首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The role of the hydrophobic membrane-binding segments of NADPH-cytochrome P450 reductase (CPR) and cytochrome b(5) remain undefined. We have expressed four different recombinant flavocytochromes containing b(5) linked to CPR with different hydrophobic segments as linkers. These fusion proteins have been expressed in Escherichia coli and purified and some of their physical properties and electron transfer activities described in the accompanying paper. Of interest is the presence of internal "membrane-binding" hydrophobic segments in these flavocytochromes. This paper describes the ability of these flavocytochromes to reconstitute in vitro two P450 activities that have been reported to be stimulated by the addition of b(5) (the 17,20-lyase activity of CYP17A and the 6 beta hydroxylation of testosterone catalyzed by CYP3A4) and two P450 reactions that do not respond to the presence of b(5) (the 17 alpha-hydroxylation of progesterone catalyzed by CYP17A and the omega hydroxylation of lauric acid catalyzed by CYP4A1). The present study shows that a hydrophobic "membrane-binding" segment must be present in the artificial flavocytochromes in order to successfully reconstitute in vitro hydroxylation activities with P450s. Differences in the effectiveness of the different flavocytochromes to reconstitute enzymatic activities depends on the P450 tested and the nature of the hydrophobic linker segment present in the purified recombinant flavocytochromes. The hypothesis is proposed that differences in the surface topology of a P450 may dictate differences in their docking with the CPR or b(5) component of a fusion protein, resulting in differences in the rates of electron transfer to the P450.  相似文献   

2.
The microsomal flavoprotein NADPH-cytochrome P450 reductase (CPR) contains an N-terminal hydrophobic membrane-binding domain required for reconstitution of hydroxylation activities with cytochrome P450s. In contrast, cytochrome b5 (b5) contains a C-terminal hydrophobic membrane-binding domain required for interaction with P450s. We have constructed, expressed and purified a chimeric flavoprotein (hdb5-CPR) where the C-terminal 45 amino acid residues of b5 have replaced the N-terminal 56 amino acid domain of CPR. This hybrid flavoprotein retains the catalytic properties of the native CPR and is able to reconstitute fatty acid and steroid hydroxylation activities with CYP4A1 and CYP17A. However hdb5-CPR is much less effective than CPR for reconstituting activity with CYP3A4. We conclude that differences on the surface of the P450s reflect unique and specific information essential for the recognition needed to establish reactions of intermolecular electron transfer from the flavoprotein CPR.  相似文献   

3.
The widely accepted catalytic cycle of cytochromes P450 (CYP) involves the electron transfer from NADPH cytochrome P450 reductase (CPR), with a potential for second electron donation from the microsomal cytochrome b5/NADH cytochrome b5 reductase system. The latter system only supported CYP reactions inefficiently. Using purified proteins including Candida albicans CYP51 and yeast NADPH cytochrome P450 reductase, cytochrome b5 and NADH cytochrome b5 reductase, we show here that fungal CYP51 mediated sterol 14alpha-demethylation can be wholly and efficiently supported by the cytochrome b5/NADH cytochrome b5 reductase electron transport system. This alternative catalytic cycle, where both the first and second electrons were donated via the NADH cytochrome b5 electron transport system, can account for the continued ergosterol production seen in yeast strains containing a disruption of the gene encoding CPR.  相似文献   

4.
In the present work, we report expression in Escherichia coli, purification, and characterization of recombinant full-length cytochrome b(5) from outer mitochondrial membrane. Optimization of expression conditions for cytochrome b(5) from outer mitochondrial membrane allowed reaching expression level up to 10(4) nmol of the hemeprotein per liter of culture. Recombinant cytochrome b(5) from outer mitochondrial membrane was purified from cell lysate by using metal-affinity chromatography. It has physicochemical, spectral, and immunochemical properties similar to those of cytochrome b(5) from rat liver outer mitochondrial membrane. Immobilized recombinant mitochondrial cytochrome b(5) was used as affinity ligand to study its interaction with electron transfer proteins. By using this approach, it is shown that in interaction of NADPH:cytochrome P450 reductase with both forms of cytochrome b(5) an important role is played by hydrophobic interactions between proteins, although the contribution of these interactions in complex formation with NADPH:cytochrome P450 reductase is different for isoforms of cytochrome b(5).  相似文献   

5.
Inui H  Maeda A  Ohkawa H 《Biochemistry》2007,46(35):10213-10221
Microsomal cytochrome P450 3A4 (CYP3A4) catalyzes monooxygenase reactions toward a diverse group of exogenous and endogenous substrates and requires cytochrome b5 (b5) in the oxidation of the typical substrate testosterone. To analyze the molecular interaction among CYP3A4, NADPH-cytochrome P450 oxidoreductase (P450 reductase), and b5, we constructed several fused enzyme genes and expressed them in Saccharomyces cerevisiae. The recombinant fused enzymes CYP3A4-truncated (t)-P450 reductase-t-b5 (3RB) and CYP3A4-t-b5-t-P450 reductase (3BR) in yeast microsomes showed a higher specific activity in 6beta-hydroxylation of testosterone than did the reconstitution premixes of CYP3A4, P450 reductase, and b5. The purified fused enzymes exhibited lower Km values and substantially increased Vmax values in 6beta-hydroxylation of testosterone and oxidation of nifedipine. Moreover, the fused enzymes showed significantly higher activities in cytochrome c reduction than the reconstitution premixes. Although the affinity of 3RB toward cytochrome c was twice as high as that of 3BR, 3BR and 3RB showed nearly the same affinity toward NADPH/NADH. In addition, the heme of the CYP3A4 moiety of 3RB was reduced preferentially and more rapidly than that of 3BR, whereas the heme of the b5 moiety of 3BR was selectively reduced compared with that of 3RB. These results suggest that the conformation of the 3RB molecule was the most suitable for high activity because of appropriate ordering of the CYP3A4, P450 reductase, and b5 moieties for efficient electron flow. Thus, we believe that the b5 moiety plays an important role in the efficient transfer of the second electron in the vicinity of the CYP3A4 moiety.  相似文献   

6.
The multifunctional cytochrome P450 monooxygenases P450-1 and P450-2 from Fusarium fujikuroi catalyze the formation of GA14 and GA4, respectively, in the gibberellin (GA)-biosynthetic pathway. However, the activity of these enzymes is qualitatively and quantitatively different in mutants lacking the NADPH:cytochrome P450 oxidoreductase (CPR) compared to CPR-containing strains. 3beta-Hydroxylation, a major P450-1 activity in wild-type strains, was strongly decreased in the mutants relative to oxidation at C-6 and C-7, while synthesis of C19-GAs as a result of oxidative cleavage of C-20 by P450-2 was almost absent whereas the C-20 alcohol, aldehyde and carboxylic acid derivatives accumulated. Interaction of the monooxygenases with alternative electron transport proteins could account for these different product distributions. In the absence of CPR, P450-1 activities were NADH-dependent, and stimulated by cytochrome b5 or by added FAD. These properties as well as the decreased efficiency of P450-1 and P450-2 in the mutants are consistent with the participation of cytochrome b5:NADH cytochrome b5 reductase as redox partner of the gibberellin monooxygenases in the absence of CPR. We provide evidence, from either incubations of GA12 (C-20 methyl) with cultures of the mutant suspended in [18O]H2O or maintained under an atmosphere of [18O]O2:N2 (20:80), that GA15 (C-20 alcohol) and GA24 (C-20 aldehyde) are formed directly from dioxygen and not from hydrolysis of covalently enzyme-bound intermediates. Thus these partially oxidized GAs correspond to intermediates of the sequential oxidation of C-20 catalyzed by P450-2.  相似文献   

7.
Hepatic mitochondria contain an inducible cytochrome P450, referred to as P450 MT5, which cross-reacts with antibodies to microsomal cytochrome P450 2E1. In the present study, we purified, partially sequenced, and determined enzymatic properties of the rat liver mitochondrial form. The mitochondrial cytochrome P450 2E1 was purified from pyrazole-induced rat livers using a combination of hydrophobic and ion-exchange chromatography. Mass spectrometry analysis of tryptic fragments of the purified protein further ascertained its identity. N-terminal sequencing of the purified protein showed that its N terminus is identical to that of the microsomal cytochrome P450 2E1. In reconstitution experiments, the mitochondrial cytochrome P450 2E1 displayed the same catalytic activity as the microsomal counterpart, although the activity of the mitochondrial enzyme was supported exclusively by adrenodoxin and adrenodoxin reductase. Mass spectrometry analysis of tryptic fragments and also immunoblot analysis of proteins with anti-serine phosphate antibody demonstrated that the mitochondrial cytochrome P450 2E1 is phosphorylated at a higher level compared with the microsomal counterpart. A different conformational state of the mitochondrial targeted cytochrome P450 2E1 (P450 MT5) is likely to be responsible for its observed preference for adrenodoxin and adrenodoxin reductase electron transfer proteins.  相似文献   

8.
Ruan RY  Kong JQ  Zheng XD  Zhang SX  Qin XY  Cheng KD  Wang JM  Wang W 《遗传》2010,32(11):1187-1194
细胞色素P450还原酶(Cytochrome P450 reductase,CPR)是细胞色素P450羟基化酶电子传递链的组成部分,在生物体内起着重要的电子传递作用。文章从中国红豆杉(Taxuswallichiana var. Chinensis)愈伤组织细胞中克隆CPR基因(TchCPR),TchCPR含有一个2154bp碱基的阅读框,编码717个氨基酸残基;在氨基酸水平上它与裸子植物细胞色素P450还原酶的同源性(82%)高于其他被子植物的细胞色素P450还原酶(74%)。在大肠杆菌BL21(DE3)中诱导表达了全长和从N-端截短不同数目氨基酸残基的6个融合肽段,经亲和层析纯化,分析了表达的不同长度融合蛋白的电子传递效率。结果表明截短长度大于61个氨基酸残基肽段的胞色素P450还原酶都能够诱导表达,在表达水平上无显著差异,而截短61个氨基酸的CPR融合蛋白电子传递的催化活性(1.6057nmol Cyt Cred/min/μg TchCPR融合蛋白)高于其他4个融合蛋白。  相似文献   

9.
We have investigated the sites of N-terminally truncated cytochrome P4501A1 targeted to mitochondria (P450MT2) which interact with adrenodoxin (Adx), cytochrome P450 reductase (CPR) and bacterial flavodoxin (Fln). The binding site was mapped by a combination of in vitro mutagenesis, in vivo screening with a mammalian two-hybrid system, spectral analysis, reconstitution of enzyme activity and homology-based structural modeling. Our results show that part of an aqueous accessible helix (putative helix G, residues 264-279) interacts with all three electron donor proteins. Mutational studies revealed that Lys267 and Lys271 are crucial for binding to Adx, while Lys268 and Arg275 are important for binding to CPR and FLN: Additive effects of different electron donor proteins on enzyme activity and models on protein docking show that Adx and CPR bind in a non-overlapping manner to the same helical domain in P450MT2 at different angular orientations, while CPR and Fln compete for the same binding site. We demonstrate that evolutionarily divergent electron donor proteins interact with the same domain but subtly different contact points of P450MT2.  相似文献   

10.
Cytochrome P450s (P450) form a superfamily of membrane-bound proteins that play a key role in the primary metabolism of both xenobiotics and endogenous compounds such as drugs and hormones, respectively. To be enzymically active, they require the presence of a second membrane-bound protein, NADPH P450 reductase, which transfers electrons from NADPH to the P450. Because of the diversity of P450 enzymes, much of the work on individual forms has been carried out on purified proteins, in vitro, which requires the use of complex reconstitution mixtures to allow the P450 to associate correctly with the NADPH P450 reductase. There is strong evidence from such reconstitution experiments that, when cytochrome b5 is included, the turnover of some substrates with certain P450s is increased. Here we demonstrate that allowing human P450 reductase, CYP3A4, and cytochrome b5 to associate in an in vivo-like system, by coexpressing all three proteins together in Escherichia coli for the first time, the turnover of both nifedipine and testosterone by CYP3A4 is increased in the presence of cytochrome b5. The turnover of testosterone was increased by 166% in whole cells and by 167% in preparations of bacterial membranes. The coexpression of cytochrome b5 also resulted in the stabilization of the P450 during substrate turnover in whole E. coli, with 109% of spectrally active CYP3A4 remaining in cells after 30 min in the presence of cytochrome b5 compared with 43% of the original P450 remaining in cells in the absence of cytochrome b5.  相似文献   

11.
The P450mor system from Mycobacterium sp. strain HE5, supposed to catalyse the hydroxylation of different N-heterocycles, is composed of three components: ferredoxin reductase (FdRmor), Fe3S4 ferredoxin (Fdmor) and cytochrome P450 (P450mor). In this study, we purified Fdmor and P450mor as recombinant proteins as well as FdRmor, which has been isolated previously. Kinetic investigations of the redox couple FdRmor/Fdmor revealed a 30-fold preference for the NADH-dependent reduction of nitroblue tetrazolium (NBT) and an absolute requirement for Fdmor in this reaction, compared with the NADH-dependent reduction of cytochrome c. The quite low Km (5.3 +/- 0.3 nm) of FdRmor for Fdmor, measured with NBT as the electron acceptor, indicated high specificity. The addition of sequences providing His-tags to the N- or C-terminus of Fdmor did not significantly alter kinetic parameters, but led to competitive background activities of these fusion proteins. Production of P450mor as an N-terminal His-tag fusion protein enabled the purification of this protein in its spectral active form, which has previously not been possible for wild-type P450mor. The proposed substrates morpholine, piperidine or pyrrolidine failed to produce substrate-binding spectra of P450mor under any conditions. Pyridine, metyrapone and different azole compounds generated type II binding spectra and the Kd values determined for these substances suggested that P450mor might have a preference for more bulky and/or hydrophobic molecules. The purified recombinant proteins FdRmor, Fdmor and P450mor were used to reconstitute the homologous P450-containing mono-oxygenase, which was shown to convert morpholine.  相似文献   

12.
Bovine adrenocortical cytochrome P450scc (P450scc) was expressed in Escherichia coli and purified as the substrate bound, high-spin complex (16.7 nmol of heme per mg of protein, expression level in E. coli about 400-700 nmol/l). The recombinant protein was characterized by comparison with native P450scc purified from adrenal cortex mitochondria. To study the interaction of the electron transfer proteins during the functioning of the heme protein, recombinant P450scc was selectively modified with fluorescein isothiocyanate (FITC). The present paper shows that modified P450scc, purified by affinity chromatography using adrenodoxin-Sepharose to remove non-covalently bound FITC, retains the functional activity of the unmodified enzyme, including its ability to bind adrenodoxin. Based on the efficiency of resonance fluorescence energy transfer in the donor-acceptor pair, FITC-heme, we calculated the distance between Lys(338), selectively labeled with the dye, and the heme of P450scc. The intensity of fluorescence from the label dramatically changes during: (a) denaturation of P450scc; (b) changing the spin state or redox potential of the heme protein; (c) formation of the carbon monoxide complex of reduced P450scc; (d) as well as during reactions of intermolecular interactions, such as changes of the state of aggregation, complex formation with the substrate, binding to the electron transfer partner adrenodoxin, or insertion of the protein into an artificial phospholipid membrane. Selective chemical modification of P450scc with FITC proved to be a very useful method to study the dynamics of conformational changes of the recombinant heme protein. The data obtained indicate that functionally important conformational changes of P450scc are large-scale ones, i.e. they are not limited only to changes in the dynamics of the protein active center. The results of the present study also indicate that chemical modification of Lys(338) of bovine adrenocortical P450scc does not dramatically alter the activity of the heme protein, but does result in a decrease of protein stability.  相似文献   

13.
CYP175A1 is a thermostable P450 Monooxygenase from Thermus thermophilus HB27, demonstrating in vivo activity towards beta-carotene. Activity of CYP175A1 was reconstituted in vitro using artificial electron transport proteins. First results were obtained in the mixture with a crude Escherichia coli cell extract at 37 degrees C. In this system, beta-carotene was hydroxylated to beta-cryptoxanthin. The result indicated the presence of electron transport enzymes among the E. coli proteins, which are suitable for CYP175A1. However, upon in vitro reconstitution of CYP175A1 activity with purified recombinant flavodoxin and flavodoxin reductase from E. coli, only very low beta-cryptoxanthin production was observed. Remarkably, with another artificial electron transport system, putidaredoxin and putidaredoxin reductase from Pseudomonas putida, purified CYP175A1 enzyme hydroxylated beta-carotene at 3- and also 3'-positions, resulting in beta-cryptoxanthin and zeaxanthin. Under the optimal reaction conditions, the turnover rate of the enzyme reached 0.23 nmol beta-cryptoxanthin produced per nmol P450 per min.  相似文献   

14.
15.
A fungal cytochrome P450 monooxygenase (CYP5150A2) from the white-rot basidiomycete Phanerochaete chrysosporium was heterologously expressed in Escherichia coli and purified as an active form. The purified CYP5150A2 was capable of hydroxylating 4-propylbenzoic acid (PBA) with NADPH-dependent cytochrome P450 oxidoreductase (CPR) as the single redox partner; the reaction efficiency was improved by the addition of electron transfer protein cytochrome b5 (Cyt-b5). Furthermore, CYP5150A2 exhibited substantial activity with redox partners Cyt-b5 and NADH-dependent Cyt-b5 reductase (CB5R) even in the absence of CPR. These results indicated that a combination of CB5R and Cyt-b5 may be capable of donating both the first and the second electrons required for the monooxygenation reaction. Under reaction conditions in which the redox system was associated with the CB5R-dependent Cyt-b5 reduction system, the exogenous addition of CPR and NADPH had no effect on the PBA hydroxylation rate or on coupling efficiency, indicating that the transfer of the second electron from Cyt-b5 was the rate-limiting step in the monooxygenase system. In addition, the rate of PBA hydroxylation was significantly dependent on Cyt-b5 concentration, exhibiting Michaelis-Menten kinetics. This study provides indubitable evidence that the combination of CB5R and Cyt-b5 is an alternative redox partner facilitating the monooxygenase reaction catalyzed by CYP5150A2.  相似文献   

16.
We applied hydrostatic pressure perturbation to study substrate-induced transitions in human cytochrome P450 3A4 (CYP3A4) with bromocriptine (BCT) as a substrate. The barotropic behavior of the purified enzyme in solution was compared with that observed in recombinant microsomes of Saccharomyces cerevisiae coexpressing CYP3A4, cytochrome b(5), (b(5)) and NADPH-cytochrome P450 reductase (CPR). Important barotropic heterogeneity of CYP3A4 was detected in both cases. Only about 70% of CYP3A4 in solution and about 50% of the microsomal enzyme were susceptible to a pressure-induced P450-->P420 transition. The results suggest that both in solution and in the membrane CYP3A4 is represented by two conformers with different positions of spin equilibrium and different barotropic properties. No interconversion between these conformers was observed within the time frame of the experiment. Importantly, a pressure-induced spin shift, which is characteristic of all cytochromes P450 studied to date, was detected in CYP3A4 in solution only; the P450-->P420 transition was the sole pressure-induced process detected in microsomes. This fact suggests unusual stabilization of the high-spin state of CYP3A4, which is assumed to reflect decreased water accessibility of the heme moiety due to specific interactions of the hemoprotein with the protein partners (b(5) and CPR) and/or membrane lipids.  相似文献   

17.
The influence of Ebselen, an organoselenium anti-inflammatory agent, on the two electron transport chains present in rat liver microsomes has been studied. At low micromolar concentrations, Ebselen markedly inhibited the flow of reducing equivalents from NADPH-cytochrome P450 reductase to both its natural electron acceptor, cytochrome P450, and its artificial electron acceptor, cytochrome c. Similarly, the microsomal NADH-cytochrome c reductase system consisting of cytochrome b5 and its flavoprotein, NADH-cytochrome b5 reductase, was also significantly inhibited by Ebselen. The inhibition appears to be due to the inability of the reduced pyridine nucleotide to transfer electrons to the flavin (FAD and/or FMN) in the flavoprotein reductase. This was shown with the purified NADPH-cytochrome P450 reductase, which in the presence of Ebselen was not converted to the semiquinone form following the addition of NADPH. The addition of Ebselen to a suspension of hepatic microsomes from either untreated or phenobarbital-treated rats did not result in any spectral change characteristic of type I, type II, or reverse type I.  相似文献   

18.
A peptide identified as the membrane-associated segment of NADPH-cytochrome P-450 reductase has been generated by steapsin protease treatment of vesicle-incorporated reductase and isolated by preparative gel electrophoresis. This peptide remains associated with vesicles when steapsin protease digests of vesicle-incorporated reductase were fractionated by Sepharose 4B chromatography, confirming its identity as the membrane-binding peptide. The molecular weight of the membrane-binding peptide was 6400 as determined by gel filtration in 8 M guanidine hydrochloride, and its amino acid content was not especially hydrophobic. The activity of reconstituted hydroxylation systems consisting of reductase, cytochrome P-446, and dilauroyl phosphatidylcholine was not inhibited by large molar excesses of purified membrane-binding peptide. Moreover, when purified reductase and cytochrome P-446 were added to liposomes which contained the membrane-binding peptide, it was determined that mixed function oxidase activity was reconstituted as effectively as when vesicles without the membrane-binding peptides were used. Similar results were obtained with reductase, cytochrome P-450, and detergent-solubilized liposomes (with or without the membrane-binding peptide). Thus, the membrane-binding peptide does not appear to interact with either of these two forms of the hemoprotein in a site-specific manner to prevent reconstitution of hydroxylation activity.  相似文献   

19.
Microsomal delta 7-sterol 5-desaturase of cholesterol biosynthesis is a multienzyme system which catalyzes the introduction of the delta 5-bond into delta 7-cholestenol to form 7-dehydrocholesterol. The detergent-solubilized 5-desaturase has been purified more than 70-fold and resolved from electron carriers and other rat liver microsomal enzymes of sterol biosynthesis by chromatography on DEAE-Sephacel, CM-Sepharose, and immobilized cytochrome b5; the 5-desaturase had not been fully resolved from cytochrom b5 reductase in earlier work. A functional electron transport system for the 5-desaturase has been reconstituted by combining the purified 5-desaturase and electron carriers with egg phosphatidylcholine liposomes. Optimizations of conditions for reconstitution have been obtained; both cytochrome b5 and NADH-cytochrome b5 reductase serve as electron carriers. A pyridine nucleotide-dependent flavoprotein is required and the requirement can be satisfied with either purified cytochrome b5 reductase or cytochrome P-450 reductase. Cyanide and iron-chelators strikingly inhibit the 5-desaturase activity, thus suggesting that 5-desaturase is a metalloenzyme as are other well-characterized cytochrome b5-dependent oxidases. 5-Desaturase is resolved from 4-methyl sterol oxidase activity of cholesterol biosynthesis by chromatography on the immobilized cytochrome b5. This resolution of the two oxidases not only indicates that introduction of the delta 5-bond and oxidation of 4 alpha-methyl groups are catalyzed by different terminal oxidases, but resolution affords enzymes of sufficient purity to carry out reconstitution experiments. A novel assay based on substrate-dependent increments of oxidation of alpha-NADH has been developed for measurement of 5-desaturase activity. Measurement of stoichiometry of 5-desaturase demonstrates that for each equivalent of cis-desaturation of delta 7-cholestenol, 1 eq of NADH is consumed. Along with strict dependence upon oxygen, this observation confirms, as suggested by previous workers, that the 5-desaturation is catalyzed by a mixed function oxidase rather than a dehydrogenase.  相似文献   

20.
In contrast to other P450 enzymes purified from rat liver microsomes, purified P450 IIIA1 (P450p) is catalytically inactive when reconstituted with NADPH-cytochrome P450 reductase and the synthetic lipid, dilauroylphosphatidylcholine. However, purified P450 IIIA1 catalyzes the oxidation of testosterone when reconstituted with NADPH-cytochrome P450 reductase, cytochrome b5, an extract of microsomal lipid, and detergent (Emulgen 911). The present study demonstrates that the microsomal lipid extract can be replaced with one of several naturally occurring phospholipids, but not with cholesterol, sphingosine, sphingomyelin, ceramide, cerebroside, or cardiolipin. The ratio of the testosterone metabolites formed by purified P450 IIIA1 (i.e., 2 beta-, 6 beta-, and 15 beta-hydroxytestosterone) was influenced by the type of phospholipid added to the reconstitution system. The ability to replace microsomal lipid extract with several different phospholipids suggests that the nature of the polar group (i.e., choline, serine, ethanolamine, or inositol) is not critical for P450 IIIA1 activity, which implies that P450 IIIA1 activity is highly dependent on the fatty acid component of these lipids. To test this possibility, P450 IIIA1 was reconstituted with a series of synthetic phosphatidylcholines. Those phosphatidylcholines containing saturated fatty acids were unable to support testosterone oxidation by purified P450 IIIA1, regardless of the acyl chain length (C6 to C18). In contrast, several unsaturated phosphatidylcholines supported testosterone oxidation by purified P450 IIIA1, and in this regard dioleoylphosphatidylcholine (PC(18:1)2) was as effective as microsomal lipid extract and naturally occurring phosphatidylcholine or phosphatidylserine. These results confirmed that P450 IIIA1 activity is highly dependent on the fatty acid component of phospholipids. A second series of experiments was undertaken to determine whether microsomal P450 IIIA1, like the purified enzyme, is dependent on cytochrome b5. A polyclonal antibody against purified cytochrome b5 was raised in rabbits and was purified by affinity chromatography. Anti-cytochrome b5 caused a approximately 60% inhibition of testosterone 2 beta-, 6 beta-, and 15 beta-hydroxylation by purified P450 IIIA1 and inhibited these same reactions by approximately 70% when added to liver microsomes from dexamethasone-induced female rats. Overall, these results suggest that testosterone oxidation by microsomal cytochrome P450 IIIA1 requires cytochrome b5 and phospholipid containing unsaturated fatty acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号