首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The diversity of sulfate-reducing bacteria (SRB) inhabiting the extreme hypersaline sediment (270 g L(-1) NaCl) of the northern arm of Great Salt Lake was studied by integrating cultivation and genotypic identification approaches involving PCR-based retrieval of 16S rRNA and dsrAB genes, the latter encoding major subunits of dissimilatory (bi) sulfite reductase. The majority (85%) of dsrAB sequences retrieved directly from the sediment formed a lineage of high (micro) diversity affiliated with the genus Desulfohalobium, while others represented novel lineages within the families Desulfohalobiaceae and Desulfobacteraceae or among Gram-positive SRB. Using the same sediment, SRB enrichment cultures were established in parallel at 100 and at 190 g L(-1) NaCl using different electron donors. After 5-6 transfers, dsrAB and 16S rRNA gene-based profiling of these enrichment cultures recovered a SRB community composition congruent with the cultivation-independent profiling of the sediment. Pure culture representatives of the predominant Desulfohalobium-related lineage and of one of the Desulfobacteraceae-affilated lineages were successfully obtained. The growth performance of these isolates and of the enrichment cultures suggests that the sediment SRB community of the northern arm of Great Salt Lake consists of moderate halophiles, which are salt-stressed at the in situ salinity of 27%.  相似文献   

2.
Over geologic time, the water in the Bonneville basin has risen and  fallen, most dramatically as freshwater Lake Bonneville lost enormous volume 15,000–13,000 years ago and became the modern day Great Salt Lake. It is likely that paleo-humans lived along the shores of this body of water as it shrunk to the present margins, and native peoples inhabited the surrounding desert and wetlands in recent times. Nineteenth century Euro-American explorers and pioneers described the geology, geography, and flora and fauna of Great Salt Lake, but their work attracted white settlers to Utah, who changed the lake immeasurably. Human intervention in the 1950s created two large sub-ecosystems, bisected by a railroad causeway. The north arm approaches ten times the salinity of sea water, while the south arm salinity is a meager four times that of the oceans. Great Salt Lake was historically referred to as sterile, leading to the nickname “America’s Dead Sea.” However, the salty brine is teaming with life, even in the hypersaline north arm. In fact, scientists have known that this lake contains a diversity of microscopic lifeforms for more than 100 years. This essay will explore the stories of the people who observed and researched the salty microbiology of Great Salt Lake, whose discoveries demonstrated the presence of bacteria, archaea, algae, and protozoa that thrive in this lake. These scientists documented the lake’s microbiology as the lake changed, with input from human waste and the creation of impounded areas. Modern work on the microbiology of Great Salt Lake has added molecular approaches and illuminated the community structures in various regions, and fungi and viruses have now been described. The exploration of Great Salt Lake by scientists describing these tiny inhabitants of the brine illuminate the larger terminal lake with its many facets, anthropomorphic challenges, and ever-changing shorelines.  相似文献   

3.
Managing terminal lake elevation and salinity are emerging problems worldwide. We contribute to terminal lake management research by quantitatively assessing water and salt flow for Utah’s Great Salt Lake. In 1959, Union Pacific Railroad constructed a rock-filled causeway across the Great Salt Lake, separating the lake into a north and south arm. Flow between the two arms was limited to two 4.6 meter wide rectangular culverts installed during construction, an 88 meter opening (referred to locally as a breach) installed in 1984, and the semi porous material of the causeway. A salinity gradient developed between the two arms of the lake over time because the south arm receives approximately 95% of the incoming streamflow entering Great Salt Lake. The north arm is often at, or near, salinity saturation, averaging 317 g/L since 1966, while the south is considerably less saline, averaging 142 g/L since 1966. Ecological and industrial uses of the lake are dependent on long-term salinity remaining within physiological and economic thresholds, although optimal salinity varies for the ecosystem and between diverse stakeholders. In 2013, Union Pacific Railroad closed causeway culverts amid structural safety concerns and proposed to replace them with a bridge, offering four different bridge designs. As of summer 2015, no bridge design has been decided upon. We investigated the effect that each of the proposed bridge designs would have on north and south arm Great Salt Lake elevation and salinity by updating and applying US Geological Survey’s Great Salt Lake Fortran Model. Overall, we found that salinity is sensitive to bridge size and depth, with larger designs increasing salinity in the south arm and decreasing salinity in the north arm. This research illustrates that flow modifications within terminal lakes cannot be separated from lake salinity, ecology, management, and economic uses.  相似文献   

4.
The activity and culturable diversity of sulfidogens were investigated in anoxic sediments of four hypersaline lakes with pH 7.6-8.2 in the Kulunda Steppe (Altai, Russia). Sulfate reduction rates were low, varying from 0.1 to 6.0 nmol HS(-) /(cm(3) h) with a maximum in the top 10 cm layer. Potential sulfidogenic rates with thiosulfate and sulfur as the e-acceptors were higher than with sulfate and were stimulated by formate, lactate, and acetate. Sulfidogenesis was optimal at salt concentrations below 2 M NaCl. Cultivation at 2 M NaCl resulted in the isolation of several strains of moderately halophilic SRB, but no growth of SRB was observed at 4 M NaCl. At lithotrophic conditions (i.e., with formate or H(2) as e-donors), several closely related alkalitolerant strains belonging to the genus Desulfonatronovibrio were isolated. Enrichments at heterotrophic conditions with lactate, propionate, acetate, or butyrate using sulfate or thiosulfate as e-acceptors yielded isolates related to Desulfosalsimonas propionicica, Desulfohalobium utahense, and Desulfocella halophila. Sulfur-reducing enrichments at 2 M NaCl with ethanol produced a member of the genus Halanaerobium, while enrichments at 4 M NaCl with acetate were dominated by archaea, demonstrating for the first time such type of catabolism in haloarchaea.  相似文献   

5.
Here we describe the diversity and activity of sulfate reducing bacteria along a salinity gradient in four different soda lakes from the Kulunda Steppe (South East Siberia, Russia). For this purpose, a combination of culture-dependent and independent techniques was applied. The general bacterial and SRB diversity were analyzed by denaturing gradient gel electrophoresis (DGGE) targeting the 16S rDNA gene. DNA was used to detect the microbial populations that were present in the soda lake sediments, whereas ribosomal RNA was used as a template to obtain information on those that were active. Individual DGGE bands were sequenced and a phylogenetic analysis was performed. In addition, the overall activity of SRB was obtained by measuring the sulfate reduction rates (SRR) and their abundance was estimated by serial dilution. Our results showed the presence of minor, but highly active microbial populations, mostly represented by members of the Proteobacteria. Remarkably high SRR were measured at hypersaline conditions (200 g L−1). A relatively high viable count indicated that sulfate reducing bacteria could be highly active in hypersaline soda lakes. Furthermore, the increase of sodium carbonate/bicarbonate seemed to affect the composition of the microbial community in soda lakes, but not the rate of sulfate reduction.  相似文献   

6.
为了解柴达木盆地茶卡盐湖、柯柯盐湖和小柴旦盐湖等三大硫酸镁亚型高盐盐湖可分离嗜盐耐盐菌的种群多样性,采用RM中、高盐培养基筛选分离可培养的嗜盐菌和耐盐菌,扩增16S rRNA基因序列进行种属鉴定和环境因子典范对应分析(CCA),选取优势菌属构建系统发育树,并采用高效液相色谱法(HPLC)检测次级代谢产物四氢嘧啶(Ect...  相似文献   

7.
A new halophilic species is described that was isolated from the hypersaline (>20%) surface sediments of Great Salt Lake, Utah, via transfer from MPN end-dilution tubes that contained a complex organic medium. The organism was an obligate anaerobe that proliferated optimally at approximately 13% salt, but did not grow significantly at <2% or ≥30% salt. It stained Gram-negative, was nonmotile, nonsporing, and contained an outer-wall membranous layer. The complex lipids of the organism were fatty acid esters that did not change dramatically during growth at 5% or 25% NaCl. The DNA base composition was 27.0±1 mol% guanosine plus cytosine. The temperature range for growth was >5°C and <60°C, the pH range was between 6.0 and 9.0. The doubling time for growth in complex medium with 25% NaCl was 7 h. The organism utilized carbohydrates, peptides, and amino acids. Butyrate, acetate, propionate. H2, and CO2 were the major fermentation end products formed. Glucose, mannose, fructose,n-acetyl glucosamine, and pectin were used as energy sources for growth. Methylmercaptan was produced from methionine degradation. The nameHaloanaerobium praevalens gen. nov. sp. nov. is proposed for the type strain GSL which has been deposited as DSM 2228. The taxonomic relationships ofH. praevalens to other obligate halophiles and anaerobes, as well as its biological role in the Great Salt Lake microbial ecosystem, are discussed.  相似文献   

8.
The rates of sulfate reduction (SR) and the diversity of sulfate-reducing bacteria (SRB) were studied in the sediments of the Posol’skaya Banka elevation in the southern part of Lake Baikal. SR rates varied from 1.2 to 1641 nmol/(dm3 day), with high rates (>600 nmol/(dm3 day)) observed at both deep-water stations and in subsurface silts. Integral SR rates calculated for the uppermost 50 cm of the sediments were higher for gas-saturated and gas hydrate-bearing sediments than in those with low methane content. Enrichment cultures were obtained in Widdel medium for freshwater SRB. Analysis of the 16S rRNA gene fragments from clone libraries obtained from the enrichments revealed the presence of SRB belonged to the genus Desulfosporosinus, with D. lacus as the most closely related member (capable of sulfate, sulfite, and thiosulfate reduction), as well as members of the order Clostridiales.  相似文献   

9.
Biotic adjustments to changing salinities in the Great Salt Lake,Utah, USA   总被引:2,自引:0,他引:2  
The salinity of the Great Salt Lake, Utah has changed greatly over the past 23 years. The north arm of the lake has increased in salinity and decreased in overall biological diversity, whereas the south arm has decreased in salinity and increased markedly in biological diversity.  相似文献   

10.
Yeast diversity in hypersaline habitats   总被引:2,自引:0,他引:2  
Thus far it has been considered that hypersaline natural brines which are subjected to extreme solar heating, do not contain non-melanized yeast populations. Nevertheless we have isolated yeasts in eight different salterns worldwide, as well as from the Dead Sea, Enriquillo Lake (Dominican Republic) and the Great Salt Lake (Utah). Among the isolates obtained from hypersaline waters, Pichia guilliermondii, Debaryomyces hansenii, Yarrowia lipolytica and Candida parapsilosis are known contaminants of low water activity food, whereas Rhodosporidium sphaerocarpum, R. babjevae, Rhodotorula laryngis, Trichosporon mucoides, and a new species resembling C. glabrata were not known for their halotolerance and were identified for the first time in hypersaline habitats. Moreover, the ascomycetous yeast Metschnikowia bicuspidata, known to be a parasite of the brine shrimp, was isolated as a free-living form from the Great Salt Lake brine. In water rich in magnesium chloride (bitterns) from the La Trinitat salterns (Spain), two new species provisionally named C. atmosphaerica - like and P. philogaea - like were discovered.  相似文献   

11.
Soda lakes are naturally occurring highly alkaline and saline environments. Although the sulfur cycle is one of the most active element cycles in these lakes, little is known about the sulfate-reducing bacteria (SRB). In this study we investigated the diversity, activity, and abundance of SRB in sediment samples and enrichment cultures from a range of (hyper)saline soda lakes of the Kulunda Steppe in southeastern Siberia in Russia. For this purpose, a polyphasic approach was used, including denaturing gradient gel electrophoresis of dsr gene fragments, sulfate reduction rate measurements, serial dilutions, and quantitative real-time PCR (qPCR). Comparative sequence analysis revealed the presence of several novel clusters of SRB, mostly affiliated with members of the order Desulfovibrionales and family Desulfobacteraceae. We detected sulfate reducers and observed substantial sulfate reducing rates (between 12 and 423 micromol/dm(3) day(-1)) for most lakes, even at a salinity of 475 g/liter. Enrichments were obtained at salt saturating conditions (4 M Na(+)), using H(2) or volatile fatty acids as electron donors, and an extremely halophilic SRB, strain ASO3-1, was isolated. Furthermore, a high dsr gene copy number of 10(8) cells per ml was detected in a hypersaline lake by qPCR. Our results indicate the presence of diverse and active SRB communities in these extreme ecosystems.  相似文献   

12.
Polyclonal rabbit antisera raised against sulfate-reducing bacteria (SRB) could detect several distinct populations of bacteria in sediment from the German Baltic Sea. The depth distribution of immunoreactive bacteria was determined by an indirect immunofluorescence filter method. Anti-Desulfovibrio desulfuricans DSM 1926 serum showed maximum bacterial numbers at a depth of 18 cm, with a concentration of 60 x 10(6) cells cm-3. With anti-Desulfovibrio baculatus DSM 2555 serum, counts were highest at the same depth, approaching 0.7 x 10(6) cells cm-3. Other significantly smaller populations were observed. Anti-SRBStrain 1 (lactate,vibrio) maxima were at 0 to 4 cm and at 17 to 18 cm. Anti-SRBStrain 2 (lactate,vibrio) serum showed several local maxima. Anti-SRBStrain 3 (lactate,oval) serum detected one single peak at a depth of 10 to 12 cm. Also determined were rates of sulfate reduction, total bacterial counts by acridine orange staining, and the viable counts by dilution series on anaerobic lactate medium. The total bacterial counts were highest (180 x 10(6) cells cm-3) at 3 to 4 cm and dropped to 24 x 10(6) cells cm-3 at 10 to 11 cm but showed additional local maxima reaching 140 x 10(6) cells cm-3 at a depth of 17 to 18 cm. Viable counts probable number) were above 10(5) CFU cm-3 at 0 to 3.6 cm but remained below 10(3) CFU at 7.2 to 18 cm. The sulfate reduction rate was maximal (107 nmol cm-3 day-1) at a depth of 1 to 2 cm, dropped to 10 nmol cm-3 day-1 at 12 to 13 cm, and reached 38 nmol cm-3 day-1 at 17 to 18 cm.  相似文献   

13.
A greatly improved most-probable-number (MPN) method for selective enumeration of sulfate-reducing bacteria (SRB) is described. The method is based on the use of natural media and radiolabeled sulfate (35SO42−). The natural media used consisted of anaerobically prepared sterilized sludge or sediment slurries obtained from sampling sites. The densities of SRB in sediment samples from Kysing Fjord (Denmark) and activated sludge were determined by using a normal MPN (N-MPN) method with synthetic cultivation media and a tracer MPN (T-MPN) method with natural media. The T-MPN method with natural media always yielded significantly higher (100- to 1,000-fold-higher) MPN values than the N-MPN method with synthetic media. The recovery of SRB from environmental samples was investigated by simultaneously measuring sulfate reduction rates (by a 35S-radiotracer method) and bacterial counts by using the T-MPN and N-MPN methods, respectively. When bacterial numbers estimated by the T-MPN method with natural media were used, specific sulfate reduction rates (qSO42−) of 10−14 to 10−13 mol of SO42− cell−1 day−1 were calculated, which is within the range of qSO42− values previously reported for pure cultures of SRB (10−15 to 10−14 mol of SO42− cell−1 day−1). qSO42− values calculated from N-MPN values obtained with synthetic media were several orders of magnitude higher (2 × 10−10 to 7 × 10−10 mol of SO42− cell−1 day−1), showing that viable counts of SRB were seriously underestimated when standard enumeration media were used. Our results demonstrate that the use of natural media results in significant improvements in estimates of the true numbers of SRB in environmental samples.  相似文献   

14.
Hydrocarbon biodegradation in hypersaline environments   总被引:3,自引:0,他引:3  
When mineral oil, hexadecane, and glutamate were added to natural samples of varying salinity (3.3 to 28.4%) from salt evaporation ponds and Great Salt Lake, Utah, rates of metabolism of these compounds decreased as salinity increased. Rate limitations did not appear to relate to low oxygen levels or to the availability of organic nutrients. Some oxidation of l-[U-C]glutamic acid occurred even at extreme salinities, whereas oxidation of [1-C]hexadecane was too low to be detected. Gas chromatographic examination of hexane-soluble components of tar samples from natural seeps at Rozel Point in Great Salt Lake demonstrated no evidence of biological oxidation of isoprenoid alkanes subject to degradation in normal environments. Some hexane-soluble components of the same tar were altered by incubation in a low-salinity enrichment culture inoculated with garden soil. Attempts to enrich for microorganisms in saline waters able to use mineral oil as a sole source of carbon and energy were successful below, but not above, about 20% salinity. This study strongly suggests a general reduction of metabolic rate at extreme salinities and raises doubt about the biodegradation of hydrocarbons in hypersaline environments.  相似文献   

15.
The distribution and activity of sulfate-reducing bacteria (SRB) in the water column of the alpine meromictic Gek-Gel lake were studied. Apart from traditional microbiological methods based on cultivation and on measuring the process rates with radioactive labels, in situ fluorescent hybridization (FISH) was used, which enables identification and quantification without cultivating organisms. The peak rate of sulfate reduction, 0.486 μg S 1−1 day−1, was found in the chemocline at 33 m. The peak SRB number of 2.5×106 cells/ml, as determined by the most probable number method on selective media, was found at the same depth. The phylogenetic affiliation of the SRB, as determined by FISH, revealed the predominance of the Desulfovibrio spp., Desulfobulbus spp., and Desulfoarculus spp./Desulfomonile spp. groups. The numbers of spore-forming Desulfotomaculum spp. increased with depth. The low measured rates of sulfate reduction accompanied by high SRB numbers and the predominance of the groups capable of reducing a wide range of substrates permit us to assume utilization of electron acceptors other than sulfate as the main activity of the SRB in the water column. Original Russian Text ? O.V. Karnachuk, N.V. Pimenov, S.K. Yusupov, Yu.A. Frank, Ya.A. Puhakka, M.V. Ivanov, 2006, published in Mikrobiologiya, 2006, Vol. 75, No. 1, pp. 101–109.  相似文献   

16.
The Great Salt Lake is separated into different salinity regimes by rail and vehicular causeways. Cyanobacterial distributions map salinity, with Aphanothece halophytica proliferating in the highly saline northern arm (27% saline), while Nodularia spumigena occurs in the less saline south (6–10%). We sought to test if cyanobacterial species abundant in the north are competitively excluded from the south, and if southern species are excluded by the high salinity of the north. Autoclaved samples from the north and south sides of each causeway were inoculated with water from each area. Aphanothece, Oscillatoria, Phormidium, and Nodularia were identified in the culture flasks using comparative differential interference contrast, fluorescence, and scanning electron microscopy. Aphanothece halophytica occurred in all inocula, but is suppressed in the presence of Nodularia spumigena. N. spumigena was found only in inocula from the less saline waters in the south, and apparently cannot survive the extremely hypersaline waters of the northern arm. These data suggest that both biotic and abiotic factors influence cyanobacterial distributions in the Great Salt Lake.  相似文献   

17.
The distribution and activity of sulfate-reducing bacteria (SRB) in the water column of the alpine meromictic Gek-Gel lake were studied. Apart from traditional microbiological methods based on cultivation and on measuring the process rates with radioactive labels, in situ fluorescent hybridization (FISH) was used, which enables identification and quantification without cultivating organisms. The peak rate of sulfate reduction, 0.486 microg S/(l day), was found in the chemocline at 33 m. The peak SRB number of 2.5 x 106 cells/ml, as determined by the end-point dilutions method on selective media, was found at the same depth. The phylogenetic position of the SRB, as determined by FISH, revealed the predominance of the Desulfovibrio spp., Desulfobulbus spp., and Desulfoarculus spp./Desulfomonile spp. groups. The numbers of spore-forming Desulfotomaculum spp. increased with depth. The low measured rates of sulfate reduction accompanied with high SRB numbers and the predominance of the groups capable of reducing a wide range of substrates permit us to propose utilization of electron acceptors other than sulfate as the main activity of the SRB in the water column.  相似文献   

18.
Urmia Lake, located in northwest Iran, is an oligotrophic and extremely hypersaline habitat that supports diverse forms of life. Owing to its unique biodiversity and special environmental conditions, Urmia Lake National Park has been designated as one of the biosphere reserves by UNESCO. This study was aimed to characterize basidiomycetous yeasts in hypersaline soils surrounding the Urmia Lake National Park using a polyphasic combination of molecular and physiological data. Soil samples were collected from eight sites in Lake Basin and six islands insides the lake. Yeast strains were identified by sequencing the D1/D2 domains of the 26S rRNA gene. When D1/D2 domain sequencing did not resolve the identity of the species, strain identification was obtained by ITS 1 & 2 sequencing. Twenty-one species belonging to the genera Cystobasidium, Holtermanniella, Naganishia, Rhodotorula, Saitozyma, Solicoccozyma, Tausonia, Vanrija, and Vishniacozyma were identified. Solicoccozyma aeria represented the dominant species. The ability of isolates to grow at 10 and 15 % of NaCl was checked; about two-thirds of the strains grew at 10 %, while about 13 % of the isolates grew in medium with 15 % NaCl. this study is the first study on the culturable yeast diversity in hypersaline soils surrounding an Asian lake.  相似文献   

19.
We investigated the phylogenetic diversity and community structure of members of the halophilic Archaea (order Halobacteriales) in five distinct sediment habitats that experience various levels of salinity and salinity fluctuations (sediments from Great Salt Plains and Zodletone Spring in Oklahoma, mangrove tree sediments in Puerto Rico, sediment underneath salt heaps in a salt-processing plant, and sediments from the Great Salt Lake northern arm) using Halobacteriales-specific 16S rRNA gene primers. Extremely diverse Halobacteriales communities were encountered in all habitats, with 27 (Zodletone) to 37 (mangrove) different genera identified per sample, out of the currently described 38 Halobacteriales genera. With the exception of Zodletone Spring, where the prevalent geochemical conditions are extremely inhospitable to Halobacteriales survival, habitats with fluctuating salinity levels were more diverse than permanently saline habitats. Sequences affiliated with the recently described genera Halogranum, Halolamina, Haloplanus, Halosarcina, and Halorientalis, in addition to the genera Halorubrum, Haloferax, and Halobacterium, were among the most abundant and ubiquitous genera, suggesting a wide distribution of these poorly studied genera in saline sediments. The Halobacteriales sediment communities analyzed in this study were more diverse than and completely distinct from communities from typical hypersaline water bodies. Finally, sequences unaffiliated with currently described genera represented a small fraction of the total Halobacteriales communities, ranging between 2.5% (Zodletone) to 7.0% (mangrove and Great Salt Lake). However, these novel sequences were characterized by remarkably high levels of alpha and beta diversities, suggesting the presence of an enormous, yet-untapped supply of novel Halobacteriales genera within the rare biosphere of various saline ecosystems.  相似文献   

20.
Sulfate-reducing bacteria (SRB) are thought to be actively involved in the cycling of sulfur in acidic mine tailings. However, most studies have used circumstantial evidence to assess microbial sulfate activity in such environments. In order to fully ascertain the role of sulfate-reducing bacteria (SRB) in sulfur cycling in acidic mine tailings, we measured sulfate reduction rates, sulfur isotopic composition of reduced sulfide fractions, porewaters and solid-phase geochemistry and SRB populations in four different Cu-Zn tailings located in Timmins, Ontario, Canada. The tailings were sampled in the summer and in the spring, shortly after snowmelt. The results first indicate that all four sites showed very high sulfate reduction rates in the summer (~100–1000 nmol cm? 3d?1), which corresponded to the presence of sulfide in the porewaters and to high SRB populations. In some of the sites, zones of microbial sulfate reduction also corresponded to a decline of organic carbon and to an apparent pyrite (with slightly negative δ34S values) enrichment around the same depth. Microbial sulfate reduction was also important in permanently acidic (pH 2–3) mine tailings sites, suggesting that SRB can be active under very acidic conditions. Secondly, the results showed that microbial sulfate reduction was greatly reduced in the spring, suggesting that temperature might be a key factor in the activity of SRB. However, a closer look at the results indicated that temperature was not the sole factor and that acidic conditions and limited substrate availability in the spring appeared to be important as well in limiting microbial sulfate par reduction in sulfidic mine tailings. Finally, the results indicate that sulfur undergoes rapid cycling throughout the year and that microbial sulfate reduction and metal sulfide precipitation do not appear to be a permanent sink for metals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号