首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Polyphenols and divalent metal ions present in the tissue may seriously affect the degradation of alginate during anaerobic digestion of brown seaweeds. Laminaria hyperborea stipes, harvested at 59 °N off the Norwegian coast in the autumn, were degraded at different concentrations of polyphenols in anaerobic batch reactors at 35 °C and pH 7. This was done by removing or adding the mechanically peeled outer phenolic layer of the algae, and using methanogenic and alginate degrading inocula already adapted to L. hyperborea degradation. Initial alginate released from the algal particles was affected by NaOH titrations because the Ca/Na-ratio was reduced. After a rapid consumption of the mannitol, alginate lyases were induced, and guluronate lyases showed the highest extracellular activity. Then the microbes digested 0.12–0.23 g Na-alginate L−1 h−1. Later the degradation rate of alginates declined almost to zero, and 13–50% of the alginate remained insoluble. The total solubilisation of alginates was apparently limited by both Ca-crosslinked guluronate residues and complexation with compounds such as polyphenols. The methane production had a lag phase that increased at higher amounts of soluble polyphenols, and the total fermentation probably also became product inhibited if soluble compounds such as acetate, ethanol and butyrate were accumulated. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

2.
The polyphenols present in brown seaweed tissue may seriously affect aerobic microbial degradation, particularly the alginate present. Laminaria hyperborea stipes, harvested at 59 °N off the Norwegian coast in autumn, were degraded at different levels of polyphenols in aerated batch reactors at 35 °C and pH 7. This was achieved by manipulating the relative amounts of peripheral tissue, by removing or adding the mechanically peeled outer phenolic layer, using standardized inocula already adapted to L. hyperborea degradation. The degradation of organic matter was clearly depressed by increasing the amount of peripheral tissue. Alginate lyase activity was also negatively correlated to the amount of peripheral tissue loaded, presumably due to the release of reactive polyphenols. The total digestion rates of alginate were reduced by more than a factor of two at enhanced amounts of peripheral tissue. The guluronic content of extracted Na-alginate increased during the degradation, despite the presence of significant amounts of guluronate specific alginate lyase activity. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
Advanced magnetic resonance (MR) relaxation and diffusion correlation measurements and imaging provide a means to non-invasively monitor gelation for biotechnology applications. In this study, MR is used to characterize physical gelation of three alginates with distinct chemical structures; an algal alginate, which is not O-acetylated but contains poly guluronate (G) blocks, bacterial alginate from Pseudomonas aeruginosa, which does not have poly-G blocks, but is O-acetylated at the C2 and/or C3 of the mannuronate residues, and alginate from a P. aeruginosa mutant that lacks O-acetyl groups. The MR data indicate that diffusion-reaction front gelation with Ca(2+) ions generates gels of different bulk homogeneities dependent on the alginate structure. Shorter spin-spin T(2) magnetic relaxation times in the alginate gels that lack O-acetyl groups indicate stronger molecular interaction between the water and biopolymer. The data characterize gel differences over a hierarchy of scales from molecular to system size.  相似文献   

4.
Ionic and acid gel formation of epimerised alginates; the effect of AlgE4   总被引:1,自引:0,他引:1  
AlgE4 is a mannuronan C5 epimerase converting homopolymeric sequences of mannuronate residues in alginates into mannuronate/guluronate alternating sequences. Treating alginates of different biological origin with AlgE4 resulted in different amounts of alternating sequences. Both ionically cross-linked alginate gels as well as alginic acid gels were prepared from the epimerised alginates. Gelling kinetics and gel equilibrium properties were recorded and compared to results obtained with the original non-epimerised alginates. An observed reduced elasticity of the alginic acid gels following epimerisation by AlgE4 seems to be explained by the generally increased acid solubility of the alternating sequences. Ionically (Ca(2+)) cross-linked gels made from epimerised alginates expressed a higher degree of syneresis compared to the native samples. An increase in the modulus of elasticity was observed in calcium saturated (diffusion set) gels whereas calcium limited, internally set alginate gels showed no change in elasticity. An increase in the sol-gel transitional rate of gels made from epimerised alginates was also observed. These results suggest an increased possibility of creating new junction zones in the epimerised alginate gel due to the increased mobility in the alginate chain segments caused by the less extended alternating sequences.  相似文献   

5.
The methods used to quantify total alginate in brown algal tissue are time-consuming and may also be misleading, so faster and simpler methods for measuring alginate content would be beneficial in a variety of applications. This study reports on the use of near infra-red (NIR) analysis to monitor the alginate content of Laminaria hyperborea stipe during biodegradation. NIR reflectance spectra were recorded for 78 different freeze-dried samples of its stipe. The samples were collected during several biological degradation experiments and the total alginate content varied from 2.2 to 40.8% Na-alginate (w/w), determined by established methods based on ion exchange. Data analysis was performed using multivariate calibration methods in order to relate the spectral data to the alginate content. PLS2 analysis revealed some dependence on material type, probably reflecting differences in polyphenol content. In the end, a PLS1 model with 9 components was selected. The calculated model was validated both with internal data and with an external test set. Internal full cross validation explained 96.6% of the variance in alginate content. The external validation showed that the PLS1 model was able to predict the alginate concentration with a root mean square prediction accuracy of 2.1%. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

6.
There is an increased need for alginate materials with both enhanced and controllable mechanical properties in the fields of food, pharmaceutical and specialty applications. In the present work, well-characterized algal polymers and mannuronan were enzymatically modified using C-5 epimerases converting mannuronic acid residues to guluronic acid in the polymer chain. Composition and sequential structure of controls and epimerized alginates were analyzed by (1)H NMR spectroscopy. Mechanical properties of Ca-alginate gels were further examined giving Young's modulus, syneresis, rupture strength, and elasticity of the gels. Both mechanical strength and elasticity of hydrogels could be improved and manipulated by epimerization. In particular, alternating sequences were found to play an important role for the final mechanical properties of alginate gels, and interestingly, a pure polyalternating sample resulted in gels with extremely high syneresis and rupture strength. In conclusion, enzymatic modification was shown to be a valuable tool in modifying the mechanical properties of alginates in a highly specific manner.  相似文献   

7.
The mechanical rigidity and degradation rate of hydrogels utilized as cell transplantation vehicles have been regarded as critical factors in new tissue formation. However, conventional approaches to accelerate the degradation rate of gels deteriorate their function as a mechanical support in parallel. We hypothesized that adjusting the molecular weight distribution of polymers that are hydrolytically labile but capable of forming gels would allow one to alter the degradation rate of the gels over a broad range, while limiting the range of their elastic moduli (E). We investigated this hypothesis with binary alginate hydrogels formed from both ionically and covalently cross-linked partially oxidized (1% uronic acid residues), low [molecular weight (MW) approximately 60,000 g/mol] and high MW alginates (MW approximately 120,000 g/mol) in order to examine the utility of this approach with various cross-linking strategies. Increasing the fraction of low MW alginates to 0.50 maintained a value of E similar to that for the high MW alginate gels but led to faster degradation, irrespective of the cross-linking mode. This result was attributed to a faster separation between cross-linked domains upon chain breakages for the low MW alginates, coupled with their faster chain scission than the high MW alginates. The more rapidly degrading oxidized binary hydrogels facilitated the formation of new bone tissues from transplanted bone marrow stromal cells, as compared with the nonoxidized high MW hydrogels. The results of these studies will be useful for controlling the physical properties of a broad array of hydrogel-forming polymers.  相似文献   

8.
Algal and bacterial alginates have been studied by means of 13C NMR spectroscopy in presence of paramagnetic manganese ions in order to reveal the nature of their interaction with bivalent cations. It is found that the mannuronate blocks bind manganese cations externally near their carboxylate groups, while guluronate blocks show the capability to integrate Mn2+ into pocket-like structures formed by adjacent guluronate residues. In alternating mannuronate-guluronate blocks, manganese ions preferentially locate in a concave structure formed by guluronate-mannuronate pairs. Partial acetylation of the alginate generally reduces its capability to interact with bivalent cations, however, the selectivity of the binding geometry is conserved. The results may serve as a hint for the better understanding of the alginate gelation in presence of calcium ions.  相似文献   

9.
The alginate forms the major structural component of the cell wall and the intercellular matrix of the brown alga Ascophyllum nodosum. Successful biological degradation of A. nodosum would largely depend on the dissolution of the alginate, but reactive compounds in the alga such as polyphenols may also have toxic effects on the microbial population involved. Aerobic and anaerobic batch reactors, operated at 35°C and pH 7, were fed milled A. nodosum, nutrients and inocula adapted to seaweed degradation. The dominant factor for conversion of organic matter during anaerobic digestion was the inhibitory effect of the polyphenols on alginate lyases and methane production. Probably, the relative large fraction of high molecular weight polyphenols (>10 kDa) in this alga gave efficient binding of proteins during digestion. The anaerobic degradation was greatly stimulated when the polyphenols were fixed with low amounts of formaldehyde. An accumulated content of guluronate in the remaining alginate indicated that Ca-crosslinking also limited the guluronate lyase access to the polymer. In contrast, the aerobic digestion of alga gave no increase in the guluronate content of the residual alginate. Compared to anaerobic conditions, the phenols had a much lower influence on the hydrolytic rate of organic matter during aerobic conditions. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
Kinetics and specificity of alginate lyases: Part I, A case study   总被引:2,自引:0,他引:2  
Purified preparations of alginate lyase from Klebsiella aerogenes and Haliotis sp. were investigated for activity and degradation patterns with alginate and alginate fragments having different compositions and sequences. With fragments approaching homopolymers of guluronate and mannuronate, Michaelis-Menten kinetics were obeyed and kinetic parameters could be obtained. Degradation of alginates containing all four possible linkages in various proportions, followed by isolation of the fragments and identification of the end groups by n.m.r. spectroscopy, indicated that the enzyme preparations can attack more than one type of linkage. The results are discussed with reference to the concept of specificity for enzymes with copolymeric substrates having non-regular distributions of units.  相似文献   

11.
Confocal laser scanning microscopy (CLSM) was used to study the distribution of polymers and cross-linking ions in alginate-poly-L-lysine (PLL) -alginate microcapsules made by fluorescent-labeled polymers. CLSM studies of Ca-alginate gel beads made in the presence and absence of non-gelling sodium ions revealed a more inhomogeneous distribution of alginate in beads formed in the absence of non-gelling ions. In the formation of alginate-PLL capsules, the polymer gradients in the preformed gel core were destabilized by the presence of non-gelling ions in the washing step and in the PLL solution. Ca-alginate gels preserved the inhomogeneous structure by exposure to ion-free solution in contrast to exposure to non-gelling ions (Na(+)). By exchanging Ca(2+) with Ba(2+) (10 mM), extremely inhomogeneous gel beads were formed that preserved their structure during the washing and exposure to PLL in saline. PLL was shown to bind at the very surface of the alginate core, forming a shell-like membrane. The thickness of the PLL-layer increased about 100% after 2 weeks of storage, but no further increase was seen after 2 years of storage. The coating alginate was shown to overlap the PLL layer. No difference in binding could be observed among coating alginates of different composition. This paper shows an easy and novel method to study the distribution of alginate and PLL in intact microcapsules. As the labeling procedures are easy to perform, the method can also be used for a variety of other polymers in other microencapsulation systems.  相似文献   

12.
Alginic acid is localised in the cell walls and intercellular spaces of the brown alga, Laminaria japonica Aresch., and the salts of this compound occur mainly as calcium alginates. However, the alginates in this alga do not have the viscosity and the ability to create and stabilise structural products. Hence, the structure and properties of the alginates in Laminaria were changed by chemical modification to produce new products such as sodium alginates and other substances capable of forming gels. The rheological properties of the algal gel from Laminaria depended on the properties of the sodium alginate. Heating the algal product up to 90°C did not change its physical and chemical properties; the viscosity did not differ from that of the initial product. The viscosity and molecular weight of the sodium alginate isolated from the algal gel were stable from 20°C up to 95°C. However, about 30% of the viscosity was lost at 100°C. Recipes and various methods of preparing the gel products as fish sauces, jelly-like fish products, fruit jellies, drinks, cosmetic and pharmaceutical products are presented. The algal gel and the gel products did not lose their integrity with heat processing. Presented at the 6th Meeting of the Asian Pacific Society of Applied Phycology, Manila, Philippines.  相似文献   

13.
Østgaard  Kjetill 《Hydrobiologia》1993,255(1):513-520
The action of alginate lyases may be easily followed in a UV-spectrophotometer, since each cut of the alginate chain will create an unsaturated unit at the non-reducing end with a strong absorbance at 230 nm. During prolonged incubation, this absorbance will approach an apparent endpoint level that reflects the initial substrate concentration. On this basis, a standardized assay has been developed. A combination of purified mannuronate lyase from Haliotis tuberculata and purified guluronate lyase from Klebsiella pneumoniae is applied to get quantitative concentration estimates that do not depend on alginate composition. The production of alginate in Azotobacter vinelandii is included as an example of application. Most important, by applying both enzymes alone and in combination, the block composition of the alginate may be estimated. Data for a series of widely different alginates have been compared with those obtained by NMR.  相似文献   

14.
Alginic acid gels were studied by small-angle X-ray scattering and rheology to elucidate the influence of alginate chemical composition and molecular weight on the gel elasticity and molecular structure. The alginic acid gels were prepared by homogeneous pH reduction throughout the sample. Three alginates with different chemical composition and sequence, and two to three different molecular weights of each sample were examined. Three alginate samples with fractions of guluronic acid residues of 0.39 (LoG), 0.50 (InG), and 0.68 (HiG), covering the range of commercially available alginates, were employed. The excess scattering intensity I of the alginic acid gels was about 1 order of magnitude larger and exhibited a stronger curvature toward low q compared to ionically cross-linked alginate. The I(q) were decomposed into two components by assuming that the alginic acid gel is composed of aggregated multiple junctions and single chains. Time-resolved experiments showed a large increase in the average size of aggregates and their weight fraction within the first 2 h after onset of gelling, which also coincides with the most pronounced rheological changes. At equilibrium, little or no effect of molecular weight was observed, whereas at comparable molecular weights, an increased scattering intensity with increasing content of guluronic acid residues was recorded, probably because of a larger apparent molecular mass of domains. The results suggest a quasi-ordered junction zone is formed in the initial stage, followed by subsequent assembling of such zones, forming domains in the order of 50 A. The average length of the initial junction zones, being governed by the relative fraction of stabilizing G-blocks and destabilizing alternating (MG) blocks, determines the density of the final random aggregates. Hence, high-G alginates give alginic acid gels of a higher aggregate density compared to domains composed of loosely packed shorter junction zones in InG or LoG system.  相似文献   

15.
The optimum conditions in shaken flasks for production of bacterial alginate by mutant C-14 of Azotobacter vinelandii NCIB 9068 and a comparison of the properties of bacterial and algal alginates were investigated. The largest amount of bacterial alginate was obtained in about 110 h by a culture grown on optimum medium at 34°C and 170-rpm shaking speed. The viscosity of the culture broth was 18,400 cps and the alginate concentration reached 6.22 g/liter. The viscosity of the purified bacterial alginate was as high as 11,200 cps at a low concentration (0.6%). A greater than fivefold concentration of algal alginate was required to reach the same viscosity at a low shear rate. A solution of bacterial alginate was more pseudoplastic than that of algal alginate was. No significant differences were observed in other properties of bacterial and algal alginates such as gel formation with calcium ion, thermostability, and effect of temperature, pH, and sodium chloride on viscosity.  相似文献   

16.
The marine waters of the Baja California peninsula (Mexico) are a rich source of brown seaweeds with a great potential for exploitation. For that reason, Sargassum sinicola, Eisenia arborea, and Macrocystis pyrifera collected from different locations were subjected to extraction of sodium alginate using a pilot-plant scale process developed in our facilities. The composition and sequence parameters of the recovered alginate were studied by infrared and nuclear magnetic resonance spectroscopy. The spectral analysis of the products revealed that sodium alginate from S. sinicola contains a greater proportion of guluronate monomers (64%) than that from E. arborea (48%), and M. pyrifera (38%). Computation of the frequencies of diads and triads indicated that the alginate from S. sinicola was constructed by intercalated guluronate-blocks of 14 residues in length. In contrast, the length of the G-block in the alginates from E. arborea and M. pyrifera were 7 and 4 residues, respectively. The results show that S. sinicola, E. arborea, and M. pyrifera are sources of sodium alginate with different mannuronate/guluronate ratios, as well as a varied building-block length. In consequence, aqueous dispersions of sodium alginate from the three studied species are expected to exhibit different physical properties.  相似文献   

17.
Structural polysaccharides of the alginate family form gels in aqueous Ca2+-containing solutions by lateral association of chain segments. The effect of adding oligomers of alpha-l-guluronic acid (G blocks) to gelling solutions of alginate was investigated using rheology and atomic force microscopy (AFM). Ca-alginate gels were prepared by in situ release of Ca2+. The gel strength increased with increasing level of calcium saturation of the alginate and decreased with increasing amount of free G blocks. The presence of free G blocks also led to an increased gelation time. The gel point and fractal dimensionalities of the gels were determined based on the rheological characterization. Without added free G blocks the fractal dimension of the gels increased from df = 2.14 to df = 2.46 when increasing [Ca2+] from 10 to 20 mM. This increase was suggested to arise from an increased junction zone multiplicity induced by the increased concentration of calcium ions. In the presence of free G blocks (G block/alginate = 1/1) the fractal dimension increased from 2.14 to 2.29 at 10 mM Ca2+, whereas there was no significant change associated with addition of G blocks at 20 mM Ca2+. These observations indicate that free G blocks are involved in calcium-mediated bonds formed between guluronic acid sequences within the polymeric alginates. Thus, the added oligoguluronate competes with the alginate chains for the calcium ions. The gels and pregel situations close to the gel point were also studied using AFM. The AFM topographs indicated that in situations of low calcium saturation microgels a few hundred nanometers in diameter develop in solution. In situations of higher calcium saturation lateral association of a number of alginate chains are occurring, giving ordered fiber-like structures. These results show that G blocks can be used as modulators of gelation kinetics as well as local network structure formation and equilibrium properties in alginate gels.  相似文献   

18.
Alginates are polysaccharides consisting of beta-D-mannuronate and alpha-L-guluronate units. In the presence of bivalent cations like calcium the guluronate blocks form physically cross-linked gels. The gelation properties of alginates play an important role in the stability of extracellular polymer substances and in the food industry. When stock solutions of Ca2+ ions and alginate are mixed, the gelation starts before the Ca2+ ions are evenly distributed, which leads to non-uniform gels. In this contribution, Ca alginate gels were prepared by in situ gelation using glucono-delta-lactone and CaCO3. In this way, uniform gels could be prepared directly in the measuring cell. Below a critical concentration, highly viscous solutions were obtained, which were below the critical point of gel formation. In these solutions at low rotational speeds a Schlieren peak arose, which became smaller and steeper with increasing time until a new meniscus could be detected. This behaviour is in contrast to the peak broadening due to diffusion after a synthetic boundary was formed. Evaluation of the data leads to negative diffusion coefficients. It has been shown by others that the mutual diffusion coefficient must be negative in the spinodal region. This phenomena is known as uphill diffusion and leads to phase separation of a binary system. The formation of the gel phase in this case is therefore discussed as uphill diffusion.  相似文献   

19.
A mucoid P. aeruginosa isolated from the sputum of a cystic fibrosis patient was grown in batch culture on a complex medium. During the growth cycle the amount of alginate produced was estimated and its composition was determined by proton magnetic resonance (1H-n.m.r) spectroscopy. Exopolysaccharide production occurred mainly during the exponential phase of growth. The alginate samples isolated varied little in composition and were characterized by being highly acetylated, high mannuronate (0.83-0.93 mole fraction) polymers. Guluronate was present only within heteropolymeric regions of the polysaccharides which all displayed a complete absence of polyguluronate. Ca2+ ion supplementation of the medium was not observed to increase the levels of guluronate in the alginates produced.  相似文献   

20.
Lysis of alginates and of their saturated and unsaturated fragments was monitored by 1H NMR spectroscopy. AlxM(B) alginate lyase performs beta-elimination on the mannuronic acid (M) residues. It does not cleave the guluronic acid (G) sequences, nor the M-G or the G-M diads. In consequence, it is a true mannuronate lyase. The end product of the reaction is O-(4-deoxy-alpha-L-ery-thro-hex-4-enopyranosyl-uronic acid)-(1->(4)-O-(beta-D-mannopyranosyluronic acid)-(1->4)-O-beta-D-mannpyranuronic acid. Viscosity measurements made during degradation of a polymannuronate alginate showed that AlxM(B) behaves as an endo-enzyme. HPLC analysis of the degradation products of oligomannuronates and oligoalginates suggested that the beta-elimination requires the interaction of the enzyme with at least three sequential mannuronic acid residues. The catalytic site may possess 5 sub-sites and accommodate pentamers with different M/G ratio. Kinetic measurements showed that the specificity constant Vm/Km increased with the number of mannuronic acid residues. AlxM(B) may be reversibly inhibited by heteropolymeric blocks in a competitive manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号