首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The preferential sensitivity of hypoxic cells to nitroheteroxycles is thought to result from the actions of toxic intermediates of drug reduction produced under hypoxic conditions. However, a lack of oxygen also alters the biochemical state of the cell and may indirectly enhance the sensitivity, of hypoxic cells to these drugs. This hypothesis was tested by 'conditioning' mouse L-929 cells in oxygen-free buffer, then exposing the cells to nitrofurazone under both aerobic and anaerobic conditions. After conditioning, the rate of cell inactivation by nitrofurazone was equal in air or nitrogen-equilibrated buffer. Pretreatment of cells in 1 muM rotenone or 0.5 mM 2,4-dinitrophenol for one hour under aerobic conditions increased the sensitivity of the cells to nitrofurazone under aerobic conditions. Similar rates of cell killing were obtained when mouse L-cells were heated in buffer for 30 min at 43 degrees before incubation with nitrofurazone in either air or nitrogen. Also, incubation of cells with nitrofurazone in the presence of 0.1% glucose, or at a cell density less than 10(5) cells/ml significantly enhanced cell killing, especially under aerobic conditions. Thus, the intracellular state of the cell, manipulated by altering the cellular environment, influenced the cellular sensitivity to nitrofurazone. Similar results were not, however, obtained with the nitroimidazoles, dimetronidazole and misonidazole; pretreatment for 2 h in buffer under anaerobic conditions did not increase the sensitivity of L cells to subsequent drug treatment in air-equilibrated buffer.  相似文献   

2.
DEHP: genotoxicity and potential carcinogenic mechanisms-a review   总被引:2,自引:0,他引:2  
Di(ethylhexyl) phthalate (DEHP) is a manufactured chemical commonly added to plastics: it is a ubiquitous environmental contaminant to which humans are exposed through multiple routes. DEHP is a rodent carcinogen with an extensive data base on genotoxicity and related effects spanning several decades. Although DEHP has been reported to be negative in most non-mammalian in vitro mutation assays, most studies were performed under conditions of concurrent cytotoxicity, precipitation, or irrelevant metabolic activation. However, a number of in vitro rodent tissue assays have reported DEHP to be positive for effects on chromosomes, spindle, and mitosis. A robust database shows that DEHP increases transformation and inhibits apoptosis in Syrian hamster embryo cells. In a transgenic mouse assay, in vivo DEHP exposure increased the mutation frequency only in the liver, which is the target organ for cancer. In vitro exposure of human cells or tissues to DEHP induced DNA damage; altered mitotic rate, apoptosis, and cell proliferation; increased proliferation, tumor mobility, and invasiveness of tumor cell lines; and activated a number of nuclear receptors. DEHP has been shown to be an agonist for CAR2, a novel constitutive androstane receptor occurring only in humans. Environmental exposures of humans to DEHP have been associated with DNA damage. After taking into account study context and relevant issues affecting interpretation, in vitro studies reported that a similar DEHP concentration range induced both mutagenic and non-mutagenic effects in human tissues and, using a much more limited rodent database, transformation of embryonic rodent tissues. The human and rodent data suggest that DEHP induces cancer through multiple molecular signals, including DNA damage. The analyses presented here may provide guidance for similar data sets used in structure-activity relationships, computational-toxicology extrapolations, and attempts to extrapolate in vitro results to predict in vivo effects for hazard characterization.  相似文献   

3.
Ehrlich ascites tumour cells were labelled for DNA fibre autoradiography within the peritoneal cavity of a tumour-bearing mouse. The generation and the evaluation of the autoradiographic patterns is described and discussed. To study possible changes of the autoradiographic patterns during a natural S phase the labelling was performed in the mouse or in culture with asynchronous cells which were afterwards separated into synchronous subpopulations by zonal centrifugation. The subpopulations obtained were characterized by flow cytofluorometry in connection with the thymidine labelling index. We compared the DNA fibre autoradiographic patterns of several synchronous and asynchronous cell populations growing in the mouse or under different conditions in culture: The replicon size distributions of all populations examined were virtually the same. The fork movement rate was found to depend mainly on the metabolic condition of the cells. In culture it was significantly slower than in the mouse although a shortened S phase and therewith an increased DNA synthesis rate occurred. During a natural S phase it increased slightly, at most, while the DNA synthesis rate was considerably enhanced at the end of S. The changes in the rate of total DNA synthesis cannot account for the changes in the rate of chain growth. We conclude that the DNA synthesis rate is regulated almost exclusively by changing the replicon initiation frequency, while the fork movement rate is limited by the actual metabolic condition of the cells.  相似文献   

4.
We have used alkaline elution to study the repair of X-ray-induced DNA strand breaks in vivo in two fibrosarcoma tumors and in several normal mouse tissues after whole-body irradiation of mice with 10-12.5 Gy of X rays. Both tumors were found to repair damage significantly faster and to a greater extent than any of the normal tissues, so that by 2 hr after irradiation the level of damage in both tumors was indistinguishable from unirradiated control values. Of the normal tissues studied, liver repaired the fastest. The kinetics for the other normal tissues were essentially the same, showing an appreciable level (7-16%) of unrepaired lesions still evident after 2 hr. Even as late as 12 hr there was a significant amount of residual damage in some tissues, with testes and spleen showing the greatest level (ca. 15%). The repair kinetics for each tissue were not appropriately described by a sum of two exponentials. In contrast, previously reported data for many homogeneous mammalian cell systems in vitro and for some tissues in vivo have shown biphasic repair kinetics. This difference may be related to heterogeneity of both cell type and environment within the tissue populations used in the investigation. The faster repair of DNA strand breaks by tumor cells relative to cells from normal tissues was not readily explainable in terms of such radiobiological parameters as overall tissue oxygenation or sulfhydryl content. Rather, it appears that the degree of differentiation of the cells within the tissue population may be a major determinant of repair proficiency. Based on a model incorporating a competition between repair and fixation of sublethal lesions, these data are consistent with the idea that tumor cells may have a repair, and hence survival, advantage over normal cells in response to ionizing radiation.  相似文献   

5.
Abstract— Tracer experiments using [3H]thymidine have shown that a large proportion of the DNA synthesized in control and scrapie-affected mouse brain is metabolically unstable. Although the turnover of mitochondrial DNA contributed to the loss of radioactivity from whole brain, it has been shown that 70 per cent of the labelled nuclear DNA was removed between 1 and 21 days after injecting the isotopic precursor. Observations on developing mouse brain, where the rate of DNA synthesis is far higher than that in adult brain, also revealed the existence of metabolically unstable DNA. Similar studies on developing and adult brain using [14C]thymidine indicated that most of the radioactivity lost in vivo was not due to radiation damage to newly labelled DNA molecules. Hydroxyapatite chromatography of heat denatured and renatured DNA from adult brain showed that the rates of turnover of the poorly, moderately and highly reiterated species of nuclear DNA were similar. The results of some dissection experiments have further shown that the observed breakdown of DNA in adult brain was not specifically associated with the turnover of subependymal cells. It is suggested that a metabolically labile fraction of nuclear DNA is present in developing and adult mouse brain and that the amount of tracer incorporated into this fraction is increased in mice infected with scrapie.  相似文献   

6.
Nick translation of mammalian DNA   总被引:8,自引:0,他引:8  
The labelling of mouse DNA by nick translation with DNA polymerase I has been investigated with respect to the time of incubation, requirement for DNAase I, size of the product, and uniformity of labelling, and the hybridisability and stability of the resultant labelled probes. Total mouse DNA and reannealed unique mouse DNA sequences can be labelled by nick translation in the presence of [3H]dCTP and [3H]TTP to a specific activity of 7 . 10(6)--20 . 10(6) cpm/microgram DNA. The hybridisation characteristics of nick-translated whole DNA with an excess of unlabelled mouse-embryo driver DNA indicates that no preferential labelling of repetitive or unique DNA sequence classes occurs. In addition, the proportion of unique DNA sequences labelled by nick translation which hybridises with polyadenylated nuclear RNA from Friend cells is the same as that of unique DNA sequences isolated from cells labelled with [3H]thymidine in vivo, indicating that few (if any) of the unique DNA sequences are unrepresented in the nick-translated probe. Probes which contain [3H]dTMP are unstable, and show a considerable reduction in hybridisability over a period of 6 months at --20 degrees C. The decrease is accompanied by an increase in the number of mismatched sites in duplexes containing the labelled probe (as shown by thermal stability measurements of hybrid molecules) and a decrease in the rate of hybridisation of the probe with total mouse DNA. In contrast, DNA which is labelled with [3H]dCMP alone is stable, and does not show any decrease in hybridisability on prolonged storage.  相似文献   

7.
Capacity for excision repair of ultraviolet radiation damage to DNA in primary cultures of mouse embryonic cells is dependent on the gestational stage and the duration of in vitro growth. Fibroblasts of mouse embryos at 13–15 days gestation excise thymine dimers and perform unscheduled DNA synthesis after ultraviolet radiation. After several successive transfers in vitro, concomitantly with a pronounced reduction in growth rate, ability for excision repair decreases. DNA repair capacity is impaired in cells obtained from embryos at late stages of development (17–19 days gestation). Experiments with epithelial kidney cells from 5-day-old mice indicate that capacity for excision repair may depend on cell type and its origin.  相似文献   

8.
The question was investigated of whether for crypt epithelia of the jejunum of the mouse all cells labelled after a single injection of 3H-TdR subsequently divide or whether cells exist in the crypt which synthesize metabolic DNA and, therefore, do not undergo division after labelling.
A double labelling experiment was performed with a first injection of 3H-TdR followed 1 hr later by an injection of 14C-TdR. Then from double emulsion autoradiographs of isolated squashed crypts the number of 3H-only, 14C-only and double labelled cells and mitoses were counted.
The double labelling produced a narrow, 1 hr wide sub-population of 3H-only labelled cells. This subpopulation of S cells completed its division before labelled cells were lost from the crypts by migration onto the villi. The results showed that this subpopulation of 3H-only cells completely doubled within 3 hr and then remained constant through 6 hr. From this result it was concluded that every cell labelled after a single injection of 3H-TdR divides.
From the same autoradiographs the flow rate through the end of mitosis was measured. From the flow rate and the mitotic index a mitotic duration of 0·5 hr was determined. The agreement of this measured mitotic time with the value calculated from the labelling index, mitotic index and S duration is also strong evidence that every labelled cell divides.
Both experiments show that the intestinal crypt does not contain cells synthesizing metabolic DNA.  相似文献   

9.
The cytokinesis-block micronucleus test was performed using L5178Y mouse lymphoma cells to ascertain whether or not standard (caffeinated) instant coffee, the commonly consumed polyphenolic beverage with antioxidant activity can protect against chromosomal damage induced by the directly acting agents N-methyl-N-nitro-N-nitrosoguanidine (MNNG), mitomycin C (MMC), methyl methanesulfonate (MMS) and gamma radiation. Our results demonstrated significant reductions in the in vitro genotoxic effects of MNNG, MMC, and MMS following co-treatment of mouse lymphoma cells with standard instant coffee. Subsequently, the comet assay was carried out to assess the effect of coffee co-treatment on the level of DNA damage induced by MMS in mouse lymphoma cells. The results demonstrated a significant reduction in MMS-induced DNA damage following co-treatment with standard instant coffee. Protective effects were observed in mouse lymphoma cells which were treated with coffee immediately after exposure to gamma radiation (1 and 2 Gy). Another experiment showed protection when the mammalian cells were irradiated (0.5 and 1 Gy) midway (at 2 h) during a 4 h coffee treatment. However, the protective effect against the lower dose (0.5 Gy) was not significant. In addition we assessed the modulatory effect of coffee on MNNG-induced apoptotic frequency by flow cytometry. The results revealed only a minor influence of coffee on the frequency of apoptotic cells induced by the test compounds, rendering an increase in sensitivity for apoptosis as a reason for the reduced genomic damage an unlikely or at least incomplete explanation.  相似文献   

10.
1. In this study, DNA from haemolymph cells of Mytilus galloprovincialis Lam., as well as from L1210 (murine leukemia) mouse cells was investigated utilizing the technique of the alkaline unwinding of the double stranded DNA molecule. 2. The data show that DNA of haemolymph cells from the marine invertebrate has an unwinding time and, therefore, a molecular weight considerably lower than that of DNA of mammalian cells. 3. The exposure of the cells from mussel haemolymph and from mouse L1210 to a genotoxic compound such as dimethylsulfate results in DNA damage and consequently in a reduction of the unwinding time. 4. These results suggest that the fluorimetric DNA unwinding assay can be used in studies concerning the damage of DNA of marine organisms induced by genotoxic compounds or environmental factors.  相似文献   

11.
Multiple endogenous mouse mammary tumour virus (MMTV) proviral genes are present at different chromosomal locations in inbred mouse strains. Proviral DNA methylation is location and tissue specific. The methylation patterns are stably inherited and appear to be conferred upon the viral DNA by the flanking mouse genomic DNA. In transformed cells, either mammary carcinoma cells, or cells immortalized by SV40 in vitro, the stable pattern of methylation is lost. Although hypomethylation of proviral genes, both in normal and in transformed tissue, accompanies MMTV-specific RNA expression, it is also observed in non-expressing tissues.  相似文献   

12.
The role of DNA damage repair in aging of adult stem cells   总被引:3,自引:0,他引:3  
DNA repair maintains genomic stability and the loss of DNA repair capacity results in genetic instability that may lead to a decline of cellular function. Adult stem cells are extremely important in the long-term maintenance of tissues throughout life. They regenerate and renew tissues in response to damage and replace senescent terminally differentiated cells that no longer function. Oxidative stress, toxic byproducts, reduced mitochondrial function and external exposures all damage DNA through base modification or mis-incorporation and result in DNA damage. As in most cells, this damage may limit the survival of the stem cell population affecting tissue regeneration and even longevity. This review examines the hypothesis that an age-related loss of DNA damage repair pathways poses a significant threat to stem cell survival and longevity. Normal stem cells appear to have strict control of gene expression and DNA replication whereas stem cells with loss of DNA repair may have altered patterns of proliferation, quiescence and differentiation. Furthermore, stem cells with loss of DNA repair may be susceptible to malignant transformation either directly or through the emergence of cancer-prone stem cells. Human diseases and animal models of loss of DNA repair provide longitudinal analysis of DNA repair processes in stem cell populations and may provide links to the physiology of aging.  相似文献   

13.
Phenolphthalein induces tumors in rodents but because it is negative in assays for mutation in Salmonella and in mammalian cells, for DNA adducts and for DNA strand breaks, its primary mechanism does not seem to be DNA damage. Chromosome aberration (Ab) induction by phenolphthalein in vitro is associated with marked cytotoxicity. At very high doses, phenolphthalein induces weak increases in micronuclei (MN) in mouse bone marrow; a larger response is seen with chronic treatment. All this suggests genotoxicity is a secondary effect that may not occur at lower doses. In heterozygous TSG-p53((R)) mice, phenolphthalein induces lymphomas and also MN, many with kinetochores (K), implying chromosome loss. Induction of aneuploidy would be compatible with the loss of the normal p53 gene seen in the lymphomas.Here we address some of the postulated mechanisms of genotoxicity in vitro, including metabolic activation, inhibition of thymidylate synthetase, cytotoxicity, oxidative stress, DNA damage and aneuploidy. We show clearly that phenolphthalein does not require metabolic activation by S9 to induce Abs. Inhibition of thymidylate synthetase is an unlikely mechanism, since thymidine did not prevent Ab induction by phenolphthalein. Phenolphthalein dramatically inhibited DNA synthesis, in common with many non-DNA reactive chemicals that induce Abs at cytotoxic doses. Phenolphthalein strongly enhances levels of intracellular oxygen radicals (ROS). The radical scavenger DMSO suppresses phenolphthalein-induced toxicity and Abs whereas H(2)O(2) potentiates them, suggesting a role for peroxidative activation. Phenolphthalein did not produce DNA strand breaks in rat hepatocytes or DNA adducts in Chinese hamster ovary (CHO) cells. All the evidence points to an indirect mechanism for Abs that is unlikely to operate at low doses of phenolphthalein. We also found that phenolphthalein induces mitotic abnormalities and MN with kinetochores in vitro. These are also enhanced by H(2)O(2) and suppressed by DMSO. Our findings suggest that induction of Abs in vitro is a high-dose effect in oxidatively stressed cells and may thus have a threshold. There may be more than one mechanism operating in vitro and in vivo, possibly indirect genotoxicity at high doses and also chromosome loss, both of which would likely have a threshold.  相似文献   

14.
The percentages of labelled lymphocytes in smear preparations of mouse thymus were higher than those in similar preparations of mesenteric lymph nodes with either generally labelled tritiated deoxycytidine, [3H]CdR, or tritiated thymidine, [3H]TdR. Lymphocytes in the thymus cortex and in germinal centres of mesenteric lymph nodes were intensely labelled with [3H]CdR, whereas with [3H]TdR lymphocytes in the peripheral region of thymus and medullary cords of mesenteric lymph nodes were heavily labelled. The majority of lymphocytes in thymic cortex and germinal centres of mesenteric lymph nodes were labelled weakly with [3H]TdR. Thus, labelling patterns with [3H]CdR differed from those with [3H]TdR in lymphoid tissues of the mouse. Mouse lymphocytes can utilize [3H]CdR as a precursor molecule for cytosine and thymine in DNA. The ratio of radioactivity of thymine to that of cytosine was measured biochemically in DNA extracted from lymphocytes labelled with [3H]CdR. This radioactivity ratio in thymus was higher than that in mesenteric lymph nodes. These results suggest that the metabolic activities of utilizing CdR for DNA synthesis differ within lymphocyte populations in various lymphoid tissues in the mouse.  相似文献   

15.
1. Administration of 10mug. of colchicine/pupa of the beetle Tenebrio molitor L. arrests its differentiation, the pupa remaining alive for 2-3 weeks. 2. The same concentration of colchicine inhibits DNA synthesis and stimulates RNA synthesis (as shown by incorporation into the nucleic acids of labelled adenine, labelled uridine and labelled thymidine). The effects of colchicine on nucleic acid metabolism are first detected 3 days after its administration to first-day pupae. 3. No effects of colchicine are seen on [1-(14)C]glycine incorporation into protein in vivo. 4. Relatively high concentrations of colchicine (e.g. 10mm) suppress incorporation of [8-(14)C]adenine into RNA in dorsal abdominal wall in vitro. Such concentrations have no effect on its incorporation into acid-soluble nucleotides. 5. Colchicine (1mm) suppresses incorporation of [8-(14)C]adenine into DNA to a greater extent than into RNA in various mammalian tissues in vitro (e.g. rat spleen, regenerating rat liver, rat embryo, guinea-pig intestinal mucosa, Ehrlich ascites cells). Colchicine (1mm) has no effect on the rate of respiration of, or on incorporation of radioactivity into acid-soluble nucleotides in, the mammalian tissues tested. 6. Further evidence indicates complex-formation between colchicine and DNA, and it is suggested that the effect of colchicine in suppressing DNA synthesis is due to its combination with the DNA primer (template).  相似文献   

16.
Supv3L1 is a conserved and ubiquitously expressed helicase found in numerous tissues and cell types of many species. In human cells, SUPV3L1 was shown to suppress apoptotic death and sister chromatid exchange, and impair mitochondrial RNA metabolism and protein synthesis. In vitro experiments revealed binding of SUPV3L1 to BLM and WRN proteins, suggesting a role in genome maintenance processes. Disruption of the Supv3L1 gene in the mouse has been reported to be embryonic lethal at early developmental stages. We generated a conditional mouse in which the phenotypes associated with the removal of exon 14 can be tested in a variety of tissues. Disruption mediated by a Mx1 promoter-driven Cre displayed a postnatal growth delay, reduced lifespan, loss of adipose tissue and muscle mass, and severe skin abnormalities manifesting as ichthyosis, thickening of the epidermis, and atrophy of the dermis and subcutaneous tissue. Using a tamoxifen-activatable Esr1/Cre driver, Supv3L1 disruption resulted in growth retardation and aging phenotypes, including loss of adipose tissue and muscle mass, kyphosis, cachexia, and premature death. Many of the abnormalities seen in the Mx1-Cre mice, such as hyperkeratosis characterized by profound scaling of feet and tail, could also be detected in tamoxifen-inducible Cre mice. Conditional ablation of Supv3L1 in keratinocytes confirmed atrophic changes in the skin and ichthyosis-like changes. Together, these data indicate that Supv3L1 is important for the maintenance of the skin barrier. In addition, loss of Supv3L1 function leads to accelerated aging-like phenotypes.  相似文献   

17.
Artemisia annua L. (also called qinghao) has been well known as a source of antimalarial drug artemisinins. In addition, the herb was reported to have in vitro antioxidative activity. The present study investigated the protective effect of aqueous ethanol extract of Qinghao (AA extract) against D-galactose-induced oxidative stress in C57BL/6J mice. Feeding AA extract-containing diet lowered serum levels of malondialdehyde and 8-OH-dG that are biomarkers for lipid peroxidation and DNA damage, respectively. Furthermore, AA extract feeding enhanced the activity of NQO1, a typical antioxidant marker enzyme, in tissues such as kidney, stomach, small intestine, and large intestine. In conclusion, AA extract was found to have antioxidative activity in mouse model.  相似文献   

18.
19.
Earlier work showed that Escherichia coli contains at least two enzymes which reduce nitrofurazone and other nitrofuran derivatives. One of these enzymes is lacking in some nitrofurazone-resistant mutant strains. We now report that there are three separable nitrofuran reductases in this organism: reductase I (mol. wt. approximately 50 000, insensitive to O2), reductase IIa (mol. wt. approximately 120 000, inhibited by oxygen), reductase IIb (mol. wt. approximately 700 000, inhibited by O2). Unstable metabolites formed during the reduction of nitrofurazone by preparations containing reductases IIa and IIb produce breaks in DNA in vitro. In vivo experiments with nitrofurazone-resistant strains, which lack reductase II but contain reductases IIa and IIb, demonstrated that lethality, mutation, and DNA breakage are all greatly increased when cultures are incubated under anaerobic conditions, i.e., conditions such that reductase II is active. These results provide further evidence for the importance of reductive activation of nitrofurazone.  相似文献   

20.
Ischemic and traumatic brain injury is associated with increased risk for death and disability. The inhibition of penumbral tissue damage has been recognized as a target for therapeutic intervention, because cellular injury evolves progressively upon ATP-depletion and loss of ion homeostasis. In patients, thiopental is used to treat refractory intracranial hypertension by reducing intracranial pressure and cerebral metabolic demands; however, therapeutic benefits of thiopental-treatment are controversially discussed. In the present study we identified fundamental neuroprotective molecular mechanisms mediated by thiopental. Here we show that thiopental inhibits global protein synthesis, which preserves the intracellular energy metabolite content in oxygen-deprived human neuronal SK-N-SH cells or primary mouse cortical neurons and thus ameliorates hypoxic cell damage. Sensitivity to hypoxic damage was restored by pharmacologic repression of eukaryotic elongation factor 2 kinase. Translational inhibition was mediated by calcium influx, activation of the AMP-activated protein kinase, and inhibitory phosphorylation of eukaryotic elongation factor 2. Our results explain the reduction of cerebral metabolic demands during thiopental treatment. Cycloheximide also protected neurons from hypoxic cell death, indicating that translational inhibitors may generally reduce secondary brain injury. In conclusion our study demonstrates that therapeutic inhibition of global protein synthesis protects neurons from hypoxic damage by preserving energy balance in oxygen-deprived cells. Molecular evidence for thiopental-mediated neuroprotection favours a positive clinical evaluation of barbiturate treatment. The chemical structure of thiopental could represent a pharmacologically relevant scaffold for the development of new organ-protective compounds to ameliorate tissue damage when oxygen availability is limited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号