首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Imidacloprid, sulfoxaflor and two experimental sulfoximine insecticides caused generally depressive symptoms in stick insects, characterized by stillness and weakness, while also variably inducing postural changes such as persistent ovipositor opening, leg flexion or extension and abdomen bending that could indicate excitation of certain neural circuits. We examined the same compounds on nicotinic acetylcholine receptors in stick insect neurons, which have previously been shown to desensitize in the presence of ACh. Brief U-tube application of 10−4 M solutions of insecticides for 1 s evoked currents that were much smaller than ACh-evoked currents, and depressed subsequent ACh-evoked currents for several minutes, indicating that the compounds are low-efficacy partial agonists that potently desensitize the receptors. Much lower concentrations of insecticides applied in the bath for longer periods did not activate currents, but inhibited ACh-evoked currents via desensitization of the receptors. Previously described fast- and slowly-desensitizing nACh currents, IACh1 and IACh2 respectively, were each found to consist of two components with differing sensitivities to the insecticides. Imidacloprid applied in the bath desensitized high-sensitivity components, IACh1H and IACh2H with IC50s of 0.18 and 0.13 pM, respectively. It desensitized the low-sensitivity slowly desensitizing component, IACh2L, with an IC50 of 2.6 nM, while a component of the fast-desensitizing current, IACh1L, was least sensitive, with an IC50 of 81 nM IACh1L appeared to be insensitive to the three sulfoximines tested, whereas all three sulfoximines potently desensitized IACh1H and both slowly desensitizing components, with IC50s between 2 and 7 nM. We conclude that selective desensitization of certain nAChR subtypes can account for the insecticidal actions of imidacloprid and sulfoximines in stick insects.  相似文献   

3.
Cholinergic and serotonergic receptors of Aplysia californica buccal muscles were characterized pharmacologically by determining compounds that effectively inhibited contractile responses to acetylcholine (ACh) and modulatory effects of serotonin (5-HT), respectively. pA50 for ACh to elicit contraction averaged 4.7 ± 0.1 (mean ± SE, equivalent to 2 × 10−5 M). Both hexamethonium bromide and atropine inhibited ACh-elicited contractions, but neither inhibited the response completely, nor were the two together able to antagonize the response completely. Curare caused inhibition only at low ACh doses, and muscarinic antagonists pirenzapine and 4-diphenylacetoxy-N-methylpiperidine methiodide caused partial inhibition. The most effective blocker of ACh-elicited contractions was the nicotinic antagonist mecamylamine. 10−4M mecamylamine completely blocked the cholinergic response. ACh contractions were inhibited 90% within 10 min and took >40 min to recover from mecamylamine. Specificity was indicated by the lack of effect of mecamylamine on potassium-elicited contraction. NAN-190 blocked the potentiating effect of 5-HT without having inhibitory or potentiating effects by itself on ACh-elicited contractions. NAN-190 blocked the potentiating effect of 8-OH-DPAT. Cholinergic receptors on Aplysia buccal muscles are most effectively inhibited by mecamylamine and may have mixed nicotinic/muscarinic character. Serotonergic receptors have pharmacological similarities to vertebrate 5-HT1A receptors and may be closely related to the gastropod 5-HTlym receptor.  相似文献   

4.
The role of prostaglandins (PGs) in the mechanism of action of acetylcholine (ACh) on frog adrenocortical cells has been examined. Administration of a single dose of ACh (5 × 10−5 M) to perifused frog interrenal fragments, for 20 min, stimulated the production of corticosterone, aldosterone, PGE2 and 6-keto-PGF. In contrast ACh did not significantly alter TXB2 production. The effect of ACh could be mimicked by muscarine (10−5 M). Conversely, nicotine (10−6 to 10−4 M) was totally inactive. The increase in PG biosynthesis preceded the peak of corticosteroid release. Repeated 20-min pulses of ACh (5 × 10−5 M) or muscarine (10−5 M) given at 130-min intervales induced a desensitization phenomenon. In presence of indomethacin (5 × 10−6 M), the effect of ACh on PG and steroid secretion was totally abolished. In calcium-free medium, the effect of ACh on PG and corticosteroid production was completely blocked. These results indicated that, in the frog, ACh stimulates corticosteroid secretion through a PG-dependent mechanism.  相似文献   

5.
The toxic effect of mercuric ions on intestinal cholinergic neurotransmission was investigated in vitro. Hg2+ inhibited the evoked release and enhanced the resting release of ACh. Smooth muscle contraction was irreversibly inhibited by Hg2+ in a concentration-dependent manner, and Na2EDTA did not antagonize this effect. We also investigated if Hg2+ enters the nerve terminal through Ca2+-channels, or Na+-channels, or both. The effects of mercuric ions obtained in our study were completely abolished by the combined administration of TTX and Co2+. It is suggested that the site of the action of mercuric ions is intracellular. We concluded that Hg2+ may interfere with cholinergic transmission by blocking [Ca2+]o-dependent release of ACh and by enhancing [Ca2+]o-independent resting release of ACh. The effect of Hg2+ was not only presynaptic since it also inhibited the effect of ACh on smooth muscle.  相似文献   

6.
The modulation of [3H]ACh release by nicotinic compounds was studied in superfused rat hippocampal synaptosomes loaded with [3H]choline. (−)-Nicotine (0.1–10 μM) evoked a dose-dependent increase in [3H]ACh release; higher concentrations were less effective. Nicotine-evoked release was Ca2+-dependent, and blocked by the nicotinic antagonists dihydro-β-erythroidine, mecamylamine, and pempidine. The α7-selective antagonist methyllycaconitine did not inhibit nicotine-evoked release when tested at 1 μM, although at 10 μM some attenuation of the response was observed. Six agonists tested were equally efficacious in stimulating [3H]ACh release, as judged by the maximum responses, and gave the following EC50 values: (±)-epibatidine 0.12 μM; (+)-anatoxin-a 0.14 μM; (−)-nicotine 0.99 μM; (−)-cytisine 1.06 μM; ABT-418 2.6 μM; isoarecolone 43 μM. Each agonist generated a “bell-shaped” dose response curve, suggesting desensitisation at higher concentrations. This is supported by analysis of repetitive stimulation with (−)-nicotine and (−)-cytisine: S2/S1 ratios declined sharply with increasing concentration, whereas subsequent KCl-evoked release remained constant. These results are discussed in terms of possible nicotinic receptor subtypes that might be present on hippocampal nerve terminals. Special issue dedicated to Dr. Herman Bachelard.  相似文献   

7.
The inward rectified potassium current ofVicia faba guard cell protoplasts treated with acetylcholine (ACh) or the antagonists of its receptors were recorded by employing the patch clamp technique. The results show that ACh at lower concentrations increases the inward K+ current, in contrast, ACh at higher concentrations inhibits it. Treated with d-Tubocurarine (d-Tub), an antagonist of the nicotine ACh receptor (nAChR) inhibits the inward K+ current by 30%. Treated with atropine (Atr), an antagonist of the muscarine (Mus) ACh receptor (mAChR) also inhibits it by 36%. However, if guard cell protoplasts are treated with d-Tub and Atr together, the inward K+ current is inhibited by 60% –75%. Tetraethylammonium chloride (TEA), a strong inhibitor of K+ channels has no effect on the inward K+ current regulated by ACh, suggesting that there are inward K+ channels modulated by AChRs on the membrane of the guard cell protoplasts. These data demonstrate an ACh-regulated mechanism for stomatal movement.  相似文献   

8.
Summary 1. Using conventional two-microelectrode voltage-clamp techniques we studied the effects of inorganic mercury (HgCl2) on acetylcholine-, carbachol-, and glutamate-activated currents onAplysia neurons. Hg2+ was applied with microperfusion.2. Acetylcholine and carbachol activated an inward, sodium-dependent current in the anterior neurons of the pleural ganglion. The medial neurons gave a biphasic current to acetylcholine and carbachol, which was outward at resting membrane potential. The faster component was Cl dependent and reversed at about –60 mV, while the slower component was K+ dependent and reversed at greater than –80 mV.3. Hg2+ (0.1–10 µM) caused a dramatic increase in the acetylcholine- and carbachol-induced inward current in anterior neurons and the fast Cl current in medial neurons. With only a 1-min preapplication of Hg2+, the acetylcholine- or carbachol-activated sodium or chloride currents were increased to 300% and the effect was only partly reversible. The threshold concentration was 0.1 µM Hg2+.4. Contrary to the effects on sodium and chloride currents, concentrations of 0.1–10 µM Hg2+ caused a complete and irreversible blockade of K+-dependent acetylcholine and carbachol currents. The block of the potassium current was relatively fast and increased with time. The concentration of HgCl2 that gave a half-maximal blockade of the carbachol-activated potassium current was 0.89 µM. The chloride-dependent current elicited by glutamate on medial neurons was increased by HgCl2 as well.5. These results suggest that actions at agonist-activated channels must be considered as contributing to mercury neurotoxicity. It is possible that the toxic actions of Hg2+ on synaptic transmission at both pre- and postsynaptic sites are important factors in the mechanism of Hg2+ toxicity.  相似文献   

9.
The aim of this study was to verify the presence of presynaptic nicotinic acetylcholine receptors (nAChRs) at the terminals of myenteric motoneurons using a potent and highly selective nicotinic agonist, epibatidine. We examined contraction, and release of [3H]ACh on a guinea-pig longitudinal muscle strip preparation. First, we compared the ability of epibatidine and nicotine to induce isometric contraction and found epibatidine (EC50 = 23.1 nM) to be 300-fold more potent than nicotine (EC50 = 7.09 M). The release and contraction induced by 30 nM epibatidine were inhibited by the nicotinic antagonist mecamylamine (3 M) and the Na1-channel blocker TTX (1 M), indicating that the effects are mediated via nAChRs and are fully dependent on the propagation of action potentials. Atropine (0.1 M) significantly increased the [3H]ACh release but could not block contraction suggesting that a substantial part of the response develops via a noncholinergic mechanism. Epibatidine at a higher concentration (300 nM) induced contraction, which was only partly (45%) inhibited by TTX (1 M). The TTX-resistant contraction, however, was completely blocked by mecamylamine (3 M). Our data provide functional neurochemical evidence for the existence of presynaptic nAChRs at myenteric motoneuron terminals and suggest that these receptors can be activated only/by a higher concentration of agonists.  相似文献   

10.
Kenyon cells, intrinsic neurons of the insect mushroom body, have been assumed to be a site of conditioning stimulus (CS) and unconditioned stimulus (US) association in olfactory learning and memory. Acetylcholine (ACh) has been implicated to be a neurotransmitter mediating CS reception in Kenyon cells, causing rapid membrane depolarization via nicotinic ACh receptors. However, the long-term effects of ACh on the membrane excitability of Kenyon cells are not fully understood. In this study, we examined the effects of ACh on Na+ dependent action potentials (Na+ spikes) elicited by depolarizing current injection and on net membrane currents under the voltage clamp condition in Kenyon cells isolated from the mushroom body of the cricket Gryllus bimaculatus. Current-clamp studies using amphotericin B perforated-patch recordings showed that freshly dispersed cricket Kenyon cells could produce repetitive Na+ spikes in response to prolonged depolarizing current injection. Bath application of ACh increased both the instantaneous frequency and the amplitudes of Na+ spikes. This excitatory action of ACh on Kenyon cells is attenuated by the pre-treatment of the cells with the muscarinic receptor antagonists, atropine and scopolamine, but not by the nicotinic receptor antagonist mecamylamine. Voltage-clamp studies further showed that bath application of ACh caused an increase in net inward currents that are sensitive to TTX, whereas outward currents were decreased by this treatment. These results indicate that in order to mediate CS, ACh may modulate the firing properties of Na+ spikes of Kenyon cells through muscarinic receptor activation, thus increasing Na conductance and decreasing K conductance.  相似文献   

11.
《Phytomedicine》2013,21(14):1272-1279
This study aimed to investigate the effect of magnolol (5,5′-diallyl-2,2′-biphenyldiol) on contraction in distal colonic segments of rats and the underlying mechanisms. Colonic segments were mounted in organ baths for isometric force measurement. Whole-cell voltage-sensitive L-type Ca2+ currents were recorded on isolated single colonic smooth muscle cells using patch-clamp technique. The spontaneous contractions and acetylcholine (ACh)- and Bay K 8644-induced contractions were inhibited by magnolol (3–100 μM). In the presence of Bay K8644 (100 nM), magnolol (10–100 μM) inhibited the contraction induced by 10 μM ACh. By contrast, tetrodotoxin (100 nM) and Nώ-nitro-l-arginine methyl ester (l-NAME 100 μM) did not change the inhibitory effect of magnolol (10 μM). In addition, magnolol (3–100 μM) inhibited the L-type Ca2+ currents. The present results suggest that magnolol inhibits colonic smooth muscle contraction through downregulating L-type Ca2+ channel activity.  相似文献   

12.
Summary In conventional two microelectrode experiments, acetylcholine had qualitatively the same effect as GABA and glutamate on membrane potential and input resistance of muscle fibres of the opener and intrinsic stomach muscles of crayfish (Austropotamobius torrentium). In patch-clamp experiments, acetylcholine occasionally elicited single channel openings in cell-attached patches on these muscles. If outside-out patches were excised and the Cl concentration was high on both sides of the membrane, acetylcholine at concentrations of 1 nM regularly elicited single channel currents. The amplitude of single channel currents depended strongly on the intracellular concentration of Cl. The reversal potential of the channel, determined after replacing intracellular K+ with Cs+, corresponded to the Nernst potential for Cl. The voltage dependence and the reversal potential of single channel current amplitudes elicited by ACh, glutamate and GABA were identical. The distribution of life times of openings (>1 ms) elicited by ACh and glutamate could be fitted by a single exponential with a time constant of about 2.5 ms, corresponding to the mean open time. ACh and glutamate applied to the same outside-out patch showed cross-desensitization, and thus ACh and glutamate activate the same channels. An excitatory, cationic ACh-activated channel could not be identified. Permeabilities of the chloride channel were calculated according to the Goldman-Hodgkin-Katz equation at different membrane potentials. Negative single channel current amplitudes (inward currents) could be fitted with a permeability of 2= 3.9×10–14 cm3s–1. For positive currents (outward) the channel had a permeability of 1= 1.4× 10–14 cm3s–1. The permeability of the channel declined from 16×10–14 cm3s–1 to 2.3×10–14 cm3s–1 if the intracellular Cl-concentration was raised from 6 to 257 mM. The activation elicited by acetylcholine was inhibited by extracellular Ca++. The mean current activated by ACh was reduced by a factor of 50 if the extracellular concentration of Ca++ was raised from 0.1 mM to the physiological concentration of 13.5 mM.  相似文献   

13.
Acetylcholine (ACh) rapidly increases cardiac K+ currents (IKACh) by activating muscarinic K+ (KACh) channels followed by a gradual amplitude decrease within seconds. This phenomenon is called short-term desensitization and its precise mechanism and physiological role are still unclear. We constructed a mathematical model for IKACh to examine the conditions required to reconstitute short-term desensitization. Two conditions were crucial: two distinct muscarinic receptors (m2Rs) with different affinities for ACh, which conferred an IKACh response over a wide range of ACh concentrations, and two distinct KACh channels with different affinities for the G-protein βγ subunits, which contributed to reconstitution of the temporal behavior of IKACh. Under these conditions, the model quantitatively reproduced several unique properties of short-term desensitization observed in myocytes: 1), the peak and quasi-steady states with 0.01100 μM [ACh]; 2), effects of ACh preperfusion; and 3), recovery from short-term desensitization. In the presence of 10 μM ACh, the IKACh model conferred recurring spontaneous firing after asystole of 8.9 s and 10.7 s for the Demir and Kurata sinoatrial node models, respectively. Therefore, two different populations of KACh channels and m2Rs may participate in short-term desensitization of IKACh in native myocytes, and may be responsible for vagal escape at nodal cells.  相似文献   

14.
Kiss  J. P.  Windisch  K.  De Oliveira  K.  Hennings  E. C. P.  Mike  A.  Szász  B. K. 《Neurochemical research》2001,26(8-9):943-950
The aim of this study was to investigate the mechanisms involved in the effect of nicotinic agonists on the [3H]norepinephrine ([3H]NE) release from rat hippocampal slices. The stimulatory effect of nicotine, cytisine, epibatidine and anatoxin-A was completely blocked by the nicotinic antagonist mecamylamine (10 M). In contrast, the effect of dimethylphenylpiperazinium (DMPP) was only partially inhibited by mecamylamine but was completely blocked by the NE uptake inhibitor desipramine (DMI, 10 M). Finally, the effect of lobeline was not affected by mecamylamine and was only partially blocked by DMI. Our data indicate that the majority of nicotinic agonists increase the release of [3H]NE exclusively via stimulation of nicotinic acetylcholine receptors (nAChRs). DMPP, in addition to the stimulation of nAChRs, also evokes a carrier-mediated release. Lobeline has no stimulatory effect on nAChRs, induces a carrier-mediated release and has a further action of unidentified mechanism. Our results suggest that special caution is required for the interpretation of data, when DMPP or lobeline are used as nicotinic agonists.  相似文献   

15.
The effect of exogenous acetylcholine (ACh) on potassium currents in the motor nerve ending (NE) has been studied in neuromuscular preparations of the frog cutaneous-sternal muscle by extracellular recording of evoked electrical potentials from the NE. The investigation was performed during inhibition of acetylcholinesterase (AChE) activity by specific inhibitors and AChE removal from the synaptic cleft by collagenase. After AChE inhibition by either armine or proserine, or after treatment of the preparation with collagenase, no effect of exogenous ACh in concentrations of 1·10–4–6·–4 mole/liter was observed, in contrast to results from preparations with intact AChE. However, under the same conditions, as in the case of active AChE, ACh in concentrations of 7·10–4–2·10–3 mole/liter inhibited Ca-activated potassium current of the NE membrane. Experiments with dipyroxim, a synaptic AChE reactivator, have shown that the ACh effect on the potential-dependent potassium current is mediated by specific AChE. The role of AChE is discussed in respect to its significance for realization of the ACh action on potential-dependent potassium current in NE.Translated from Neirofiziologiya, Vol. 25, No. 2, pp. 146–149, March–April, 1993.  相似文献   

16.
Abstract: The existence in the mammalian CNS of release-inhibiting muscarinic autoreceptors is well established. In contrast, few reports have focused on nicotinic autoreceptors mediating enhancement of acetylcholine (ACh) release. Moreover, it is unclear under what conditions the function of one type of autoreceptor prevails over that of the other. Rat cerebrocortex slices, prelabeled with [3H]choline, were stimulated electrically at 3 or 0.1 Hz. The release of [3H]ACh evoked at both frequencies was inhibited by oxotremorine, a muscarinic receptor agonist, and stimulated by atropine, a muscarinic antagonist. Nicotine, ineffective at 3 Hz, enhanced [3H]ACh release at 0.1 Hz; mecamylamine, a nicotinic antagonist, had no effect at 3 Hz but inhibited [3H]ACh release at 0.1 Hz. The cholinesterase inhibitor neostigmine decreased [3H]ACh release at 3 Hz but not at 0.1 Hz; in the presence of atropine, neostigmine potentiated [3H]ACh release, an effect blocked by mecamylamine. In synaptosomes depolarized with 15 mM KCI, ACh inhibited [3H]ACh release; this inhibition was reversed to an enhancement when the external [Ca2+] was lowered. The same occurred when, at 1.2 mM Ca2+, external [K+] was decreased. Oxotremorine still inhibited [3H]ACh release at 0.1 mM Ca2+. When muscarinic receptors were inactivated with atropine, the K+ (15 mM)-evoked release of [3H]ACh (at 0.1 mM Ca2+) was potently enhanced by ACh acting at nicotinic receptors (EC50? 0.6 µM). In conclusion, synaptic ACh concentration does not seem to determine whether muscarinic or nicotinic autoreceptors are activated. Although muscarinic autoreceptors prevail under normal conditions, nicotinic autoreceptors appear to become responsive to endogenous ACh and to exogenous nicotinic agents under conditions mimicking impairment of ACh release. Our data may explain in part the reported efficacy of cholinesterase inhibitors (and nicotinic agonists) in Alzheimer's disease.  相似文献   

17.
Abstract: Using dissociated rat carotid body (CB) cultures, we compared levels of extracellular dopamine (DA) around oxygen-sensitive glomus cells grown for ~12 days in normoxia (Nox; 20% O2), chronic hypoxia (CHox; 6% O2), or chronic nicotine (CNic; 10 µM nicotine, 20% O2), with or without acetylcholine (ACh) receptor (AChR) agonists/antagonists and blockers of DA uptake. In Nox cultures, extracellular DA, determined by HPLC and normalized to the number of tyrosine hydroxylase-positive glomus cells present, was augmented by acute (~15-min) exposure to hypoxia (5% O2; ~6× basal), high extracellular K+ (30 mM; ~10× basal), nomifensine (1 µM; a selective DA uptake inhibitor; ~3× basal), and nicotine (100 µM; ~5× basal), but not methylcholine (300 µM; a specific muscarinic agonist). In contrast, in CHox cultures where basal DA release is markedly elevated (~9× control), the stimulatory effect of high K+ (3–4× basal) and acute hypoxia (~2× basal) on DA release persisted, but nicotine and nomifensine were no longer effective and methylcholine had a partial inhibitory effect. In CNic cultures, basal DA levels were also elevated (~9× control), similar to that in CHox cultures; however, although acute hypoxia had a stimulatory effect on DA release (~2× basal), nicotine, nomifensine, and high K+ were ineffective. The elevated basal DA in both CHox and CNic cultures was attenuated by acute or chronic treatment with mecamylamine (100 µM), a nicotinic AChR (nAChR) antagonist. In addition, long-term (16-h), but not acute (15-min), treatment with the muscarinic antagonist atropine (1 µM) produced an additional enhancement of basal DA levels in CHox cultures. Thus, after chronic hypoxia or nicotine in vitro, extracellular DA levels around CB chemoreceptor cell clusters appear to be set by a variety of factors including released ACh, positive and negative feedback regulation via nAChRs and muscarinic AChRs, respectively, and modulation of DA transporters. These results provide insight into roles of endogenous transmitters in the adaptation of CB chemoreceptors to chronic hypoxia and suggest pathways by which neuroactive drugs, e.g., nicotine, can interfere with the protective chemoreflex response against hypoxia.  相似文献   

18.
Summary Intracellular microelectrode recording and ionophoretic application of carbamylcholine (CCh) were used to compare the cholinergic sensitivity of postsynaptic dendrites of an identified neurone with that of an identified presynaptic cholinergic axon.The axon of the lateral filiform hair sensory neurone (LFHSN) in the first-instar cockroachPeriplaneta americana was found to be as sensitive to CCh as the dendritic regions of giant interneurone 3 (GI 3). The CCh response of both neurones was unaffected by replacing Ca2+ with Mg2+, confirming that the ACh receptors are present on the neurones under test. The CCh response of both neurones was mimicked by ionophoretic application of nicotine. The responses were blocked by 10–5 M mecamylamine and 10–6 M d-tubocurarine and were not affected by muscarinic antagonists, suggesting that the ACh receptors present on GI 3 and LFHSN are predominantly nicotinic.The muscarinic agonist oxotremorine and the antagonists atropine and quinuclidinyl benzilate had no modulatory effect on LFHSN-GI 3 synaptic transmission.The latency of the LFHSN response to CCh was consistent with the hypothesis that ACh receptors are situated on the main axon/terminal within the neuropil of the ganglion. It has previously been shown that this region of the axon does not form output synapses (Blagburn et al. 1985a). This indirect evidence indicates that presynaptic or extrasynaptic ACh receptors are present in the membrane of a cholinergic axon.LFHSN was depolarized by synaptically-released ACh after normal or evoked spike bursts, suggesting that the nicotinic ACh receptors act as autoreceptors. However, it was not possible to obtain direct evidence to support the hypothesis that these receptors modulate ACh release.Abbreviations CCh carbamylcholine - GI giant interneurone - FHSN filiform hair sensory neurone - LFHSN lateral filiform hair sensory neurone - R in input resistance - V depolarization - V m resting potential  相似文献   

19.
The roles of Ca2+ mobilization in development of tension induced by acetylcholine (ACh, 0.1–100 µM) in swine tracheal smooth muscle strips were studied. Under control conditions, ACh induced a transient increase in free cytosolic calcium concentration ([Ca2+]i) that declined to a steady-state level. The peak increase in [Ca2+]i correlated with the magnitude of tension at each [ACh] after a single exposure to ACh, while the steady-state [Ca2+]i did not. Removal of extracellular Ca2+ had little effect on peak [Ca2+]i but greatly reduced steady-state increases in [Ca2+]i and tension. Verapamil inhibited steady-state [Ca2+]i only at [ACh]<1 µM. After depletion of internal Ca2+ stores by 10 min exposure to ACh in Ca2+-free solution and then washout of ACh for 5 min in Ca2+-free solution, simultaneous re-exposure to ACh in the presence of 2.5 mM Ca2+ increased [Ca2+]i to the control steady-state level without overshoot. The tension attained was the same as control for each [ACh] used. Continuous exposure to successively increasing [ACh] (0.1–100 µM) also reduced the overshoot of [Ca2+]i at 10 and 100 µM ACh, yet tension reached control levels at each [ACh] used. We conclude that the steady-state increase in [Ca2+]i is necessary for tension maintenance and is dependent on Ca2+ influx through voltage-gated calcium channels at 0.1 µM ACh and through a verapamil-insensitive pathway at 10 and 100 µM. The initial transient increase in calcium arises from intracellular stores and is correlated with the magnitude of tension only in muscles that have completely recovered from previous exposure to agonists.  相似文献   

20.
The neuromuscular acetylcholine receptor (AChR) is an allosteric protein that alternatively adopts inactive versus active conformations (RR). The R shape has a higher agonist affinity and ionic conductance than R. To understand how agonists trigger this gating isomerization, we examined single-channel currents from adult mouse muscle AChRs that isomerize normally without agonists but have only a single site able to use agonist binding energy to motivate gating. We estimated the monoliganded gating equilibrium constant E1 and the energy change associated with the R versus R change in affinity for agonists. AChRs with only one operational binding site gave rise to a single population of currents, indicating that the two transmitter binding sites have approximately the same affinity for the transmitter ACh. The results indicated that E1 ≈ 4.3 × 10−3 with ACh, and ≈1.7 × 10−4 with the partial-agonist choline. From these values and the diliganded gating equilibrium constants, we estimate that the unliganded AChR gating constant is E0 ≈ 6.5 × 10−7. Gating changes the stability of the ligand-protein complex by ∼5.2 kcal/mol for ACh and ∼3.3 kcal/mol for choline.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号