首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Irradiation of protoplasts with X-rays or ultraviolet light does not seem to influence the level of transient expression of foreign DNA inPetunia protoplasts, whereas the number of stably transformed colonies is significantly raised. This may indicate that irradiation influences integration and/or the expression of marker genes and does not result in enhanced uptake rates of plasmids into protoplasts and cell nuclei. Co-transformation with plasmids carrying a gene for kanamycin resistance (neomycin phosphotransferase II) and a gene for hygromycin resistance (hygromycin phosphotransferase) revealed that the cotransformation rates were not stimulated by irradiation when measuring expression. Twenty-five kanamycin resistant but hygromycin sensitive colonies were examined with Southern or slot blotting and all were found to contain the coding sequence for the hygromycinphosphotransferase gene in their genomes. No obvious differences regarding copy number of integrated genes were observed when comparing transformed colonies derived from irradiated and non-irradiated protoplasts.  相似文献   

2.
Summary Polyethylene glycol (PEG) efficiently mediated the transformation ofStreptomyces avermitilis protoplasts by plasmid DNA to yield 107 transformants per g of plasmid DNA. Under conditios in which the maximum transformation frequency was observed, the cotransformation frequency exceeded 10%. The number of transformants increased linearly with the amount of DNA and number ofS. avermitilis protoplasts. Relaxed and supercoiled, but not linear DNA transformed protoplasts efficiently. Dimethyl sulfoxide (DMSO)-mediated transformation of protoplasts was 1000-fold less efficient. PEG and, less efficiently, DMSO also mediated the transformation of whole cells ofS. avermitilis by DNA.  相似文献   

3.
To study the possibility of gene rescue in plants by direct gene transfer we chose the Arabidopsis mutant GH50 as a source of donor DNA. GH50 is tolerant of chlorsulfuron, a herbicide of the sulfonylurea class. Tobacco protoplasts were cotransfected with genomic DNA and the plasmid pHP23 which confers kanamycin resistance. A high frequency of cointegration of the plasmid and the genomic DNA was expected, which would allow the tagging of the plant selectable trait with the plasmid DNA. After transfection by electroporation the protoplasts were cultivated on regeneration medium supplemented with either chlorsulfuron or kanamycin as a selective agent. Selection on kanamycin yielded resistant calluses at an absolute transformation frequency (ATF) of 0.8 x 10(-3). Selection on chlorsulfuron yielded resistant calluses at an ATF of 4.7 x 10(-6). When a selection on chlorsulfuron was subsequently applied to the kanamycin resistant calluses, 8% of them showed resistance to this herbicide. Southern analysis carried out on the herbicide resistant transformants detected the presence of the herbicide resistance gene of Arabidopsis into the genome of the transformed tobacco. Segregation analysis showed the presence of the resistance gene and the marker gene in the progeny of the five analysed transformants. 3 transformants showed evidence of genetic linkage between the two genes. In addition we show that using the same technique a kanamycin resistance gene from a transgenic tobacco could be transferred into sugar beet protoplasts at a frequency of 0.17% of the transformants.  相似文献   

4.
红曲霉不同转化方法比较   总被引:1,自引:0,他引:1  
周礼红  王正祥  诸葛健 《遗传》2006,28(4):479-485
为了研究红曲霉聚酮体途径,考察和比较了4种不同的转化方法以建立有效的红曲霉遗传转化系统。以潮霉素作为抗性筛选标记,pBC-Hygro作为转化载体,用基于原生质体的传统转化和电击转化、基于萌发孢子的电击转化以及REMI技术转化红曲霉。发现基于萌发孢子的电击转化由于转化率极低而不适于红曲霉转化。基于原生质体的传统转化和电击转化尽管每微克DNA分别能获得135个转化子和125个转化子,但因转化子稳定性差也适合红曲霉转化的转化。应用REMI技术,转化率提高约20倍,每微克DNA 2500个转化子,70%~75%的转化子的稳定,非常适合于红曲霉的转化。   相似文献   

5.
The frequency of cell fusion during transformation of yeast protoplasts with various yeast plasmids with a chromosome replicon (YRp or YCp) or 2 mu DNA (YEp) was estimated by two methods. In one method, a mixture of protoplasts of two haploid strains with identical mating type and complementary auxotrophic nuclear markers with or without cytoplasmic markers was transformed. When the number of various phenotypic classes of transformants for the nuclear markers was analyzed by equations derived from binominal distribution theory, the frequency of nuclear fusion among the transformants was 42 to 100% in transformations with the YRp or YCp plasmids and 28 to 39% with the YEp plasmids. In another method, a haploid bearing the sir mutation, which allows a diploid (or polyploid) homozygous for the MAT (mating type) locus to sporulate by the expression of the silent mating-type loci HML and HMR, was transformed with the plasmids. Sporulation ability was found in 43 to 95% of the transformants with the YRp or YCp plasmids, and 26 to 31% of the YEp transformants. When cytoplasmic mixing was included with the nuclear fusion, 96 to 100% of the transformants were found to be cell fusants. Based upon these observations, we concluded that transformation of yeast protoplasts is directly associated with cell fusion.  相似文献   

6.
Irradiation (X-ray; 5–15 Gy) of protoplasts treated with plasmid-DNA and PEG yielded higher transformation rates in comparison to non-irradiated protoplasts transformed by the same method. This could be demonstrated for four plant species. The irradiation doses used did not affect the total number of colonies regenerated without selection pressure, but resulted in 3–6-fold enhancement of hygromycin- or kanamycin-resistant colonies. Plant regeneration frequencies of transformed colonies derived from irradiated and non-irradiated protoplasts were similar in tobacco as well as in Petunia. Higher integration rates of foreign DNA as a consequence of an increased recombination machinery in irradiated cells may be responsible for the enhancement of the number of stably transformed colonies.  相似文献   

7.
Summary Genetic transformation of Nicotiana tabacum protoplasts was achieved by incubation of protoplasts with a plasmid DNA-calcium phosphate coprecipitate, followed by fusion of the protoplasts in the presence of polyvinyl alcohol and subsequent exposure to high pH. A derivative of the plasmid pBR322 containing a chimaeric gene, consisting of the nopaline synthase promoter, the coding region of the aminoglycoside phosphotransferase gene of Tn5 and the polyadenylation signal region of the octopine synthase gene, was used for these transformation experiments. This chimaeric gene confers resistance of transformed plant cells to kanamycin. This novel transformation procedure reproducibly yielded transformants at frequencies of approximately 0.01%. Aminoglycoside phosphotransferase II activity was detected in both transformed calli and in regenerated plants. DNA from some of the transformed clones was analyzed by Southern blot hybridization. The input DNA appears to be integrated into high molecular weight cellular DNA. Genetic analysis of one of the kanamycin resistant plants shows that the chimaeric gene is transmitted to the progeny as a single dominant trait in a Mendelian fashion. As a comparison the input DNA was also introduced into tobacco protoplasts using Agrobacterium tumefaciens and Ti-plasmid derived gene vectors.Dedicated to Professor Georg Melchers to celebrate his 50-year association with the journal  相似文献   

8.
The parameters affecting polyethylene glycol-induced plasmid transformation of Streptococcus lactis LM0230 protoplasts were examined to increase the transformation frequency. In contrast to spreading protoplasts over the surface of an agar medium, their incorporation into soft agar overlays enhanced regeneration of protoplasts and eliminated variability in transformation frequencies. Polyethylene glycol with a molecular weight of 3,350 at a final concentration of 22.5% yielded optimal transformation. A 20-min polyethylene glycol treatment of protoplasts in the presence of DNA was necessary for maximal transformation. The number of transformants recovered increased as the protoplast and DNA concentration increased over a range of 3.0 X 10(6) to 3.0 X 10(8) protoplasts and 0.25 to 4.0 micrograms of DNA per assay, respectively. With these parameters, transformation was increased to 5 X 10(3) to 4 X 10(4) transformants per microgram of DNA. Linear and recombinant plasmid DNA transformed, but at frequencies 10- to 100-fold lower than that of covalently closed circular DNA. Transformation of recombinant DNA molecules enabled the cloning of restriction endonuclease fragments coding for lactose metabolism into S. lactis LM0230 with the Streptococcus sanguis cloning vector, pGB301. These results demonstrated that the transformation frequency is sufficient to clone plasmid-coded genes which should prove useful for strain improvement of dairy starter cultures.  相似文献   

9.
Nicotiana tabacum protoplasts were transformed by polyethylene glycol (PEG)-mediated uptake and electroporation, with circular and linear DNA, and with or without X-ray irradiation. We investigated the influence on the transient expression by these parameters as well as on the frequencies for stable transformation. Plants were regenerated and selfed, and the progenies of the transformed plants were analysed and used to compare the pattern of gene integration by these different variations in transformation methods. The results from the transient expression as judged by glucuronidase (GUS) activity, showed electroporation to give higher and more reproducible results than PEG-mediated uptake. Using linear instead of circular DNA increased the rate of stable transformation about 3 times. Including a mild X-ray treatment gave an increase in the same range. When the inheritance of the transferred trait was investigated, it was found that protoplasts transformed with linear DNA resulted in the highest number of plants with single-copy insertions. Protoplasts transformed with circular DNA showed the highest incidence of losing the trait, while plants in which the transformation included an X-ray treatment, had the highest frequency of multicopy insertion events.  相似文献   

10.
Nicotiana tabacum protoplasts were transformed by polyethylene glycol (PEG)-mediated uptake and electroporation, with circular and linear DNA, and with or without X-ray irradiation. We investigated the influence on the transient expression by these parameters as well as on the frequencies for stable transformation. Plants were regenerated and selfed, and the progenies of the transformed plants were analysed and used to compare the pattern of gene integration by these different variations in transformation methods. The results from the transient expression as judged by glucuronidase (GUS) activity, showed electroporation to give higher and more reproducible results than PEG-mediated uptake. Using linear instead of circular DNA increased the rate of stable transformation about 3 times. Including a mild X-ray treatment gave an increase in the same range. When the inheritance of the transferred trait was investigated, it was found that protoplasts transformed with linear DNA resulted in the highest number of plants with single-copy insertions. Protoplasts transformed with circular DNA showed the highest incidence of losing the trait, while plants in which the transformation included an X-ray treatment, had the highest frequency of multicopy insertion events.  相似文献   

11.
Summary In P. hybrida and B. nigra an enhancement of transformation rates (direct gene transfer) of about six to seven-fold was obtained after irradiation of protoplasts with 12.5 Gy (X-ray). The effect of protoplast irradiation was similar in experiments where protoplasts were irradiated 1h before transformation (X-ray/DNA) or 1h after completion of the transformation procedure (DNA/X-ray). Increased X-ray doses up to 62.5 Gy resulted in further enhancement of percentages of transformed colonies, indicating a correlation between relative transformation frequencies (RTF) and the doses applied. Estimation of degradation rates of plasmid sequences in plant protoplasts yielded a reduction of plasmid concentration to 50% 8–12 h after transformation. In 1-day-old protoplasts, the level of plasmid fragments dropped to 0%–10% compared to 1h after transformation. The results demonstrate that the integration rates of plasmid sequences into the plant genome may in part be governed by DNA repair mechanisms. This could be an explanation for the observed genotypic dependence of transformation rates in different plant species and plant genotypes. Gene copy number reconstructions revealed enhanced integration rates of plasmid sequences in transformed colonies derived from irradiated protoplasts.  相似文献   

12.
Pleurotus eryngii was transformed via restriction enzyme-mediated integration. In order to construct the transformation plasmid, the enhanced cyan fluorescent protein (ECFP) gene was ligated next to the gpd promoter of the plasmid pAN7-1. Transformation was facilitated via the heat treatment of a transformation mixture containing 1 μg of the HindIII-digested plasmid DNA and 106 mushroom protoplasts in 40% polyethyleneglycol solution, resulting in 10–40 hygromycin-resistant transformants. Successful transformation was evidenced by PCR, Southern blot, and confocal fluorescence microscopic analyses on the selected transformants. To date, this is the first report on the transformation of P. eryngii by REMI technique.  相似文献   

13.
M C Wright  P Philippsen 《Gene》1991,109(1):99-105
We have developed a transformation system for the filamentous ascomycete fungus Ashbya gossypii. Mycelial protoplasts were transformed to geneticin-resistance with plasmids containing the Escherichia coli kanamycin-resistance gene as a selectable marker and autonomously replicating sequences (ARS) from Saccharomyces cerevisiae (ARS1, 2 mu ARS). Transformation frequencies of up to 63 transformants per microgram of plasmid DNA were obtained. The transformants were unstable under nonselective conditions. Southern analysis of DNA separated by conventional and pulsed-field-gel electrophoresis showed that the transforming DNA was present as autonomously replicating plasmid. Plasmid integration into chromosomal DNA was not detected. We concluded that the S. cerevisiae ARS elements are functional in A. gossypii, since vectors lacking such elements did not yield transformants.  相似文献   

14.
Competent cells of Bacillus subtilis were transformed with DNA from gently lysed protoplasts. Significant linkages among markers separated by distances of approximately 2.3% of the total chromosome were found, which have not been detected for conventional transformation. In comparison to previous reports, enhanced plasmid transformation was observed [4.0×107 transformants per g DNA (one transformant per 5×104 molecules added)], when competent cells were transformed with DNA from lysed protoplasts harboring pUB110.  相似文献   

15.
We have investigated transformation with heterologous DNA as a method for insertional mutagenesis of Aspergillus fumigatus. Two methods, polyethylene glycol-mediated transformation of protoplasts and electroporation of germinating spores, were used to establish conditions leading to single-copy integration of transforming DNA at different genomic sites. We have assessed the effect of restriction enzyme-mediated integration (REMI) for both methods. Non-REMI protoplast transformation led to integration of multiple copies of transforming DNA in the majority of transformants. Results of REMI with protoplast transformation varied depending on the enzyme used. Low concentrations of several restriction enzymes stimulated transformation, but of ten enzymes investigated only REMI with XhoI and KpnI resulted in single-copy integration of transforming DNA for the majority of transformants. For protoplast transformation with XhoI- or KpnI-based REMI, 50% and 76% of insertions, respectively, were due to integrations at a genomic enzyme site corresponding to the enzyme used for REMI. Electroporation of spores without addition of restriction enzyme resulted in a high transformation efficiency, with up to 67% of transformants containing a single copy of transforming DNA. In contrast to protoplast transformation, electroporation of spores in the presence of a restriction enzyme did not improve transformation efficiency or lead to insertion at genomic restriction sites. Southern analysis indicated that for both protoplast transformation with REMI using KpnI or XhoI and for electroporation of spores without addition of restriction enzymes, transforming DNA inserted at different genomic sites in a high proportion of transformants. Received: 6 March 1998 / Accepted: 25 May 1998  相似文献   

16.
DNA double-strand break (DSB) repair induced by the RNA-programmed nuclease Cas9 has become a popular method for genome editing. Direct genome editing via Cas9-CRISPR gRNA (guide RNA) ribonucleoprotein (RNP) complexes assembled in vitro has also been successful in some fungi. However, the efficiency of direct RNP transformation into fungal protoplasts is currently too low. Here, we report an optimized genome editing approach for filamentous fungi based on RNPs facilitated by adding chemical reagents. We increased the transformation efficiency of RNPs significantly by adding Triton X-100 and prolonging the incubation time, and the editing efficiency reached 100% in Trichoderma reesei and Cordyceps militaris. The optimized RNP-based method also achieved efficient (56.52%) homologous recombination integration with short homology arms (20 bp) and gene disruption (7.37%) that excludes any foreign DNA (selection marker) in T. reesei. In particular, after adding reagents related to mitosis and cell division, the further optimized protocol showed an increased ratio of edited homokaryotic transformants (from 0% to 40.0% for inositol and 71.43% for benomyl) from Aspergillus oryzae, which contains multinucleate spores and protoplasts. Furthermore, the multi-target engineering efficiency of the optimized RNP transformation method was similar to those of methods based on in vivo expression of Cas9. This newly established genome editing system based on RNPs may be widely applicable to construction of genome-edited fungi for the food and medical industries, and has good prospects for commercialization.  相似文献   

17.
The parameters affecting polyethylene glycol-induced plasmid transformation of Streptococcus lactis LM0230 protoplasts were examined to increase the transformation frequency. In contrast to spreading protoplasts over the surface of an agar medium, their incorporation into soft agar overlays enhanced regeneration of protoplasts and eliminated variability in transformation frequencies. Polyethylene glycol with a molecular weight of 3,350 at a final concentration of 22.5% yielded optimal transformation. A 20-min polyethylene glycol treatment of protoplasts in the presence of DNA was necessary for maximal transformation. The number of transformants recovered increased as the protoplast and DNA concentration increased over a range of 3.0 X 10(6) to 3.0 X 10(8) protoplasts and 0.25 to 4.0 micrograms of DNA per assay, respectively. With these parameters, transformation was increased to 5 X 10(3) to 4 X 10(4) transformants per microgram of DNA. Linear and recombinant plasmid DNA transformed, but at frequencies 10- to 100-fold lower than that of covalently closed circular DNA. Transformation of recombinant DNA molecules enabled the cloning of restriction endonuclease fragments coding for lactose metabolism into S. lactis LM0230 with the Streptococcus sanguis cloning vector, pGB301. These results demonstrated that the transformation frequency is sufficient to clone plasmid-coded genes which should prove useful for strain improvement of dairy starter cultures.  相似文献   

18.
Transformation of the nematode-trapping fungus Arthrobotrys oligospora   总被引:2,自引:0,他引:2  
The nematode-trapping fungus Arthrobotrys oligospora was transformed to hygromycin resistance using the hygromycin-B phosphotransferase gene from Escherichia coli under the control of various heterologous fungal promoters. Plasmid DNA was introduced into fungal protoplasts by polyethylene glycol/CaCl2 treatment. Transformation frequencies varied between 1-6 transformants per microgram DNA. Seven out of 13 integration events analyzed from transformants were single copy integrations, whereas the remaining were multiple and more complex integrations. The addition of restriction enzymes during transformations increased the frequency of single copy integrations. Co-transformation, using the E. coli uidA gene encoding the beta-glucuronidase reporter gene under the control of an Aspergillus nidulans promoter, occurred at frequencies of up to 63%.  相似文献   

19.
The ascomycete Fusarium fujikuroi could be transformed stably to hygromycin resistance only when the transforming plasmid contained a fragment of DNA from the fungus. The transformation frequencies were roughly independent of the sequence of the particular fungal DNA fragment used, of its size (1.8 or 6 kb), and of whether this DNA was present only once in the fungal genome or about forty times (the genes for ribosomal RNA). The plasmid was integrated into the fungal genome by homologous recombination in the eighteen transformants tested; ectopic integration was never observed. The carB gene of F. fujikuroi was cloned and shown to complement unpigmented mutants deficient in phytoene dehydrogenase. A mutant carB allele was prepared in vitro and used to transform wild-type protoplasts; the transformants contained a genomic duplication and were heterozygous for carB; the mutant allele replaced the original wild-type allele when this was spontaneously lost in the transformants. This loss was due to gene conversion in some cases and to recombination between repeated sequences in others. Received: 5 November 1999 / Accepted: 16 March 2000  相似文献   

20.
The conditions for optimal formation and regeneration of protoplasts of Streptomyces clavuligerus were established. The optimal temperature for regeneration of protoplasts and for transformation was 26 degrees C in three different regeneration media. The best efficiency of transformation was obtained with 40% polyethylene glycol 1000. The efficiencies of regeneration and transformation increased greatly when protoplasts were obtained from cultures in the early stationary phase of growth. The number of transformants per assay increased linearly with rising concentrations of protoplasts. However, the number of transformants per protoplast decreased at concentrations of protoplasts above 1.5 X 10(9). The total number of transformants rose linearly at increasing plasmid DNA concentrations, but the number of the transformants per microgram of DNA became constant at concentrations above 1 microgram of DNA. Transformation frequencies as high as 5 X 10(5) transformants per microgram of DNA were obtained when plasmid pIJ702 was isolated from S. clavuligerus but not when isolated from Streptomyces lividans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号