. These theories were tested in the nematode Caenorhabditis elegans by examining the consequences of eliminating either apoptosis or the daf-16, daf-18 or sir-2.1 genes that promote longevity of postmitotic somatic cells. However, germ cells of strains deficient for these activities displayed an unlimited proliferative capacity. Thus, C. elegans germ cells retain their youthful character via alternative pathways that prevent or eliminate damage that accumulates as a consequence of cell proliferation.  相似文献   

4.
Germ cells require intimate associations and signals from the surrounding somatic cells throughout gametogenesis. The zero population growth (zpg) locus of Drosophila encodes a germline-specific gap junction protein, Innexin 4, that is required for survival of differentiating early germ cells during gametogenesis in both sexes. Animals with a null mutation in zpg are viable but sterile and have tiny gonads. Adult zpg-null gonads contain small numbers of early germ cells, resembling stem cells or early spermatogonia or oogonia, but lack later stages of germ cell differentiation. In the male, Zpg protein localizes to the surface of spermatogonia, primarily on the sides adjacent to the somatic cyst cells. In the female, Zpg protein localizes to germ cell surfaces, both those adjacent to surrounding somatic cells and those adjacent to other germ cells. We propose that Zpg-containing gap junctional hemichannels in the germ cell plasma membrane may connect with hemichannels made of other innexin isoforms on adjacent somatic cells. Gap junctional intercellular communication via these channels may mediate passage of crucial small molecules or signals between germline and somatic support cells required for survival and differentiation of early germ cells in both sexes.  相似文献   

5.
The capacity of stem cells to self renew and the ability of stem cell daughters to differentiate into highly specialized cells depend on external cues provided by their cellular microenvironments [1-3]. However, how microenvironments are shaped is poorly understood. In testes of Drosophila melanogaster, germ cells are enclosed by somatic support cells. This physical interrelationship depends on signaling from germ cells to the Epidermal growth factor receptor (Egfr) on somatic support cells [4]. We show that germ cells signal via the Egf class ligand Spitz (Spi) and provide evidence that the Egfr associates with and acts through the guanine nucleotide exchange factor Vav to regulate activities of Rac1. Reducing activity of the Egfr, Vav, or Rac1 from somatic support cells enhanced the germ cell enclosure defects of a conditional spi allele. Conversely, reducing activity of Rho1 from somatic support cells suppressed the germ cell enclosure defects of the conditional spi allele. We propose that a differential in Rac and Rho activities across somatic support cells guides their growth around the germ cells. Our novel findings reveal how signals from one cell type regulate cell-shape changes in another to establish a critical partnership required for proper differentiation of a stem cell lineage.  相似文献   

6.

Background  

We have previously noted that there were differences in somatic and male germ cell polyadenylation site choices. First, male germ cells showed a lower incidence of the sequence AAUAAA (an important element for somatic polyadenylation site choice) near the polyadenylation site choice. Second, the polyadenylation sites chosen in male germ cells tended to be nearer the 5' end of the mRNA than those chosen in somatic cells. Finally, a number of mRNAs used a different polyadenylation site in male germ cells than in somatic cells. These differences suggested that male germ cell-specific polyadenylation sites may be poor substrates for polyadenylation in somatic cells. We therefore hypothesized that male germ cell-specific polyadenylation sites would be inefficiently used in somatic cells.  相似文献   

7.
The fetal gonad is composed of a mixture of somatic cell lineages and germ cells. The fate of the gonad, male or female, is determined by a population of somatic cells that differentiate into Sertoli or granulosa cells and direct testis or ovary development. It is well established that germ cells are not required for the establishment or maintenance of Sertoli cells or testis cords in the male gonad. However, in the agametic ovary, follicles do not form suggesting that germ cells may influence granulosa cell development. Prior investigations of ovaries in which pre-meiotic germ cells were ablated during fetal life reported no histological changes during stages prior to birth. However, whether granulosa cells underwent normal molecular differentiation was not investigated. In cases where germ cell loss occurred secondary to other mutations, transdifferentiation of granulosa cells towards a Sertoli cell fate was observed, raising questions about whether germ cells play an active role in establishing or maintaining the fate of granulosa cells. We developed a group of molecular markers associated with ovarian development, and show here that the loss of pre-meiotic germ cells does not disrupt the somatic ovarian differentiation program during fetal life, or cause transdifferentiation as defined by expression of Sertoli markers. Since we do not find defects in the ovarian somatic program, the subsequent failure to form follicles at perinatal stages is likely attributable to the absence of germ cells rather than to defects in the somatic cells.  相似文献   

8.
Formation of motile sperm in Drosophila melanogaster requires the coordination of processes such as stem cell division, mitotic and meiotic control and structural reorganization of a cell. Proper execution of spermatogenesis entails the differentiation of cells derived from two distinct embryonic lineages, the germ line and the somatic mesoderm. Through an analysis of homozygous viable and fertile enhancer detector lines, we have identified molecular markers for the different cell types present in testes. Some lines label germ cells or somatic cyst cells in a stage-specific manner during their differentiation program. These expression patterns reveal transient identities for the cyst cells that had not been previously recognized by morphological criteria. A marker line labels early stages of male but not female germ cell differentiation and proves useful in the analysis of germ line sex-determination. Other lines label the hub of somatic cells around which germ line stem cells are anchored. By analyzing the fate of the somatic hub in an agametic background, we show that the germ line plays some role in directing its size and its position in the testis. We also describe how marker lines enable us to identify presumptive cells in the embryonic gonadal mesoderm before they give rise to morphologically distinct cell types. Finally, this collection of marker lines will allow the characterization of genes expressed either in the germ line or in the soma during spermatogenesis.  相似文献   

9.
10.
冷丽智  林戈  卢光琇 《生物磁学》2011,(18):3569-3572
生殖细胞的发生是发育和遗传的基础。在几乎所有哺乳动物中,原始生殖细胞(primordial germ cell,PGC)均由近端上胚层体细胞在周边细胞特定的信号诱导下特化而成。目前的研究已经发现一些与生殖细胞特化有关的信号分子和关键转录调控元件,以及特化后生殖细胞获得的与体细胞不同的生物特性。生殖细胞的特化是一个结合了体细胞发育程序的抑制、细胞多能性程序的启动和全基因组表观遗传重编程三个方面的动态的复杂过程。多能性干细胞(胚胎干细胞或诱导型多能干细胞)具有发育全能性,能分化为机体任何一种细胞类型,包括生殖细胞。利用多能性干细胞体外分化形成生殖细胞有助于深入系统地研究配子发生的调控机制,为干细胞在不育症治疗方面的应用带来新希望。  相似文献   

11.
12.
The germ cell lineage is totipotent insofar as it provides a link between an individual and the subsequent generations. There is a series of characteristic genomic modifications in germ cells that distinguish this lineage from somatic cells. These modifications include extensive demethylation of the genome, erasure of allele-specific methylation of imprinted loci and re-activation of the silent X chromosome. To test if this is an active process capable of reprogramming a somatic nucleus, we prepared germ cell-somatic cell hybrids. A dominant trans modification activity was detected in germ cells that was capable of inducing similar modifications in the somatic nucleus. This experimental system can therefore be used to study how determined cell state can be reversed by specific genomic modifications.  相似文献   

13.
Whereas somatic cell cytokinesis resolves with abscission of the midbody, resulting in independent daughter cells, germ cell cytokinesis concludes with the formation of a stable intercellular bridge interconnecting daughter cells in a syncytium. While many proteins essential for abscission have been discovered, until recently, no proteins essential for mammalian germ cell intercellular bridge formation have been identified. Using TEX14 as a marker for the germ cell intercellular bridge, we show that TEX14 co-localizes with the centralspindlin complex, mitotic kinesin-like protein 1 (MKLP1) and male germ cell Rac GTPase-activating protein (MgcRacGAP) and converts these midbody matrix proteins into stable intercellular bridge components. In contrast, septins (SEPT) 2, 7 and 9 are transitional proteins in the newly forming bridge. In cultured somatic cells, TEX14 can localize to the midbody in the absence of other germ cell-specific factors, suggesting that TEX14 serves to bridge the somatic cytokinesis machinery to other germ cell proteins to form a stable intercellular bridge essential for male reproduction.  相似文献   

14.
DNA methylation is necessary for the silencing of endogenous retrotransposons and the maintenance of monoallelic gene expression at imprinted loci and on the X chromosome. Dynamic changes in DNA methylation occur during the initial stages of primordial germ cell development; however, all consequences of this epigenetic reprogramming are not understood. DNA demethylation in postmigratory primordial germ cells coincides with erasure of genomic imprints and reactivation of the inactive X chromosome, as well as ongoing germ cell differentiation events. To investigate a possible role for DNA methylation changes in germ cell differentiation, we have studied several marker genes that initiate expression at this time. Here, we show that the postmigratory germ cell-specific genes Mvh, Dazl and Scp3 are demethylated in germ cells, but not in somatic cells. Premature loss of genomic methylation in Dnmt1 mutant embryos leads to early expression of these genes as well as GCNA1, a widely used germ cell marker. In addition, GCNA1 is ectopically expressed by somatic cells in Dnmt1 mutants. These results provide in vivo evidence that postmigratory germ cell-specific genes are silenced by DNA methylation in both premigratory germ cells and somatic cells. This is the first example of ectopic gene activation in Dnmt1 mutant mice and suggests that dynamic changes in DNA methylation regulate tissue-specific gene expression of a set of primordial germ cell-specific genes.  相似文献   

15.
Germ cells have unique features strikingly distinguishable from somatic cells. The functional divergence between these two cell lineages has been postulated to result from epigenetic mechanisms. Here we show that the chromosomal centric and pericentric (C/P) regions in male and female germline cells are specifically DNA-hypomethylated, despite the hypermethylation status in somatic cells. In multipotent germline stem cells, the C/P region was initially hypomethylated and then shifted to the hypermethylation status during differentiation into somatic lineage in vitro. Moreover, the somatic-type hypermethylation pattern was maintained in the somatic cell-derived nuclear transfer embryos throughout preimplantation development. These results imply that the identity of germ cell lineage may be warranted by the hypomethylation status of the C/P region as an epigenetic signature.  相似文献   

16.
In most animal species, germ cells require intimate contact with specialized somatic cells in the gonad for their proper development. We have analyzed the establishment of germ cell-soma interaction during embryonic gonad formation in Drosophila melanogaster, and find that somatic cells undergo dramatic changes in cell shape and individually ensheath germ cells as the gonad coalesces. Germ cell ensheathment is independent of other aspects of gonad formation, indicating that separate morphogenic processes are at work during gonadogenesis. The cell-cell adhesion molecule Drosophila E-cadherin is essential both for germ cell ensheathment and gonad compaction, and is upregulated in the somatic gonad at the time of gonad formation. Our data indicate that differential cell adhesion contributes to cell sorting and the formation of proper gonad architecture. In addition, we find that Fear of Intimacy, a novel transmembrane protein, is also required for both germ cell ensheathment and gonad compaction. E-cadherin expression in the gonad is dramatically decreased in fear of intimacy mutants, indicating that Fear of Intimacy may be a regulator of E-cadherin expression or function.  相似文献   

17.
In cultivated male eel, spermatogonia are the only germ cells present in testis. Our previous studies using an organ culture system have shown that gonadotropin and 11-ketotestosterone (11-KT, a potent androgen in teleost fishes) can induce all stages of spermatogenesis in vitro. for detailed investigation of the control mechanisms of spermatogenesis, especially of the interaction between germ cells and testicular somatic cells during 11-KT-induced spermatogenesis in vitro, we have established a new culture system in which germ cells and somatic cells are cocultured after they are aggregated into pellets by centrifugation. Germ cells (spermatogonia) and somatic cells (mainly Sertoli cells) were isolated from immature eel testis. Coculture of the isolated germ cells and somatic cells without forming aggregation did not induce spermatogenesis, even in the presence of 11-KT. In contrast, when isolated germ cells and somatic cells were formed into pellets by centrifugation and were then cultured with 11-KT for 30 days, the entire process of spermatogenesis from premitotic spermatogonia to spermatozoa was induced. However, in the absence of 11-KT in the culture medium spermatogenesis was not induced, even when germ cell and somatic cells were aggregated. These results demonstrate that physical contact of germ cells to Sertoli cells is required for inducing spermatogenesis in response to 11-KT.  相似文献   

18.
生殖细胞的发生是发育和遗传的基础。在几乎所有哺乳动物中,原始生殖细胞(primordial germ cell,PGC)均由近端上胚层体细胞在周边细胞特定的信号诱导下特化而成。目前的研究已经发现一些与生殖细胞特化有关的信号分子和关键转录调控元件,以及特化后生殖细胞获得的与体细胞不同的生物特性。生殖细胞的特化是一个结合了体细胞发育程序的抑制、细胞多能性程序的启动和全基因组表观遗传重编程三个方面的动态的复杂过程。多能性干细胞(胚胎干细胞或诱导型多能干细胞)具有发育全能性,能分化为机体任何一种细胞类型,包括生殖细胞。利用多能性干细胞体外分化形成生殖细胞有助于深入系统地研究配子发生的调控机制,为干细胞在不育症治疗方面的应用带来新希望。  相似文献   

19.
In germ cells, the function of which is to form the next generation, apoptotic cell death occurs during development, as in the case of somatic cells. In this study, we show that Bcl-x knockout heterozygous (Bcl-x(+/-)) mice exhibit severe defects in male germ cells during development. A substantial increase in apoptosis of male germ cells occurs at around embryonic day 13.5 (E13.5) in Bcl-x(+/-) embryos, leading to hypoplasia of postnatal testes and reduced fertility. On the other hand, female germ cells at the same stages do not show discernible differences between wild-type and Bcl-x(+/-) embryos. This phenotype of Bcl-x haploinsufficiency shows that regulation of apoptosis becomes different between the sexes at around the onset of sex differentiation. Through this study, we found that, in wild-type embryos, (1) apoptosis is much more frequent (approximately 10 times) in the male than in female germ cells, and (2) expression of Bcl-xL, but not that of Bax, is higher in female than in male germ cells, at around E13.5. Male fetal germ cells, cultured with gonadal somatic cells in vitro, showed higher frequencies of apoptosis than those cultured without gonadal somatic cells. On the other hand, in the absence of gonadal somatic cells, both male and female fetal germ cells in vitro showed similar frequencies of apoptosis to female fetal germ cells in vivo. Therefore, male germ cell apoptosis, of which the default pathway is similar to that of the female, is likely to be influenced by male gonadal environments.  相似文献   

20.
The developmental fate of primordial germ cells in the mammalian gonad depends on their environment. In the XY gonad, Sry induces a cascade of molecular and cellular events leading to the organization of testis cords. Germ cells are sequestered inside testis cords by 12.5 dpc where they arrest in mitosis. If the testis pathway is not initiated, germ cells spontaneously enter meiosis by 13.5 dpc, and the gonad follows the ovarian fate. We have previously shown that some testis-specific events, such as mesonephric cell migration, can be experimentally induced into XX gonads prior to 12.5 dpc. However, after that time, XX gonads are resistant to the induction of cell migration. In current experiments, we provide evidence that this effect is dependent on XX germ cells rather than on XX somatic cells. We show that, although mesonephric cell migration cannot be induced into normal XX gonads at 14.5 dpc, it can be induced into XX gonads depleted of germ cells. We also show that when 14.5 dpc XX somatic cells are recombined with XY somatic cells, testis cord structures form normally; however, when XX germ cells are recombined with XY somatic cells, cord structures are disrupted. Sandwich culture experiments suggest that the inhibitory effect of XX germ cells is mediated through short-range interactions rather than through a long-range diffusible factor. The developmental stage at which XX germ cells show a disruptive effect on the male pathway is the stage at which meiosis is normally initiated, based on the immunodetection of meiotic markers. We suggest that at the stage when germ cells commit to meiosis, they reinforce ovarian fate by antagonizing the testis pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号