首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxygen reduction by isolated pea thylakoids was studied in the presence of ferredoxin (Fd), Fd + NADP, and cytochrome c. At Fd concentrations optimal for NADP reduction, it contributed 30–50% of the reducing equivalents (as deduced by comparing the rates of oxygen reduction and light oxidation of reduced Fd). The oxygen reduction rate in the presence of Fd + NADP was 3–4 times lower than with Fd alone, and comparable to that with cyt c. It is supposed that the process involves a photosystem I component whose reaction with oxygen depends on the rate of electron efflux from the PS I terminal acceptors, and that this component is phylloquinone.  相似文献   

2.
Absorbance changes of ferredoxin measured at 463 nm in isolated thylakoids were shown to arise from the activity of the enzyme ferredoxin-plastoquinone reductase (FQR) in cyclic electron transport. Under anaerobic conditions in the presence of DCMU and an appropriate concentration of reduced ferredoxin, a light-induced absorbance decrease due to further reduction of Fd was assigned to the oxidation of the other components in the cyclic pathway, primarily plastoquinone. When the light was turned off, Fd was reoxidised and this gave a direct quantitative measurement of the rate of cyclic electron transport due to the activity of FQR. This activity was sensitive to the classical inhibitor of cyclic electron transport, antimycin, and also to J820 and DBMIB. Antimycin had no effect on Fd reduction although this was inhibited by stigmatellin. This provides further evidence that there is a quinone reduction site outside the cytochrome bf complex. The effect of inhibitors of ferredoxin-NADP+ reductase and experiments involving the modification of ferredoxin suggest that there may be some role for the reductase as a component of FQR. Contrary to expectations, NADPH2 inhibited FQR activity; ATP and ADP had no effect.Abbreviations AQS 9,10-anthraquinone-2-sulphonate - DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethyl urea - dimaleimide N,N-p-phenylenedimaleimide - EDC N-(dimethylaminopropyl)-N-ethylcarbodiimide - Fd ferredoxin - FNR Fd-NADP+ oxidoreductase - FQR Fd-PQ reductase - GME glycine methyl ester - J820 tetrabromo-4-hydroxypyridine - PC plastocyanin - PMS N-methylphenazinium methyl sulphate - PS Photosystems I and II - PQ plastoquinone - Q quinone - Qr and Qo sites of quinone reduction and oxidation, respectively - sulpho-DSPD disulphodisalicylidenepropane-1,2-diamine  相似文献   

3.
Flavodoxin from the cyanobacterium Anabaena PCC 7119 has been shown to mediate, under illumination, the transfer of electrons from the thylakoidal membranes that were isolated from the same organism, to both the enzyme ferredoxin-NADP+ reductase and cytochrome c. Chemical cross-linking of ferredoxin or flavodoxin to the photosynthetic membranes provides a preparation that is active in cytochrome c photoreduction without the addition of external protein carrier. NADP+ photoreduction, albeit diminished, was observed only after addition of exogenous electron carrier protein. Immunoblotting analysis of the chemical adduct reveals that flavodoxin binds to a 10 kDa polypeptide subunit in the cyanobacterial Photosystem I which appears to act as its physiological partner in the electron transfer process.Abbreviations Fd ferredoxin - Fld flavodoxin - cyt c cytochrome c - EDC 1-ethyl-3-(3-dimethyl-aminopropyl) carbodiimide - PS I Photosystem I  相似文献   

4.
During daffodil flower development, chloroplasts differentiate into photosynthetically inactive chromoplasts having lost functional photosynthetic reaction centers. Chromoplasts exhibit a respiratory activity reducing oxygen to water and generating ATP. Immunoblots revealed the presence of the plastid terminal oxidase (PTOX), the NAD(P)H dehydrogenase (NDH) complex, the cytochrome b6f complex, ATP synthase and several isoforms of ferredoxin‐NADP+ oxidoreductase (FNR), and ferredoxin (Fd). Fluorescence spectroscopy allowed the detection of chlorophyll a in the cytochrome b6f complex. Here we characterize the electron transport pathway of chromorespiration by using specific inhibitors for the NDH complex, the cytochrome b6f complex, FNR and redox‐inactive Fd in which the iron was replaced by gallium. Our data suggest an electron flow via two separate pathways, both reducing plastoquinone (PQ) and using PTOX as oxidase. The first oxidizes NADPH via FNR, Fd and cytochrome bh of the cytochrome b6f complex, and does not result in the pumping of protons across the membrane. In the second, electron transport takes place via the NDH complex using both NADH and NADPH as electron donor. FNR and Fd are not involved in this pathway. The NDH complex is responsible for the generation of the proton gradient. We propose a model for chromorespiration that may also be relevant for the understanding of chlororespiration and for the characterization of the electron input from Fd to the cytochrome b6f complex during cyclic electron transport in chloroplasts.  相似文献   

5.
6.
The kinetics of the postillumination reduction of P700+ which reflects the rate constant for plastoquinol (PQH2) oxidation was recorded in sunflower leaves at different photon absorption densities (PAD), CO2 and O2 concentrations. The P700 oxidation state was calculated from the leaf transmittance at 830 nm logged at 50 s intervals. The P700+ dark reduction kinetics were fitted with two exponents with time constants of 6.5 and about 45 ms at atmospheric CO2 and O2 concentrations. The time constant of the fast component, which is the major contributor to the linear electron transport rate (ETR), did not change over the range of PADs of 14.5 to 134 nmol cm-2 s-1 in 21% O2, but it increased up to 40 ms under severe limitation of ETR at low O2 and CO2. The acceptor side of Photosystem I (PS I) became reduced in correlation with the downregulation of the PQH2 oxidation rate constant. It is concluded that thylakoid pH-related downregulation of the PQH2 oxidation rate constant (photosynthetic control) is not present under normal atmospheric conditions but appears under severe limitation of the availability of electron acceptors. The measured range of photosynthetic control fits with the maximum variation of ETR under natural stress in C3 plants. Increasing the carboxylase/oxygenase specificity would lead to higher reduction of the PS I acceptor side under stress.Abbreviations Cyt b 6 f cytochrome b 6 f complex - Cw cell-wall CO2 concentration, M - ETR electron transport rate - Fd ferredoxin - FNR ferredoxin-NADP reductase - FRL far-red light - PC plastocyanin - PAD photon absorption density nmol cm-2 s-1 - PFD photon flux density nmol cm-2 s-1 - PS I Photosystem I complex - PQ plastoquinon - PQH2 plastoquinol - PS II Photosystem II complex - P700 Photosystem I donor pigment, reduced - S830 830 nm signal (D830, difference of S830 from the dark level) - WL white light - Yl maximum quantum yield of PS I electron transport, rel. un  相似文献   

7.
The organization of the electron transport components in mesophyll and bundle sheath chloroplasts of Zea mays was investigated. Grana-containing mesophyll chloroplasts (chlorophyll a to chlorophyll b ratio of about 3.0) possessed the full complement of the various electron transport components, comparable to chloroplasts from C3 plants. Agranal bundle sheath chloroplasts (Chl aChl b > 5.0) contained the full complement of photosystem (PS) I and of cytochrome (cyt) f but lacked a major portion of PS II and its associated Chl ab light-harvesting complex (LHC), and most of the cyt b559. The kinetic analysis of system I photoactivity revealed that the functional photosynthetic unit size of PS I was unchanged and identical in mesophyll and bundle sheath chloroplasts. The results suggest that PS I is contained in stroma-exposed thylakoids and that it does not receive excitation energy from the Chl ab LHC present in the grana. A stoichiometric parity between PS I and cyt f in mesophyll and bundle sheath chloroplasts indicates that biosynthetic and functional properties of cyt f and P700 are closely coordinated. Thus, it is likely that both cyt f and P700 are located in the membrane of the intergrana thylakoids only. The kinetic analysis of PS II photoactivity revealed the absence of PS IIαfrom the bundle sheath chloroplasts and helped identify the small complement of system II in bundle sheath chloroplasts as PS IIβ. The distribution of the main electron transport components in grana and stroma thylakoids is presented in a model of the higher plant chloroplast membrane system.  相似文献   

8.
The green alga Scenedesmus obliquus is capable of both uptake and production of H(2) after anaerobic adaptation (photoreduction of CO(2) or photohydrogen production). The essential enzyme for H(2)-metabolism is a NiFe-hydrogenase with a [2Fe-2S]-ferredoxin as its natural redox partner. Western blot analysis showed that the hydrogenase is constitutively expressed. The K(m) values were 79.5 microM and 12.5 microM, determined with ferredoxin and H(2), respectively, as electron donor for the hydrogenase. In vitro, NADP(+) was reduced by H(2) in the presence of the hydrogenase, the ferredoxin and a ferredoxin-NADP reductase. From these results and considerations on the stoichiometry we propose that this light-independent electron transfer is part of the photoreduction of CO(2) in vivo. For ATP synthesis, necessary for the photoreduction of CO(2), light-dependent cyclic electron transfer around Photosystem (PS) I accompanies this 'dark reaction'. PS II fluorescence data suggest that (a) in S. obliquus H(2)-reduction might function as the anaerobic counterpart of the O(2)-dependent Mehler reaction, and (b) the presence of either a ferredoxin quinone-reductase or NAD(P)-dehydrogenase (complex I) in S. obliquus chloroplasts.  相似文献   

9.
Cylic electron flow (CEF) around Photosystem I in photosynthetic eukaryotes is likely to be necessary to augment ATP production, rapidly- and precisely balancing the plastid ATP/NADPH energy budget to meet the demands of downstream metabolism. Many regulatory aspects of this process are unclear. Here we demonstrate that the higher plant plastid NADH/Fd:plastoquinone reductase (NDH) and proposed PGR5/PGRL1 ferredoxin:plastoquinone reductase (FQR) pathways of CEF are strongly, rapidly and reversibly inhibited in vitro by ATP with Ki values of 670 μM and 240 μM respectively, within the range of physiological changes in ATP concentrations. Control experiments ruled out effects on secondary reactions, e.g. FNR- and cytochrome b6f activity, nonphotochemical quenching of chlorophyll fluorescence etc., supporting the view that ATP is an inhibitor of CEF and its associated pmf generation and subsequent ATP production. The effects are specific to ATP, with the ATP analog AMP-PNP showing little inhibitory effect, and ADP inhibiting only at higher concentrations. For the FQR pathway, inhibition was found to be classically competitive with Fd, and the NDH pathway showing partial competition with Fd. We propose a straightforward model for regulation of CEF in plants in which CEF is activated under conditions when stromal ATP low, but is downregulated as ATP levels build up, allowing for effective ATP homeostasis. The differences in Ki values suggest a two-tiered regulatory system, where the highly efficient proton pumping NDH is activated with moderate decreases in ATP, with the less energetically-efficient FQR pathway being activated under more severe ATP depletion.  相似文献   

10.
The aim of this article is to assemble and integrate, from a personal perspective of a research participant, seldom examined evidence that is incompatible with some basic tenets of photosynthetic electron transport, the cornerstone of which is the Z scheme. The nonconforming evidence pertaining to the mode of ferredoxin reduction and the role of the copper redox protein, plastocyanin, indicates that contrary to the Z scheme ferredoxin is reduced in two experimentally distinguishable ways: oxygenically by PS II (renamed the oxygenic photosystem), without the participation of PS I, and anoxygenically by PS I (renamed the anoxygenic photosystem). It also indicates that plastocyanin is not only, as the Z scheme asserts, the electron donor to the reaction center chlorophyll of PS I (P700) but also to the reaction center chlorophyll of PS II (P680). Other unconventional findings include evidence that the fully functional oxygenic photosystem, when operating separately from the anoxygenic photosystem, reduces plastoquinone to plastoquinol and subsequently oxidizes plastoquinol by two pathways acting in concert: one being the universally recognized DBMIB-sensitive pathway via the Rieske iron-sulfur center of the cytochrome bf complex and the other, a hitherto unrecognized, DBMIB-insensitive electron transport pathway around P680 that centers on cytochrome b-559. These nonconforming findings form the basis of an alternate hypothesis of photosynthetic electron transport that modifies and complements the Z scheme.Abbreviations PS photosystem - PQ oxidized plastoquinone - PQH2 reduced plastoquinone (plastoquinol) - QA and QB specialized membrane-bound forms of PQ - PC plastocyanin - Fd ferredoxin - BISC FAFB, membrane-bound iron-sulfur centers of PS I - DBM1B 2,5-dibromo-3-methyl-6-isopropyl-n-benzoquinone (dibromothymoquinone) - DNP-INT dinitrophenol ether of iodonitrothymol - NADP+ NADPH, oxidized and reduced forms of nicotinamide adenine dinucleotide phosphate - FCCP carbonylcyanide-p-trifluoromethoxyphenyl-hydrazone - CCCP carbonyl cyanide-3-chlorophenylhydrazone - SF 6847 2,6,-di-(t-butyl)-4-(2,2-dicyanovinyl) phenol - diuron (DCMU) 3-(3,4-dichlorophenyl)-1,1-dimethylurea - EPR electron paramagnetic resonance - DCIP 2,6-dichloro-phenolindophenol - UHDBT 5-(n-undecyl)-6-hydroxy-4-7-dioxobenzothiazole; cytochrome b-559HP-cytochrome b-559LP, high- and low potential states of cytochrome b-559 - oxygenic reductions reductions in which water is the electron donor - BBY PS II preparation made according to Berthold et al. (1981) Dedicated to Professor Achim Trebst on his 65th birthday.Based in part on lecture in Advanced Course on Trends in Photosynthesis Research, Palma de Mallorca, Spain, September 18, 1990.  相似文献   

11.
The electron transfer cascade from photosystem I to NADP+ was studied at physiological pH by flash-absorption spectroscopy in a Synechocystis PCC6803 reconstituted system comprised of purified photosystem I, ferredoxin, and ferredoxin-NADP+ reductase. Experiments were conducted with a 34-kDa ferredoxin-NADP+ reductase homologous to the chloroplast enzyme and a 38-kDa N-terminal extended form. Small differences in kinetic and catalytic properties were found for these two forms, although the largest one has a 3-fold decreased affinity for ferredoxin. The dissociation rate of reduced ferredoxin from photosystem I (800 s(-1)) and the redox potential of the first reduction of ferredoxin-NADP+ reductase (-380 mV) were determined. In the absence of NADP+, differential absorption spectra support the existence of a high affinity complex between oxidized ferredoxin and semireduced ferredoxin-NADP+ reductase. An effective rate of 140-170 s(-1) was also measured for the second reduction of ferredoxin-NADP+ reductase, this process having a rate constant similar to that of the first reduction. In the presence of NADP+, the second-order rate constant for the first reduction of ferredoxin-NADP+ reductase was 20% slower than in its absence, in line with the existence of ternary complexes (ferredoxin-NADP+ reductase)-NADP+-ferredoxin. A single catalytic turnover was monitored, with 50% NADP+ being reduced in 8-10 ms using 1.6 microM photosystem I. In conditions of multiple turnover, we determined initial rates of 360-410 electrons per s and per ferredox-in-NADP+ reductase for the reoxidation of 3.5 microM photoreduced ferredoxin. Identical rates were found with photosystem I lacking the PsaE subunit and wild type photosystem I. This suggests that, in contrast with previous proposals, the PsaE subunit is not involved in NADP+ photoreduction.  相似文献   

12.
Stearyl-acyl carrier protein desaturase (EC 1.14.99.6), present in the stroma fraction of spinach (Spinacia oleracea) chloroplasts, rapidly desaturated enzymatically prepared stearyl-acyl carrier protein to oleic acid. No other substrates were desaturated. In addition to stearyl-acyl carrier protein, reduced ferredoxin was an essential component of the system. The electron donor systems were either ascorbate, dichlorophenolindophenol, photosystem I and light, or NADPH and ferredoxin-NADP reductase. The desaturase was more active in extracts prepared from chloroplasts obtained from immature spinach leaves than from mature leaves. Stearyl-acyl carrier protein desaturase also occurs in soluble extracts of avocado (Persea americana Mill.) mesocarp and of developing safflower (Carthamus tinctorius) seeds.  相似文献   

13.
The interaction of ferredoxin-NADP reductase (FNR) and ferredoxin (Fd) results in an enhanced rate of reaction and a shift of the pH optimum for the FNR-mediated diaphorase reaction. Low concentrations of NaCl (<100 millimolar), favorable for formation of the FNR:Fd complex, further magnify the alteration of the diaphorase reaction; the activity is enhanced 3-fold and pH optimum is shifted from 9.5 to 7.8. The Fd-stimulated diaphorase activity of FNR may result either from a conformational change of the enzyme and/or from a transition from a two electron to a one electron reaction.  相似文献   

14.
The effects of two molecular forms of water-soluble ferredoxin (Fd I and Fd II) on the kinetics of electron transport in bean chloroplasts (class B) were studied. The light-induced redox transitions of the photosystem I reaction center P700 were measured by the intensity of the EPR signal I produced by P700+. Both forms of ferredoxin, Fd I and Fd II, when added to the chloroplasts in catalytic amounts, stimulate the light-induced electron transfer from P700 to NADP+. Nevertheless, Fd I is a better mediator of the back reactions from NADPH to P700+. This electron transfer pathway is sensitive to the cyclic electron transport inhibitor, antimycin A, and to DCMU inhibitor of electron transport between photosystem II and plastoquinone. It may be concluded that the two molecular forms of ferredoxin, Fd I and Fd II, differ in their ability to catalyze cyclic electron transport in photosystem I. The role of Fd I and Fd II in regulation of electron transport at the acceptor site of photosystem I is discussed.  相似文献   

15.
16.
John Biggins 《BBA》1983,724(1):111-117
The kinetics of photooxidation and reduction of cytochrome f were examined spectrophotometrically in the red alga Porphyridium cruentum in light State 1 and light State 2. Experiments were performed on intact cells that had been chemically fixed and stabilized in the light states. The cytochrome f turnover was measured during conditions of linear electron transport driven by both photosystems and during several cyclic reactions mediated by the long-wavelength Photosystem (PS) I. The data show that the rate of photooxidation of cytochrome f increased in State 2 when the cells were activated by subsaturating intensities of green light absorbed primarily by the phycobilisome. No differences in kinetics were found between algae in State 1 or State 2 when they were activated by light absorbed primarily by the chlorophyll of PS I. The results confirm that changes in energy distribution between the two photosystems occur as a result of the light state transition and verify that the redistribution of excitation results in the predicted changes in electron transport.  相似文献   

17.
Chow  W.S.  Hope  A.B. 《Photosynthesis research》2004,81(2):153-163
Electron transfers in the photosynthetic electron transport chain including the cytochrome (cyt) bf and Photosystem (PS) I complexes were studied in leaves of several plant species by measuring flash-induced absorbancy changes at specific wavelengths. The electrochromic signal (ECS), indicative of a trans-thylakoid membrane electric field, consisted of a fast phase arising from charge separation in both photosystems, and a slow rise usually interpreted as charge transfer in the cyt bf complex (part of the Q-cycle). The amplitude of the slow phase of the ECS was frequently greater than could be accounted for by the withdrawal of an electron from cyt bf via plastocyanin (PC) by oxidised P700 in PS I. The extra slow ECS, variable depending on the number of turnovers and plant species, can be attributed to a variable operation of proton-pumping activity of the cyt bf complex. The redox kinetics of cyt f and b were obtained by deconvolution of the signals at three or four wavelengths. Rates of cyt b reduction were very high, and never the same as the onset kinetics of the slow ECS. The cyt f signal suggests that a fraction of the oxidised cyt f was re-reduced only slowly in the time of 5 s between consecutive flashes. Leaf discs in far-red light were given single-turnover flashes to measure the rates of P700ox reduction and reoxidation. To simulate the redox kinetics of the ECS, cyt f, cyt b and P700 it was assumed that a Q-cycle normally operated in bf complexes; reasonable values for the appropriate rate coefficients, and for the equilibrium constants for the cyt f/PC and P700/PC reactions were chosen. Close similarity of the observed data with those predicted from the simulation was obtained for cyt b, P700 (far-red light experiments) and the ECS, but not for cyt f. The results contribute to an understanding of photosynthetic electron transfers in vivo.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

18.
The ferredoxin:NADP+ oxidoreductase (FNR) catalyses the ferredoxin-dependent reduction of NADP+ to NADPH in linear photosynthetic electron transport. The enzyme also transfers electrons from reduced ferredoxin (Fd) or NADPH to the cytochrome b6f complex in cyclic electron transport. In vitro, the enzyme catalyses the NADPH-dependent reduction of various substrates, including ferredoxin, the analogue of its redox centre - ferricyanide, and the analogue of quinones, which is dibromothymoquinone. This paper presents results on the cadmium-induced inhibition of FNR. The Ki value calculated for research condition was 1.72 mM.FNR molecule can bind a large number of cadmium ions, as shown by the application of cadmium-selective electrode, but just one ion remains bound after dialysis. The effect of cadmium binding is significant disturbance in the electron transfer process from flavin adenine dinucleotide (FAD) to dibromothymoqinone, but less interference with the reduction of ferricyanide. However, it caused a strong inhibition of Fd reduction, indicating that Cd-induced changes in the FNR structure disrupt Fd binding. Additionally, the protonation of the thiol groups is shown to be of great importance in the inhibition process. A mechanism for cadmium-caused inhibition is proposed and discussed with respect to the in vitro and in vivo situation.  相似文献   

19.
The cytochrome b 6 f complex occupies a central position in photosynthetic electron transport and proton translocation by linking PS II to PS I in linear electron flow from water to NADP+, and around PS I for cyclic electron flow. Cytochrome b 6 f complexes are uniquely located in three membrane domains: the appressed granal membranes, the non-appressed stroma thylakoids and end grana membranes, and also the non-appressed grana margins, in contrast to the marked lateral heterogeneity of the localization of all other thylakoid multiprotein complexes. In addition to its vital role in vectorial electron transfer and proton translocation across the membrane, cytochrome b 6 f complex is also involved in the regulation of balanced light excitation energy distribution between the photosystems, since its redox state governs the activation of LHC II kinase (the kinase that phosphorylates the mobile peripheral fraction of the chlorophyll a/b-proteins of LHC II of PS II). Hence, cytochrome b 6 f complex is the molecular link in the interactive co-regulation of light-harvesting and electron transfer.The importance of a highly dynamic, yet flexible organization of the thylakoid membranes of plants and green algae has been highlighted by the exciting discovery that a lateral reorganization of some cytochrome b 6 f complexes occurs in the state transition mechanism both in vivo and in vitro (Vallon et al. 1991). The lateral redistribution of phosphorylated LHC II from stacked granal membrane regions is accompanied by a concomitant movement of some cytochrome b 6 f complexes from the granal membranes out to the PS I-containing stroma thylakoids. Thus, the dynamic movement of cytochrome b 6 f complex as a multiprotein complex is a molecular mechanism for short-term adaptation to changing light conditions. With the concept of different membrane domains for linear and cyclic electron flow gaining credence, it is thought that linear electron flow occurs in the granal compartments and cyclic electron flow is localised in the stroma thylakoids at non-limiting irradiances. It is postulated that dynamic lateral reversible redistribution of some cytochrome b 6 f complexes are part of the molecular mechanism involved in the regulation of linear electron transfer (ATP and NADPH) and cyclic electron flow (ATP only). Finally, the molecular significance of the marked regulation of cytochrome b 6 f complexes for long-term regulation and optimization of photosynthetic function under varying environmental conditions, particularly light acclimation, is discussed.Abbreviations Chl chlorophyll - cyt cytochrome - PS Photosystem  相似文献   

20.
Ferredoxin-NADP reductase accounts for about 50% of the NADPH diaphorase activity of spinach leaf homogenates. The enzyme is bound to thylakoid membranes, but can be slowly extracted by aqueous buffers. Ferredoxin-NADP reductase can be extracted from the membranes by a 1- to 2-min treatment with a low concentration of trypsin. This treatment completely inactivates NADP photoreduction but does not affect electron transport from water to ferredoxin. It is shown that the inactivation is due to solubilization of ferredoxin-NADP reductase: the activity can be restored by addition of a very large excess of soluble enzyme in pure form. When ferredoxin-NADP reductase is added as a soluble enzyme after extraction or inactivation (by a specific antibody) of the membrane-bound enzyme, NADP photoreduction requires a very large excess of this enzyme, and the apparent Km for ferredoxin is also increased. These observations are discussed as related to the interactions of thylakoids with ferredoxin-NADP reductase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号