首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To determine the composition of Clostridium in the feces of infants approximately 30 days old, we have developed a detection and quantification method of Clostridium paraputrificum, Clostridium perfringens, Clostridium tertium, and Clostridium difficile by species-specific primers. C. perfringens and C. difficile were detected in four fecal samples from 22 infants (18.2%), whereas C. paraputrificum was detected in three samples (16.7%). C. tertium was detected in two samples (9.1%). Moreover, the occurrences of the four species in bottle-and mix-fed infants were relatively higher than in breast-fed infants (P< 0.05). Subsequently, positive samples detected by nested PCR (polymerase chain reaction) were subjected to realtime PCR. The results showed that the numbers of C. paraputrificum, C. perfringens, C. tertium, and C. difficile ranged from about 1x10(5) to 3x10(7) cells/g wet feces.  相似文献   

2.
Clostridium tertium has been increasingly reported as a human pathogen. This organism is an aerotolerant Gram-positive rod that is often mistaken for other organisms, such as Lactobacillus or Bacillus species. We describe a case of a patient with a history of intravenous drug use presenting to UCLA-Olive View Medical Center with gas gangrene of both upper extremities. The organism was initially misidentified as a Lactobacillus species on aerobic culture plates. However, terminal spore formation was detected in this isolate on a sub-cultured anaerobic culture plate and this isolate was confirmed as C. tertium biochemically and genetically by 16S rDNA sequencing. Additional DNA cloning libraries made from the formalin-fixed specimen revealed Peptoniphilus species and an uncultured Clostridium clone, but not C. tertium. C. tertium might be a causative organism of gas-producing myonecrosis but such an association has never been described. Clinicians should be aware of the phenomenon of aerotolerance of some anaerobes and need to clarify the identification of organisms if the clinical picture does not fit the isolated organism.  相似文献   

3.
The addition of sodium acetate to chemically defined MP2 medium was found to increase and stabilize solvent production and also increase glucose utilization by Clostridium beijerinckii NCIMB 8052. RNA and enzyme analyses indicated that coenzyme A (CoA) transferase was highly expressed and has higher activity in C. beijerinckii NCIMB 8052 grown in MP2 medium containing added sodium acetate than in the microorganism grown without sodium acetate. RNA analysis suggested the existence of a sol operon and confirmed the presence of a ptb-buk operon in C. beijerinckii NCIMB 8052. In addition to CoA transferase, C. beijerinckii NCIMB 8052 grown in MP2 medium containing added acetate demonstrated higher acetate kinase- and butyrate kinase-specific activity than when the culture was grown in MP2 medium containing no added acetate. Southern blot analysis with chromosomal DNA isolated from solventogenic and degenerated C. beijerinckii NCIMB 8052 indicated that C. beijerinckii NCIMB 8052 strain degeneration does not involve loss of the CoA transferase genes. The addition of acetate to MP2 medium may induce the expression of the sol operon, which ensures solvent production and prevents strain degeneration in C. beijerinckii NCIMB 8052.  相似文献   

4.
Dissimilatory nitrate reduction in Clostridium tertium.   总被引:1,自引:0,他引:1  
Fermentation balance studies were carried out on Clostridium tertium grown with and without nitrate in the medium. Nitrate reduction increased the efficiency of energy produced from glucose by permitting the utilization of additional sites of substrate level phosphorylation. The effect was even more dramatic in C. tertium than in C. perfringens, with increased cell yields of about 30% being observed in the former compared with 20% in the latter. Unlike C. perfringens, C. tertium responded to the presence of nitrate in the medium with an increased growth rate. A slight increase in the Y ATP of these cultures was also observed, and quantitatively, this appeared to be consistent with the prediction of Stouthammer and Bettenhaussen that Y ATP will vary with the growth rate. Thus, C. tertium, like C. perfringens, was able to use nitrate as an electron acceptor in conjunction with its energy metabolism, suggesting that this may be widespread among the nitrate-reducing anaerobes.  相似文献   

5.
Clostridial strain degeneration   总被引:2,自引:0,他引:2  
Abstract: Strain degeneration, the loss of the capacity to produce solvents and form spores, typically occurs when Clostridium acetobutylicum and related clostridia are repeatedly subcultured in batch culture or grown in continuous culture, as opposed to being grown from germinated, heat-treated spores. Several mechanisms for degeneration have been identified thus far. (i) Degeneration can be caused by excessive acidification of the culture during exponential growth. We present data interpreted to mean that C. beijerinckii (formerly C. acetobutylicum ) NCIMB 8052 cells ferment glucose to acetic and butyric acids at an uncontrolled rate, so that, during rapid growth, the rate of acid production can exceed the rate of induction of the solventogenic pathway enzymes. As a result, the medium pH drops to bactericical levels, and the cells cannot switch to solventogenesis and sporulation. The clostridia seem to be poised either to produce excess acids, or to initiate solventogenesis, depending on small differences in the rates of growth. (ii) We have isolated transposon-insertion mutants of C. beijerinckii NCIMB 8052 that are resistant to degeneration, suggesting the involvement of a regulatory region of the clostridial chromosome. (iii) Involvement of a global regulatory gene has been inferred in C. beijerinckii NCIMB 8052 which degenerates irreversibly in chemostat culture. (iv) Impairment of butanol formation due to a defect in NADH generation has been reported in an oligosporogenous strain which can revert to the non-degenerate phenotype. (v) In continuous culture, degenerate cells may be selected because they continue to divide, while the non-degenerate cells stop dividing and start differentiating.  相似文献   

6.
Genetic systems development in the clostridia   总被引:1,自引:0,他引:1  
Abstract: This review describes recent developments in the genetic manipulation of the solventogenic clostridia, Clostridium acetobutylicum and C. beijerinckii . It is to be noted that our laboratory stock of C. acetobutylicum ATCC 824, which was obtained from the American Type Culture Collection, has recently been re-identified as C. beijerinckii NCIMB 8052 based on DNA similarity studies using the S1 nuclease method (personal communication, Dr. Jiann-Shin Chen, Virginia Polytechnic Institute and State University). Reference to our laboratory 824 culture has been changed to C. beijerinckii NCIMB 8052 throughout this paper in order to be consistent with this finding. The focus of this review specifically involves the characterization of an M13-like genetic system for the clostridia based on the pCAK1 phagemid, as well as preliminary work on development of a plasmid-based vector based on the indigenous pDM11 plasmid recovered from C. acetobutylicum NCIB 6443. The construction of a C. beijerinckii strain with amplified endoglucanase activity was achieved by inserting the engB gene from C. cellulovorans into C. beijerinckii . The successful expression of a heterologous engB gene from C. cellulovorans in C. beijerinckii NCIMB 8052 has important industrial significance for the eventual utilization of cellulose by this acetone-butanol-ethanol fermentation microorganism.  相似文献   

7.
The suitability of a species identification technique based on PCR analysis of 16S-23S rRNA spacer region (SR) polymorphism for human intestinal Clostridium species was evaluated. This SR-PCR based technique is highly reproducible and successfully differentiated the strains tested, which included 17 ATCC type strains of Clostridium and 152 human stool Clostridium isolates, at the species or intraspecies level. Ninety-eight of 152 stool isolates, including C. bifermentans, C. butyricum, C. cadaveris, C. orbiscindens, C. paraputrificum, C. pefringens, C. ramosum, C. scindens, C. spiroforme, C. symbiosum and C. tertium, were identified to species level by SR-PCR patterns that were identical to those of their corresponding ATCC type strains. The other 54 stool isolates distributed among ten SR-PCR patterns that are unique and possibly represent ten novel Clostridium species or subspecies. The species identification obtained by SR-PCR pattern analysis completely agreed with that obtained by 16S rRNA sequencing, and led to identification that clearly differed from that obtained by cellular fatty acid analysis for 23/152 strains (15%). These results indicate that SR-PCR provides an accurate and rapid molecular method for the identification of human intestinal Clostridium species.  相似文献   

8.
Clostridium beijerinckii NCIMB 8052 parent strain and BA101, a hypersolvent-producing mutant, fermented 6% (w/v) glucose, maltodextrin, maltose or xylose in a medium containing corn steep water (CSW) to produce butanol. Batch fermentation in an unoptimized 6% (w/v) maltodextrin plus 1.6% solids CSW medium demonstrated that C. beijerinckii NCIMB 8052 and BA101 produced 10.7 g butanol/L and 14.5 g butanol/L, respectively.  相似文献   

9.
Addition of sodium acetate to chemically defined MP2 medium was found to increase and stabilize solvent production by Clostridium beijerinckii BA101, a solvent-hyperproducing mutant derived from C. beijerinckii NCIMB 8052. C. beijerinckii BA101 demonstrated a greater increase in solvent production than C. beijerinckii NCIMB 8052 when sodium acetate was added to MP2 medium. In 1-l batch fermentations, C. beijerinckii BA101 produced 32.6 g/l total solvents, with butanol at 20.9 g/l, when grown in MP2 medium containing 60 mM sodium acetate and 8% glucose. To our knowledge, these values represent the highest solvent and butanol concentrations produced by a solventogenic Clostridium strain when grown in batch culture. Received: 29 September 1998 / Received revision: 13 February 1999 / Accepted: 26 February 1999  相似文献   

10.
Dramatically elevated levels of butanol and acetone resulted in higher butanol and total solvent yields for hyperamylolytic Clostridium beijerinckii BA101 relative to the NCIMB 8052 parent strain grown in semidefined P2 medium containing either 6% glucose or STAR-DRI 5 maltodextrin. C. beijerinckii BA101 consistently produced on the order of 19 g of butanol per liter in 20-liter batch fermentations. This represents a greater than 100% increase in butanol concentration by the BA101 strain compared to the parent NCIMB 8052 strain. The kinetics of butanol production over time also indicate a more rapid rate of butanol production by BA101 in semidefined P2 medium containing glucose or maltodextrin. The lower levels of butyric and acetic acids produced over the course of the fermentation carried out by BA101 are consistent with an enhanced capacity for uptake and recycling of these acids. C. beijerinckii BA101 appears to more completely utilize carbohydrate compared to the 8052 strain. Carbon balance following fermentation by C. beijerinckii 8052 and BA101 indicates that sufficient carbon is available for the twofold increase in butanol concentration observed during BA101 fermentations. C. beijerinckii BA101 also has superior solvent production capacity during continuous culture fermentation in P2 medium containing 6% glucose. Volumetric solvent yields of 0.78 and 1.74 g/liter/h for BA101 and 0.34 and 1.17 g/liter/h for NCIMB 8052 were obtained at dilution rates of 0.05 and 0.20 h(sup-1), respectively. No drift towards acid synthesis (strain degeneration) was observed for up to 200 h (d = 0.05 h(sup-1)) and 100 h (d = 0.20 h(sup-1)).  相似文献   

11.
Fermentation of liquid hot water (LHW) pretreated Miscanthus giganteus (MG) by Clostridium beijerinckii NCIMB 8052 was investigated towards understanding the toxicity of lignocellulose-derived inhibitors to solventogenic Clostridium species vis-à-vis butanol production. While C. beijerinckii NCIMB 8052 did not grow in undiluted MG hydrolysate-based fermentation medium, supplementation of this medium with Calcium carbonate enabled the growth of C. beijerinckii NCIMB 8052 and production of butanol. Using high-performance liquid chromatography (HPLC) and spectrophotometric assays, LHW-pretreated MG was found to contain lignocellulose-derived microbial inhibitory compounds; some of which were transformed by exponentially growing C. beijerinckii to less inhibitory compounds during fermentation. Contrary to all expectations, the reduction product of furfural, furfuryl alcohol, inhibited butanol production by C. beijerinckii by more than 16 %. Collectively, these results provide new insights into why lignocellulosic biomass hydrolysates are recalcitrant to fermentation to biofuels and chemicals.  相似文献   

12.
Defined media for the growth of Clostridium tertium and Clostridium septicum are described. The requirements for growth of these two species are compared with each other and with those of Clostridium perfringens.  相似文献   

13.
14.
The effect of rumen chitinolytic bacteria on cellulolytic anaerobic fungi   总被引:3,自引:0,他引:3  
J. KOPEČNÝ, B. HODROVÁ AND C. S. STEWART. 1996. The polycentric anaerobic fungus Orpinomyces joyonii A4 was cultivated on microcrystalline cellulose alone and in association with the rumen chitinolytic bacterium Clostridium sp. strain ChK5, which shows strong phenotypic similarity to Clostridium tertium . The presence of strain ChK5 significantly depressed the solubilization of microcrystalline cellulose, the production of short-chain fatty acids (SCFA) and the release of endoglucanase by the fungus. Co-culture of the monocentric anaerobic fungus Neocallimastix frontalis strain RE1, Neocallimastix sp. strain G-1 and Caecomyces sp. strain SC2 with strain ChK5 also resulted in depressed fungal cellulolysis. Cell-free supernatant fluids from strain ChK5 inhibited the release of reducing sugars from carboxymethylcellulose by cell-free supernatant fluids from O. joyonii strain A4. Strain 007 of the cellulolytic anaerobe Ruminococcus flavefaciens was also shown to produce small amounts of soluble products upon incubation with colloidal chitin. Mixtures of culture supernates from this bacterium and from O. joyonii strain A4 showed cellulase activity that was less than that of the component cultures. It is suggested that the ability of some rumen bacteria to hydrolyse or transform chitin may be an important factor in the interactions between bacteria and fungi in the rumen.  相似文献   

15.
Strain degeneration in solventogenic clostridia is a known problem in the technical acetone–butanol fermentation bioprocess, especially in the continuous process mode. Clostridial strain degeneration was studied by Fourier transform infrared (FT-IR) spectroscopy of the bacterial cells. Degenerative variant formation in two strains, Clostridium beijerinckii NCIMB 8052 and Clostridium species AA332, was detected spectroscopically. Colonies on solid media were sampled, or assayed directly in situ by IR microscopy. It has previously been shown that the distinctive acidogenic and solventogenic physiological phases of Clostridium acetobutylicum in liquid medium can be discriminated by FT-IR spectroscopy. This was confirmed here for C. beijerinckii NCIMB 8052. The proportion of degenerate cells in a mixed population in liquid medium could be quantified, as the spectral features change in different ways during the normal growth cycle of wild type organisms and degenerate variants in batch culture. This opens a new perspective for physiology-based process monitoring and control, especially of the continuous acetone–butanol fermentation. Journal of Industrial Microbiology & Biotechnology (2001) 27, 314–321. Received 06 October 2000/ Accepted in revised form 20 April 2001  相似文献   

16.
Abstract It has become evident that several of the strains of Clostridium acetobutylicum that have been employed in physiological studies of the acetone-butanol fermentation, are heterogeneous. Studies of the phenotypic and genotypic characteristics of several of these strains (involving inter alia both pyrolysis mass spectrometry and 16S rRNA sequence determinations) demonstrated that the type strain obtained from ATCC was not identical with that supplied by NCIMB, and that NCIMB 8052T is in fact Clostridium beijerinckii . We therefore suggest that the name Clostridium acetobutylicum should be restricted to those strains that are genetically closely related to ATCC 824T (which include strains DSM 792 and DSM 1731 but not strain P262).  相似文献   

17.
18.
Acetoin reductase (ACR) catalyzes the conversion of acetoin to 2,3-butanediol. Under certain conditions, Clostridium acetobutylicum ATCC 824 (and strains derived from it) generates both d- and l-stereoisomers of acetoin, but because of the absence of an ACR enzyme, it does not produce 2,3-butanediol. A gene encoding ACR from Clostridium beijerinckii NCIMB 8052 was functionally expressed in C. acetobutylicum under the control of two strong promoters, the constitutive thl promoter and the late exponential adc promoter. Both ACR-overproducing strains were grown in batch cultures, during which 89 to 90% of the natively produced acetoin was converted to 20 to 22 mM d-2,3-butanediol. The addition of a racemic mixture of acetoin led to the production of both d-2,3-butanediol and meso-2,3-butanediol. A metabolic network that is in agreement with the experimental data is proposed. Native 2,3-butanediol production is a first step toward a potential homofermentative 2-butanol-producing strain of C. acetobutylicum.  相似文献   

19.
Growth and the production of acetone, butanol, and ethanol by Clostridium beijerinckii NCIMB 8052 on several polysaccharides and sugars were analyzed. On crystalline cellulose, growth and solvent production were observed only when a mixture of fungal cellulases was added to the medium. On lichenan growth and solvent production occurred, but this polymer was only partially utilized. To increase utilization of these polymers and subsequent solvent production, the genes for two new glycoside hydrolases, celA and celD from the fungus Neocallimastix patriciarum, were cloned separately into C. beijerinckii. To do this, a secretion vector based on the pMTL500E shuttle vector and containing the promoter and signal sequence coding region of the Clostridium saccharobutylicum NCP262 eglA gene was constructed and fused either to the celA gene or the celD gene. Stable C. beijerinckii transformants were obtained with the resulting plasmids, pWUR3 (celA) and pWUR4 (celD). The recombinant strains showed clear halos on agar plates containing carboxymethyl cellulose upon staining with Congo red. In addition, their culture supernatants had significant endoglucanase activities (123 U/mg of protein for transformants harboring celA and 78 U/mg of protein for transformants harboring celD). Although C. beijerinckii harboring either celA or celD was not able to grow, separately or in mixed culture, on carboxymethyl cellulose or microcrystalline cellulose, both transformants showed a significant increase in solvent production during growth on lichenan and more extensive degradation of this polymer than that exhibited by the wild-type strain.  相似文献   

20.
Xiao H  Li Z  Jiang Y  Yang Y  Jiang W  Gu Y  Yang S 《Metabolic engineering》2012,14(5):569-578
Clostridium beijerinckii is an attractive butanol-producing microbe for its advantage in co-fermenting hexose and pentose sugars. However, this Clostridium strain exhibits undesired efficiency in utilizing d-xylose, one of the major building blocks contained in lignocellulosic materials. Here, we reported a useful metabolic engineering strategy to improve d-xylose consumption by C. beijerinckii. Gene cbei2385, encoding a putative d-xylose repressor XylR, was first disrupted in the C. beijerinckii NCIMB 8052, resulting in a significant increase in d-xylose consumption. A d-xylose proton-symporter (encoded by gene cbei0109) was identified and then overexpressed to further optimize d-xylose utilization, yielding an engineered strain 8052xylR-xylT(ptb) (xylR inactivation plus xylT overexpression driven by ptb promoter). We investigated the strain 8052xylR-xylT(ptb) in fermenting xylose mother liquid, an abundant by-product from industrial-scale xylose preparation from corncob and rich in d-xylose, finally achieving a 35% higher Acetone, Butanol and Ethanol (ABE) solvent titer (16.91g/L) and a 38% higher yield (0.29g/g) over those of the wild-type strain. The strategy used in this study enables C. beijerinckii more suitable for butanol production from lignocellulosic materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号