首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The composition of Bdellovibrio bacteriovorus lipopolysaccharide (LPS) was determined for cells grown axenically and intraperiplasmically on Escherichia coli or Pseudomonas putida. The LPS of axenically grown bdellovibrios contained glucose and fucosamine as the only detectable neutral sugar and amino sugar, and nonadecenoic acid (19:1) as the predominant fatty acid. Additional fatty acids, heptose, ketodeoxyoctoic acid, and phosphate were also detected. LPS from bdellovibrios grown intraperiplasmically contained components characteristic of both axenically grown bdellovibrios and the substrate cells. Substrate cell-derived LPS fatty acids made up the majority of the bdellovibrio LPS fatty acids and were present in about the same proportions as in the substrate cell LPS. Glucosamine derived from E. coli LPS amounted to about one-third of the hexosamine residues in intraperiplasmically grown bdellovibrio LPS. However, galactose, characteristic of the E. coli outer core and O antigen, was not detected in the bdellovibrio LPS, suggesting that only lipid A components of the substrate cell were incorporated. Substrate cell-derived and bdellovibrio-synthesized LPS materials were conserved in the B. bacteriovorus outer membrane for at least two cycles of intraperiplasmic growth. When bdellovibrios were grown on two different substrate cells successively, lipid A components were taken up from the second while the components incorporated from the lipid A of the first were conserved in the bdellovibrio LPS. The data show that substrate cell lipid A components were incorporated into B. bacteriovorus lipid A during intraperiplasmic growth with little or no change, and that these components, fatty acids and hexosamines, comprised a substantial portion of bdellovibrio lipid A.  相似文献   

2.
Selected enzyme activities were measured in extracts of the total cell pellets obtained at various times during aerobic intraperiplasmic growth of Bdellovibrio bacteriovorus 109J on anaerobically grown Escherichia coli substrate cells. Initially, the glycolytic enzyme activities were associated with the input of E. coli and the tricarboxylic acid cycle enzyme activities with the input of bdellovibrios. During the first 90 min of Bdellovibrio development, the glycolytic activities declined about 25 to 60%, whereas the tricarboxylic acid cycle activities increased about 10%. Between 110 and 180 min, the glycolytic activities decreased to trace levels and tricarboxylic acid cycle activities increased about 50 to 90%. Both bdellovibrio cell extracts and the cell-free growth menstruum (obtained after bdellovibrio growth on E. coli) caused the inactivation of glycolytic enzymes in E. coli extracts.  相似文献   

3.
The smooth-form lipopolysaccharide of Salmonella abortus equi had earlier been separated into three distinct fractions, a long-chain fraction with an O chain containing 20-50 repeating units, a short-chain fraction consisting of an R lipopolysaccharide and another with 1-6 repeating units, and an R fraction identical to the lipopolysaccharide synthesized by Ra.b-mutant bacteria [Galanos et al. (1988) J. Chromatogr. 440, 397-404]. In this paper, the corresponding lipid A from each fraction was prepared by a newly elaborated procedure based on hydrolysis of the fractions in calcium acetate buffer (pH 3.5) followed by separation of the resulting free lipid A from the polysaccharide on a Sephadex G-100 column. Chemical analysis revealed that lipid A of the R fraction contained the expected spectrum and amounts of fatty acids and it proved to be structurally identical to lipid A of previously studied Salmonella R mutants. In contrast, the lipid A of the long-chain fraction contained only about 60% fatty acids compared to that of the R fraction. The lipid A of the short-chain fraction also expressed a reduced substitution pattern of acyl residues.  相似文献   

4.
Endotoxin extracted from the heptose-less mutant of Salmonella typhimurium was hydrolyzed in 0.1 N HCl in methanol/water (1:1, v/v) at 100 degrees C to yield lipid A, which was then fractionated on a Sephadex LH-20 column to yield a major monophosphoryl lipid A fraction. The monophosphoryl lipid A was further fractionated by preparative thin layer chromatography. This process yielded three major bands (TLC-1, -3, and -5) and two minor bands (TLC-7 and -9). The purity of these fractions was established by ion exchange and reverse phase high performance liquid chromatography. The thin layer fractions were analyzed by fast atom bombardment mass spectrometry. TLC-1 and -3 gave molecular ions (M-H)- at m/e 1730 and 1716, respectively. Both of these fractions contained beta-hydroxymyristic, lauric, and 3-myristoxymyristic acids in O-acyl linkages. The molecular formula and Mr of TLC-1 are C95H179O22N2P and 1731.16; those of TLC-3 are C94H177O22N2P and 1717.15. TLC-1 was a methyl homolog of TLC-3. The major component of TLC-5 (C80H151O22N2P and Mr = 1506.99) gave a molecular ion at m/e 1506 and contained two beta-hydroxymyristic acids and a lauric acid in the O-acyl linkages. The major component of TLC-7 (C66H125O19N2P and Mr = 1280.83) and the single component of TLC-9 gave molecular ions at m/e 1280 and 1098, respectively. TLC-7 contained lauric and beta-hydroxymyristic acids in the O-acyl linkages. TLC-9 (C54H103O18N2P and Mr = 1098.69) contained a single O-acylated beta-hydroxymyristate group. TLC-1 and -3 were nontoxic in the chick embryo lethality test and regressed established tumors in the syngeneic guinea pigs.  相似文献   

5.
The repeating pentasaccharide of O-antigen from Escherichia coli O111 contains galactose, glucose, N-acetylglucosamine, and colitose, the latter representing the major antigenic determinant. Phenol extraction of this strain was previously shown to release two fractions (I and II) containing O-antigen carbohydrate, and both fractions were believed to be lipopolysaccharide. We have now characterized fractions I and II and conclude that only fraction II represents lipopolysaccharide. Fraction II contains phosphate, 2-keto-3-deoxyoctonate, beta-hydroxymyristic acid, and potent endotoxin activity, whereas fraction I was deficient in all of these properties of the lipid A and core oligosaccharide regions of lipopolysaccharide. Fractions I and II each represented 50% of the total cellular O-antigen, and both were present on the cell surface. Both fractions were metabolically stable, and no precursor-product relationship existed between them. Fraction II had a number-average molecular weight of 15,800, corresponding to an average of 12 O-antigen repeats per molecule. In contrast, fraction I had a number-average molecular weight of 354,000, corresponding to an average of 404 O-antigen repeats per molecule. Before heat treatment, cells of E. coli O111 are poorly agglutinated by O-serum; although this indicates the presence of a capsule, the corresponding K-antigen was never detected. We conclude that fraction I, when present on the cell surface, inhibits agglutination of unheated cultures of E. coli O111 by O-serum because: (i) a variant strain which lacks fraction I was agglutinated by O-serum without prior heating; (ii) erythrocytes coated with purified fraction I behaved like bacteria containing fraction I in showing inhibition of O-serum agglutination; and (iii) heat treatment released fraction I and rendered bacterial cells agglutinable in O-serum.  相似文献   

6.
Inhibition of Proteus mirabilis growth by cerulenin, a specific inhibitor of fatty acid biosynthesis, was reversed by exogenously supplied fatty acid mixtures containing oleic acid and palmitic or pentadecanoic acids. The growth rate of the cells treated with cerulenin in the presence of the fatty acid mixtures was slower, however, than that of untreated cells, and their lipopolysaccharide content was decreased by 30-50%, resulting in an increased sensitivity of the organisms to rifamycin and vancomycin. Polyacrylamide gel electrophoresis of the lipopolysaccharide fraction from cerulenin-treated cells revealed that of the two P. mirabilis lipopolysaccharide types, the relative amount of the higher molecular weight lipopolysaccharide was reduced from 50% to 30% of the total lipopolysaccharide. Fatty acid analysis of the phospholipid and lipopolysaccharide fractions from cells grown with cerulenin, pentadecanoate, and oleate revealed that over 60% of the native even-numbered fatty acids of the phospholipid fraction was substituted by the odd-numbered fatty acid, while no incorporation of either the pentadecanoate or oleate could be demonstrated in the lipid A moiety of the lipopolysaccharide. The only change in the lipid A observed was an increase in the content of 3-hydroxymyristic acid accompanied by a decrease in the nonhydroxylated fatty acids, supporting the highly conserved nature of this molecule.  相似文献   

7.
Data are presented showing that a large proportion of the fatty acids of Bdellovibrio bacteriovorus grown intraperiplasmically are derived unaltered from the fatty acids of its substrate organism. Those fatty acids of the bdellovibrio not homologous with those of the substrate organism are derived mainly by metabolic alteration of preexisting fatty acids in the latter. De novo synthesis from acetate occurs only to a small extent. These characteristics of bdellovibrio physiology are in part responsible for its minimal energy expenditure for intraperiplasmic growth. The data presented also indicate that B. bacteriovorus is capable of hydrogenating unsaturated fatty acids, of beta-oxidation of fatty acids, and of regulating the proportion of saturated and unsaturated fatty acids in the lipids.  相似文献   

8.
The ability of Bdellovibrio bacteriovorus to relocalize the OmpF major outer membrane porins from its Escherichia coli prey to its own outer membranes is diminished in prey expressing smooth lipopolysaccharide (S-LPS). Since porins exist in the membrane complexed with LPS, we examined the LPS associated with relocalized porin to determine whether it had been acquired intact, mixed or replaced with Bdellovibrio LPS, or derivatized by the bdellovibrios. The relocalized trimers were found associated with the same LPS originally bound to them in the E. coli. The bulk-phase LPS from bdellovibrios grown on various chemotypes of rough prey was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis to determine whether more than the trimer-bound LPS was acquired by the bdellovibrios. This analysis revealed bands of Bdellovibrio LPS matching the LPS chemotype of the prey. One or two other bands were identical in migration to the LPS of prey-independent mutants of B. bacteriovorus and represented bdellovibrio-synthesized LPS. The LPS of bdellovibrios grown on prey with radiolabeled lipid A showed radioactivity only in gel band positions identical with those of the prey's LPS. The amount of this prey-derived LPS was shown by enzyme-linked immunosorbent assay to reach a constant value during the purification of the bdellovibrios, and it represented approximately 25% of the total Bdellovibrio LPS. Immunoelectron microscopy confirmed the presence of prey-derived LPS on the cell surface of bdellovibrios, and no evidence could be found for bdellovibrio-induced modifications of the relocalized prey LPS.  相似文献   

9.
During intraperiplasmic growth of Bdellovibrio bacteriovorus 109J on Escherichia coli some 30 to 60% of the initial E. coli RNA-ribose disappeared as cell-associated orcinol-positive material. The levels of RNA-ribose in the suspending buffer after growth together with the RNA-ribose used for bdellovibrio DNA synthesis accounted for 50% or less of the missing RNA-ribose. With intraperiplasmic growth in the presence of added U-14C-labeled CMP, GMP, or UMP, radioactivity was found both in the respired CO2 and incorporated into the bdellovibrio cell components. The addition of exogenous unlabeled ribonucleotides markedly reduced the amounts of both the 14CO2 and 14C incorporated into the progeny bdellovibrios. During intraperiplasmic growth of B. bacteriovorus on [U-14C]ribose-labeled E. coli BJ565, ca. 74% and ca. 19% of the initial 14C was incorporated into the progeny bdellovibrios and respired CO2, respectively. Under similar growth conditions, the addition of glutamate substantially reduced only the 14CO2; however, added ribonucleotides reduced both the 14CO2 and the 14C incorporated into the progeny bdellovibrios. No similar effects were found with added ribose-5-phosphate. The distribution of 14C in the major cell components was similar in progeny bdellovibrios whether obtained from growth on [U-14C]ribose-labeled E. coli BJ565 or from E. coli plus added U-14C-labeled ribonucleotides. After intraperiplasmic growth of B. bacteriovorus on [5,6-3H-]uracil-[U-14C]ribose-labeled E. coli BJ565 (normal or heat treated), the whole-cell 14C/3H ratio of the progeny bdellovibrios was some 50% greater and reflected the higher 14C/3H ratios found in the cell fractions. B. bacteriovorus and E. coli cell extracts both contained 5'-nucleotidase, uridine phosphorylase, purine phosphorylase, deoxyribose-5-phosphate aldolase, transketolase, thymidine phosphorylase, phosphodeoxyribomutase, and transaldolase enzyme activities. The latter three enzyme activities were either absent or very low in cell extracts prepared from heat-treated E. coli cells. It is concluded that during intraperiplasmic growth B. bacteriovorus degrades some 20 to 40% of the ribonucleotides derived from the initial E. coli RNA into the base and ribose-1-phosphate moieties. The ribose-1-phosphate is further metabolized by B. bacteriovorus both for energy production and for biosynthesis, of non-nucleic acid cell material. In addition, the data indicate that during intraperiplasmic growth B. bacteriovorus can metabolize ribose only if this compound is available to it as the ribonucleoside monophosphate.  相似文献   

10.
Porphyromonas gingivalis lipid A is heterogeneous with regard to the number, type, and placement of fatty acids. Analysis of lipid A by matrix-assisted laser desorption ionization-time of flight mass spectrometry reveals clusters of peaks differing by 14 mass units indicative of an altered distribution of the fatty acids generating different lipid A structures. To examine whether the transfer of hydroxy fatty acids with different chain lengths could account for the clustering of lipid A structures, P. gingivalis lpxA (lpxA(Pg)) and lpxD(Pg) were cloned and expressed in Escherichia coli strains in which the homologous gene was mutated. Lipid A from strains expressing either of the P. gingivalis transferases was found to contain 16-carbon hydroxy fatty acids in addition to the normal E. coli 14-carbon hydroxy fatty acids, demonstrating that these acyltransferases display a relaxed acyl chain length specificity. Both LpxA and LpxD, from either E. coli or P. gingivalis, were also able to incorporate odd-chain fatty acids into lipid A when grown in the presence of 1% propionic acid. This indicates that E. coli lipid A acyltransferases do not have an absolute specificity for 14-carbon hydroxy fatty acids but can transfer fatty acids differing by one carbon unit if the fatty acid substrates are available. We conclude that the relaxed specificity of the P. gingivalis lipid A acyltransferases and the substrate availability account for the lipid A structural clusters that differ by 14 mass units observed in P. gingivalis lipopolysaccharide preparations.  相似文献   

11.
Normal human skin fibroblasts and those from methylmalonic acidemia and propionic acidemia patients were grown in culture. Following incubation with [1-14C]propionate, the major lipid classes in the cells were separated by thin layer chromatography and isolated fractions analyzed by radio gas chromatography for the presence of odd-numbered long-chain fatty acids; the pattern of even-numbered long-chain fatty acids was obtained also. Normal fibroblasts incorporated a small percentage of propionate into odd-numbered fatty acids which were present in all lipids studied. The abnormal cells incorporated a larger amount while maintaining the characteristic ratios of odd-numbered fatty acids found in the normal line. Most of the radioactivity was associated with phospholipids which are the predominant constituents of cell membranes. A characteristic C15/C17 ratio was found for different phospholipids and the triglyceride fraction; pentadecanoic acid was the principal odd-numbered fatty acid utilized in the assembly of complex lipids. Compared to even-numbered long-chain fatty acids the absolute amount of odd-numbered fatty acids was low (1-2%), even in affected cells. An unusual polar lipid fraction was isolated in the course of the study. In the normal cell it contained several unlabeled eicosanoids which were missing from the same fraction of both affected cell lines.  相似文献   

12.
When cells of either Bdellovibrio bacteriovorus 109J or Bdellovibrio stolpii UKi2 were subjected to osmotic shock by treatment with sucrose-EDTA and MgCl2 solutions, only trace amounts of proteins or enzyme activities were released into the shock fluid. In contrast, when nongrowing cells were converted to motile, osmotically stable, peptidoglycan-free spheroplasts by penicillin treatment, numerous proteins were released into the suspending fluid. For both species, this suspending fluid contained substantial levels of 5'-nucleotidase, purine phosphorylase, and deoxyribose-phosphate aldolase. Penicillin treatment also released aminoendopeptidase N from B. bacteriovorus, but not from B. stolpii. Penicillin treatment did not cause release of cytoplasmic enzymes such as malate dehydrogenase. The data indicated that bdellovibrios possess periplasmic enzymes or peripheral enzymes associated with the cell wall complex. During intraperiplasmic bdellovibrio growth, periplasmic and cytoplasmic enzymes of the Escherichia coli substrate cell were not released upon formation of the spherical bdelloplast during bdellovibrio penetration. Most of the E. coli enzymes were retained within the bdelloplast until later in the growth cycle, when they became inactivated or released into the suspending buffer or both.  相似文献   

13.
Lipopolysaccharide isolated from Pseudomonas aeruginosa PAO1 (O5 serotype) was separated into two antigenically distinct fractions. A minor fraction, containing shorter polysaccharide chains, reacted with a monoclonal antibody to a P. aeruginosa common antigen but did not react with antibodies specific to O5-serotype lipopolysaccharide. In contrast, fractions containing long polysaccharide chains reacted only with the O5-specific monoclonal antibodies. The shorter, common-antigen fraction lacked phosphate and contained stoichiometric amounts of sulfate, and the fatty acid composition of this fraction was similar to that of the O-antigen-specific fraction. The lipid A derived from the serotype-specific lipopolysaccharide cross-reacted with monoclonal antibodies against lipid A from Escherichia coli, while the lipid A derived from the common antigen did not react. We propose that many serotypes of P. aeruginosa produce two chemically and antigenically distinct lipopolysaccharide molecules, one of which is a common antigen with a short polysaccharide and a unique core-lipid A structure.  相似文献   

14.
Lipopolysaccharides were isolated from dehydratedCampylobacter jejuni by combination of the phenol-chloroform-petroleum ether and phenol-water extraction techniques. Biochemical characterizations of lipopolysaccharide were performed on the two fractions of highest purity. Neutral sugar analyses detected galactose, glucose, trace amounts of mannose, and an unidentified deoxy-hexose. The primary amino sugars were galactosamine, glucosamine, and glucosamine-phosphate. Chemical analyses of other lipopolysaccharide components included phosphate, 3-deoxy-d-manno-octulosonic acid (KDO), and fatty acids. The predominant fatty acids were 3-hydroxytetradecanoic and hexadecanoic acids with lesser amounts of tetradecanoic acid. 3-Hydroxytetradecanoic acids were bound to lipid A by both amide and ester linkages.  相似文献   

15.
During growth of Bdellovibrio bacteriovorus on Escherichia coli, there was a marked preferential use of E. coli phosphorus over exogenous orthophosphate even though the latter permeated into the intraperiplasmic space where the bdellovibrio was growing. This preferential use occurred to an equal extent for lipid phosphorus and nucleic acid phosphorus. Exogenous thymidine-5'-monophosphate competed effectively with [3H]thymine residues of E. coli as a precursor for bdellovibrio deoxyribonucleic acid; exogenous thymidine competed less effectively and thymine and uridine not at all. A mixture of exogenous nucleoside-5'-monophosphates equilibrated effectively with E. coli phosphorus as a phosphorus source for B. bacteriovorus; the nucleotide phosphorus entered preferentially into bdellovibrio nucleic acids. A comparable mixture of exogenous nucleosides plus orthophosphate had only a small effect on utilization of E. coli phosphorus by B. bacteriovorus, as did orthophosphate alone. A mixture of exogenous deoxyriboside monophosphates equilibrium effectively with E. coli phosphorus as a phosphorus source for bdellovibrio growth; the phosphorus from this source entered preferentially into deoxyribonucleic acid. These data show that nucleoside monophosphates derived from the substrate organism are utilized directly for n-cleic acid biosynthesis by B. bacteriovorus growing intraperiplasmically. As a consequence, the phosphate ester bonds preexisting in the nucleic acids of the substrate organism are conserved by the bdellovibrio, presumably lessening its energy requirement for intraperiplasmic growth. The data also suggest, but do not prove, that the phosphate ester bonds of phospholipids are also conserved.  相似文献   

16.
Lipids were extracted from cells of Pseudomonas aeruginosa grown on a pure hydrocarbon (tridecane), mixed hydrocarbons (JP-4 jet fuel), and on Trypticase Soy Broth. Total lipids produced from each substrate represented from 7.1 to 8.2% of cellular dry weight, of which 5.0 to 6.4% were obtained before cellular hydrolysis (free lipids) and 1.7 to 2.0% were extracted after cellular hydrolysis (bound lipids). Free lipids from cells grown on each medium were separated into four fractions by thin-layer chromatography. All fractions were present in cells from each type of medium, and the "neutral fraction" constituted the largest fraction. The fatty acid composition of free lipids was determined by gas-liquid chromatography. Cells grown on each medium contained saturated and unsaturated C(14) to C(20) fatty acids. Trace amounts of C(13) fatty acids were found in tridecane-grown cells. Saturated C(16) and C(18) were the major acids present in all cells. Quantitative differences were found in fatty acids produced on the three media, but specific correlations between substrate carbon sources and fatty acid content of cells were not evident. Tridecane-grown cells contained only traces of C(13) acid and small amounts of C(15) and C(17) acids, suggesting that the organism's fatty acids were derived from de novo synthesis rather than by direct incorporation of the hydrocarbon.  相似文献   

17.
The fatty acid composition of twelve Bdellovibrio strains isolated upon the growth on bacteria of various taxonomic groups was studied. A dependence of the lipid composition of bdellovibrios on that of bacteria they were parasitizing on was shown. Data pointing to the selective incorporation of fatty acids of host bacteria by bdellovibrios were obtained. Bdellovibrio membranes were shown to contain monounsatured fatty acids with different positions of double bonds indicating that there are at least two alternative mechanisms of synthesis of these acids in the parasites.  相似文献   

18.
The fatty acid composition of the lipid A moiety of the lipopolysaccharide and phospholipid fractions of Proteus mirabilis changed significantly on varying the growth temperature. A decrease in the growth temperature from 43 degrees C to 15 degrees C resulted in a decrease in the palmitic acid content of the lipopolysaccharide from 19.4% of total fatty acids at 43 degrees C to 1.4% at 15 degrees C, and by the appearance of an unsaturated fatty acid residue, hexadecenoic acid. Changes in the 3-hydroxy-myristic acid content of the lipid A were minimal. The decrease in the growth temperature also resulted in a decrease in the saturated fatty acid content of the phospholipid fraction, which was accompanied by an increase in their fluidity, as measured by the freedom of motion of spin-labeled fatty acids incorporated into dispersions made of the phospholipids. Nevertheless, the fluidity obtained with membrane phospholipids extracted from the cells grown at various temperatures were essentially the same when fluidity was determined at the growth temperature, supporting the hypothesis that variations in the fatty acid composition of membrane phospholipids serve to produce membranes having a constant fluidity at different temperatures of growth.  相似文献   

19.
The basis of the biologic responses of C3H/HeJ mice to endotoxin administration in relation to the structural linkages in the lipid A portion of the lipopolysaccharide (LPS) of Pseudomonas aeruginosa and Escherichia coli were investigated. P. aeruginosa LPS was found to be immunogenic, mitogenic, and toxic, but not lethal, in C3H/HeJ mice. The observed mitogenicity in spleen cells was directed toward immunoglobulin- (Ig) bearing cells, was present in response to isolated and solubilized lipid A, and was inhibitable by polymixin B. The P. aeruginosa LPS was chemically analyzed in order to define its composition and exclude the presence of contaminating proteins being responsible for the biologic responses of C3H/HeJ mice that were observed. Structural analysis of the linkages of the fatty acids to the glucosamine backbone in the lipid A of P. aeruginosa and E. coli revealed similarities in terms of the ratio of hydroxy fatty acids to straight chain fatty acids and the way in which these 2 types of fatty acids were linked to the backbone. Differences were seen in the carbon chain length of the fatty acid substituents, and the substituent on the hydroxy fatty acid that is directly ester linked to the glucosamine backbone. These data indicate that the refractivity of C3H/HeJ mice to the biologic effects after the administration of Gram-negative endotoxins may be limited to enterobacterial LPS. Those differences we found in the chain length and/or linkages of the fatty acid substituents in the lipid A portion of the LPS between P. aeruginosa and E. coli may be sufficient to render C3H/HeJ mice responsive to the biologic effects of nonenterobacterial endotoxins.  相似文献   

20.
1. A method is described for the fractionation of cell walls of Pseudomonas aeruginosa by using aqueous phenol. 2. With this technique, cell walls are quantitatively separated into five fractions: two water-soluble fractions (AqI and AqII), a residual insoluble fraction (R), and two phenol-soluble fractions (PhMP and PhMS). 3. The compositions of fractions PhMP and PhMS are discussed. Fraction PhMP consists almost entirely of protein, which is soluble in aqueous sodium dodecyl sulphate. Analytical ultracentrifugation of the solution yields a single peak, but several components may be resolved by gel electrophoresis. 4. Fraction PhMS consists principally of phospholipid (approx. 44%) and fatty acids (approx. 27%), although smaller amounts (approx. 13%) of protein are present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号