首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Nitric oxide synthase (NOS) inhibition has been shown in humans to attenuate exercise-induced increases in muscle glucose uptake. We examined the effect of infusing the NO precursor L-arginine (L-Arg) on glucose kinetics during exercise in humans. Nine endurance-trained males cycled for 120 min at 72+/-1% Vo(2 peak) followed immediately by a 15-min "all-out" cycling performance bout. A [6,6-(2)H]glucose tracer was infused throughout exercise, and either saline alone (Control, CON) or saline containing L-Arg HCL (L-Arg, 30 g at 0.5 g/min) was confused in a double-blind, randomized order during the last 60 min of exercise. L-Arg augmented the increases in glucose rate of appearance, glucose rate of disappearance, and glucose clearance rate (L-Arg: 16.1+/-1.8 ml.min(-1).kg(-1); CON: 11.9+/- 0.7 ml.min(-1).kg(-1) at 120 min, P<0.05) during exercise, with a net effect of reducing plasma glucose concentration during exercise. L-Arg infusion had no significant effect on plasma insulin concentration but attenuated the increase in nonesterified fatty acid and glycerol concentrations during exercise. L-Arg infusion had no effect on cycling exercise performance. In conclusion, L-Arg infusion during exercise significantly increases skeletal muscle glucose clearance in humans. Because plasma insulin concentration was unaffected by L-Arg infusion, greater NO production may have been responsible for this effect.  相似文献   

2.
The purpose of this study was to determine whether prolonged unloading of cardiopulmonary baroreceptors with lower body negative pressure (LBNP) causes constant increases in sympathetic outflow to skeletal muscles. Eight healthy subjects underwent a 20-min control period followed by 20 min of 15-mmHg LBNP. This pressure was selected because it did not cause any significant change in mean arterial blood pressure (sphygmomanometry) or heart rate, suggesting that the cardiopulmonary baroreceptors were selectively unloaded and the activity of the arterial baroreceptors was unchanged. Muscle sympathetic nerve activity in the peroneal nerve (MSNA, microneurography) increased from an average of 21.8 +/- 1.7 bursts/min over the last 5 min of control to 29.0 +/- 2.9 bursts/min during the 1st min of LBNP (P less than 0.05 LBNP vs. control). The increase in MSNA observed during the 1st min was sustained throughout LBNP. Forelimb blood flow (plethysmography) decreased abruptly at the onset of the LBNP from a control value of 4.3 +/- 0.5 ml.min-1.100 ml-1 to 2.5 +/- 0.2 at the 1st min; the flow then increased and remained significantly above this value, but below the control value, throughout LBNP. Similar blood flow findings were obtained in additional studies, when the hand circulation was excluded during the flow measurements. Forearm skin blood flow (laser Doppler) also decreased abruptly at the onset of LBNP and was followed by partial recovery, but these changes were too small to account for all the increases in limb blood flow over the course of LBNP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
To examine the effect of exercise on heat shock protein (HSP) 72 mRNA expression in skeletal muscle, five healthy humans (20 +/- 1 yr; 64 +/- 3 kg; peak O(2) uptake of 2.55 +/- 0.2 l/min) cycled until exhaustion at a workload corresponding to 63% peak O(2) uptake. Muscle was sampled from the vastus lateralis, and muscle temperature was measured at rest (R), 10 min of exercise (Min10), approximately 40 min before fatigue (F-40 = 144 +/- 7 min), and fatigue (F = 186 +/- 15 min). Muscle samples were analyzed for HSP72 mRNA expression, as well as glycogen and lactate concentration. Muscle temperature increased (P < 0.05) during the first 10 min of exercise but then remained constant for the duration of the exercise. Similarly, lactate concentration increased (P < 0.05) when Min10 was compared with R but decreased (P < 0.05) thereafter, such that concentrations at F-40 and F were not different from those at R. In contrast, muscle glycogen concentration fell progressively throughout exercise (486 +/- 74 vs. 25 +/- 7 mmol/kg dry weight for R and F, respectively; P < 0.05). HSP72 mRNA was detected at R but did not increase by Min10. However, HSP72 mRNA increased (P < 0.05) 2.2 +/- 0.5- and 2.6 +/- 0.9-fold, respectively, when F-40 and F were compared with R. These data demonstrate that HSP72 mRNA increases progressively during acute cycling, suggesting that processes that take place throughout concentric exercise are capable of initiating a stress response.  相似文献   

4.
Eight healthy men cycled at a work load corresponding to approximately 70% of maximal O2 uptake (VO2max) to fatigue (exercise I). Exercise to fatigue at the same work load was repeated after 75 min of rest (exercise II). Exercise duration averaged 65 and 21 min for exercise I and II, respectively. Muscle (quadriceps femoris) content of glycogen decreased from 492 +/- 27 to 92 +/- 20 (SE) mmol/kg dry wt and from 148 +/- 17 to 56 +/- 17 (SE) mmol/kg dry wt during exercise I and II, respectively. Muscle and blood lactate were only moderately increased during exercise. The total adenine nucleotide pool (TAN = ATP + ADP + AMP) decreased and inosine 5'-monophosphate (IMP) increased in the working muscle during both exercise I (P less than 0.001) and II (P less than 0.01). Muscle content of ammonia (NH3) increased four- and eight-fold during exercise I and II, respectively. The working legs released NH3, and plasma NH3 increased progressively during exercise. The release of NH3 at the end of exercise II was fivefold higher than that at the same time point in exercise I (P less than 0.001, exercise I vs. II). It is concluded that submaximal exercise to fatigue results in a breakdown of the TAN in the working muscle through deamination of AMP to IMP and NH3. The relatively low lactate levels demonstrate that acidosis is not a necessary prerequisite for activation of AMP deaminase. It is suggested that the higher average rate of AMP deamination during exercise II vs. exercise I is due to a relative impairment of ATP resynthesis caused by the low muscle glycogen level.  相似文献   

5.
6.
The purpose of this study was to elucidate the influence of inspiratory muscle fatigue on muscle sympathetic nerve activity (MSNA) and blood pressure (BP) response during submaximal exercise. We hypothesized that inspiratory muscle fatigue would elicit increases in sympathetic vasoconstrictor outflow and BP during dynamic leg exercise. The subjects carried out four submaximal exercise tests: two were maximal inspiratory pressure (PI(max)) tests and two were MSNA tests. In the PI(max) tests, the subjects performed two 10-min exercises at 40% peak oxygen uptake using a cycle ergometer in a semirecumbent position [spontaneous breathing for 5 min and with or without inspiratory resistive breathing for 5 min (breathing frequency: 60 breaths/min, inspiratory and expiratory times were each set at 0.5 s)]. Before and immediately after exercise, PI(max) was estimated. In MSNA tests, the subjects performed two 15-min exercises (spontaneous breathing for 5 min, with or without inspiratory resistive breathing for 5 min, and spontaneous breathing for 5 min). MSNA was recorded via microneurography of the right median nerve at the elbow. PI(max) decreased following exercise with resistive breathing, whereas no change was found without resistance. The time-dependent increase in MSNA burst frequency (BF) appeared during exercise with inspiratory resistive breathing, accompanied by an augmentation of diastolic BP (DBP) (with resistance: MSNA, BF +83.4%; DBP, +23.8%; without resistance: MSNA BF, +19.2%; DBP, -0.4%, from spontaneous breathing during exercise). These results suggest that inspiratory muscle fatigue induces increases in muscle sympathetic vasomotor outflow and BP during dynamic leg exercise at mild intensity.  相似文献   

7.
Plasma and muscle amino acid (AA) and ammonia (NH3) responses were measured during prolonged submaximal exercise in humans. Increased NH3 production during submaximal exercise has been attributed to the activity of the purine nucleotide cycle, without consideration of any possible contribution from AA. Six men cycled at 75% of maximal O2 uptake until exhaustion on two occasions after 2.5 days of ingestion of a high-carbohydrate or mixed diet. Plasma samples (antecubital vein) and muscle biopsies (vastus lateralis) were obtained at rest and during exercise and analyzed for plasma and muscle NH3 and AA as well as muscle metabolites. There were no significant diet effects in these parameters, so the majority of results focus on the effects of exercise. Plasma and muscle NH3 increased significantly from the onset and continued to increase throughout exercise. The total and total essential [AA] of muscle were significantly increased at exhaustion, whereas both the plasma and muscle branched-chain AA contents were unchanged. This suggests that protein catabolism was occurring during exercise and the branched-chain AA were used for energy and NH3 production.  相似文献   

8.
9.
Buckwalter, John B., Patrick J. Mueller, and Philip S. Clifford. Sympathetic vasoconstriction in active skeletal muscles during dynamic exercise. J. Appl.Physiol. 83(5): 1575-1580, 1997.Studies utilizing systemic administration of -adrenergic antagonists havefailed to demonstrate sympathetic vasoconstriction in working musclesduring dynamic exercise. The purpose of this study was to examine theexistence of active sympathetic vasoconstriction in working skeletalmuscles by using selective intra-arterial blockade. Six mongrel dogswere instrumented chronically with flow probes on the external iliacarteries of both hindlimbs and with a catheter in one femoral artery.All dogs ran on a motorized treadmill at three intensities on separatedays. After 2 min, the selective1-adrenergic antagonistprazosin (0.1 mg) was infused as a bolus into the femoral arterycatheter. At mild, moderate, and heavy workloads, there were immediateincreases in iliac conductance of 76 ± 7, 54 ± 11, and 22 ± 6% (mean ± SE), respectively. Systemic blood pressure and bloodflow in the contralateral iliac artery were unaffected. These resultsdemonstrate that there is sympathetic vasoconstriction in activeskeletal muscles even at high exercise intensities.

  相似文献   

10.
Sympathetic nervous system restraint of skeletal muscle blood flow during dynamic exercise has been well documented. However, whether sympathetic restraint of muscle blood flow persists and is constant throughout prolonged exercise has not been established. We hypothesized that both alpha1- and alpha2-adrenergic receptors would restrain skeletal muscle blood flow throughout prolonged constant-load exercise and that the restraint would increase as a function of exercise duration. Mongrel dogs were instrumented chronically with transit-time flow probes on the external iliac arteries and an indwelling catheter in a branch of the femoral artery. Flow-adjusted doses of selective alpha1- (prazosin) and alpha2-adrenergic receptor (rauwolscine) antagonists were infused after 5, 30, and 50 min of treadmill exercise at 3 and 6 miles/h. During mild-intensity exercise (3 miles/h), prazosin infusion resulted in a greater (P < 0.05) increase in vascular conductance (VC) after 5 [42% (SD 6)], compared with 30 [28% (SD 6)] and 50 [28% (SD 8)] min of running. In contrast, prazosin resulted in a similar increase in VC after 5 [29% (SD 10)], 30 [24% (SD 9)], and 50 [22% (SD 9)] min of moderate-intensity (6 miles/h) exercise. Rauwolscine infusion resulted in a greater (P < 0.05) increase in VC after 5 [39% (SD 14)] compared with 30 [26% (SD 9)] and 50 [22% (SD 4)] min of exercise at 3 miles/h. Rauwolscine infusion produced a similar increase in VC after 5 [19% (SD 3)], 30 [15% (SD 6)], and 50 [16% (SD 2)] min of exercise at 6 miles/h. These results suggest that the ability of alpha1- and alpha2-adrenergic receptors to produce vasoconstriction and restrain blood flow to active muscles may be influenced by both the intensity and duration of exercise.  相似文献   

11.
Seven subjects cycled to exhaustion [58 +/- 7 (SE) min] at approximately 75% of their maximal oxygen uptake (VO2max). Needle biopsy samples were taken from the quadriceps femoris muscle at rest, after 3, 10, and 40 min of exercise, at exhaustion, and after 10 min of recovery. After 3 min of exercise, a nearly complete transformation of the pyruvate dehydrogenase complex (PDC) into active form had occurred and was maintained throughout the exercise period. The total in vitro activated PDC was unchanged during exercise. The muscle concentration of acetyl-CoA increased from a resting value of 8.4 +/- 1.0 to 31.6 +/- 3.3 mumol/kg dry wt at exhaustion and that of acetylcarnitine from 2.9 +/- 0.7 to 15.6 +/- 1.6 mmol/kg dry wt. This was accompanied by corresponding decreases in reduced CoA (CoASH) from 45.3 +/- 3.1 to 25.9 +/- 3.1 mumol/kg dry wt and in free carnitine from 18.8 +/- 0.7 to 5.7 +/- 0.5 mmol/kg dry wt. Acetyl group accumulation, in the form of acetyl-CoA and acetylcarnitine, was maintained throughout exercise to exhaustion while the glycogen content decreased by 90%. This suggests that availability of acetyl groups was not limiting to exercise performance despite the nearly total depletion of the glycogen store. The increased acetyl-CoA-to-CoASH ratio during exercise caused inhibition of neither the PDC transformation nor the calculated catalytic activity of active PDC.  相似文献   

12.
Animal experiments suggest that an increase in sympathetic outflow can depress muscle spindle sensitivity and thus modulate the stretch reflex response. The results are, however, controversial, and human studies have failed to demonstrate a direct influence of the sympathetic nervous system on the sensitivity of muscle spindles. We studied the effect of increased sympathetic outflow on the short-latency stretch reflex in the soleus muscle evoked by tapping the Achilles tendon. Nine subjects performed three maneuvers causing a sustained activation of sympathetic outflow to the leg: 3 min of static handgrip exercise at 30% of maximal voluntary contraction, followed by 3 min of posthandgrip ischemia, and finally during a 3-min mental arithmetic task. Electromyography was measured from the soleus muscle with bipolar surface electrodes during the Achilles tendon tapping, and beat-to-beat changes in heart rate and mean arterial blood pressure were monitored continuously. Mean arterial pressure was significantly elevated during all three maneuvers, whereas heart rate was significantly elevated during static handgrip exercise and mental arithmetic but not during posthandgrip ischemia. The peak-to-peak amplitude of the short-latency stretch reflex was significantly increased during mental arithmetic (P < 0.05), static handgrip exercise (P < 0.001), and posthandgrip ischemia (P < 0.005). When expressed in percent change from rest, the mean peak-to-peak amplitude increased by 111 (SD 100)% during mental arithmetic, by 160 (SD 103)% during static handgrip exercise, and by 90 (SD 67)% during posthandgrip ischemia. The study clearly indicates a facilitation of the short-latency stretch reflex during increased sympathetic outflow. We note that the enhanced stretch reflex responses observed in relaxed muscles in the absence of skeletomotor activity support the idea that the sympathetic nervous system can exert a direct influence on the human muscle spindles.  相似文献   

13.
Neurohumoral responses during prolonged exercise in humans.   总被引:5,自引:0,他引:5  
This study examined neurohumoral alterations during prolonged exercise with and without hyperthermia. The cerebral oxygen-to-carbohydrate uptake ratio (O2/CHO = arteriovenous oxygen difference divided by arteriovenous glucose difference plus one-half lactate), the cerebral balances of dopamine, and the metabolic precursor of serotonin, tryptophan, were evaluated in eight endurance-trained subjects during exercise randomized to be with or without hyperthermia. The core temperature stabilized at 37.9 +/- 0.1 degrees C (mean +/- SE) in the control trial, whereas it increased to 39.7 +/- 0.2 degrees C in the hyperthermic trial, with a concomitant increase in perceived exertion (P < 0.05). At rest, the brain had a small release of tryptophan (arteriovenous difference of -1.2 +/- 0.3 micromol/l), whereas a net balance was obtained during the two exercise trials. Both the arterial and jugular venous dopamine levels became elevated during the hyperthermic trial, but the net release from the brain was unchanged. During exercise, the O2/CHO was similar across trials, but, during recovery from the hyperthermic trial, the ratio decreased to 3.8 +/- 0.3 (P < 0.05), whereas it returned to the baseline level of approximately 6 within 5 min after the control trial. The lowering of O2/CHO was established by an increased arteriovenous glucose difference (1.1 +/- 0.1 mmol/l during recovery from hyperthermia vs. 0.7 +/- 0.1 mmol/l in control; P < 0.05). The present findings indicate that the brain has an increased need for carbohydrates during recovery from strenuous exercise, whereas enhanced perception of effort as observed during exercise with hyperthermia was not related to alterations in the cerebral balances of dopamine or tryptophan.  相似文献   

14.
IL-6 induces lipolysis when administered to humans. Consequently, it has been hypothesized that IL-6 is released from skeletal muscle during exercise to act in a "hormonelike" manner and increase lipolysis from adipose tissue to supply the muscle with substrate. In the present study, we hypothesized that suppressing lipolysis, and subsequent free fatty acid (FFA) availability, would result in a compensatory elevation in IL-6 at rest and during exercise. First, we had five healthy men ingest nicotinic acid (NA) at 30-min intervals for 120 min at rest [10 mg/kg body mass (initial dose), 5 mg/kg body mass (subsequent doses)]. Plasma was collected and analyzed for FFA and IL-6. After 120 min, plasma FFA concentration was attenuated (0 min: 0.26 +/- 0.05 mmol/l; 120 min: 0.09 +/- 0.02 mmol/l; P < 0.01), whereas plasma IL-6 was concomitantly increased approximately eightfold (0 min: 0.75 +/- 0.18 pg/ml; 120 min: 6.05 +/- 0.89 pg/ml; P < 0.001). To assess the effect of lipolytic suppression on the exercise-induced IL-6 response, seven active, but not specifically trained, men performed two experimental exercise trials with (NA) or without [control (Con)] NA ingestion 60 min before (10 mg/kg body mass) and throughout (5 mg/kg body mass every 30 min) exercise. Blood samples were obtained before ingestion, 60 min after ingestion, and throughout 180 min of cycling exercise at 62 +/- 5% of maximal oxygen consumption. IL-6 gene expression, in muscle and adipose tissue sampled at 0, 90, and 180 min, was determined by using semiquantitative real-time PCR. IL-6 mRNA increased in Con (rest vs. 180 min; P < 0.01) approximately 13-fold in muscle and approximately 42-fold in fat with exercise. NA increased (rest vs. 180 min; P < 0.01) IL-6 mRNA 34-fold in muscle, but the treatment effect was not statistically significant (Con vs. NA, P = 0.1), and 235-fold in fat (Con vs. NA, P < 0.01). Consistent with the study at rest, NA completely suppressed plasma FFA (180 min: Con, 1.42 +/- 0.07 mmol/l; NA, 0.10 +/- 0.01 mmol/l; P < 0.001) and increased plasma IL-6 (180 min: Con, 9.81 +/- 0.98 pg/ml; NA, 19.23 +/- 2.50 pg/ml; P < 0.05) during exercise. In conclusion, these data demonstrate that circulating IL-6 is markedly elevated at rest and during prolonged moderate-intensity exercise when lipolysis is suppressed.  相似文献   

15.
There is evidence that increasing carbohydrate (CHO) availability during exercise by raising preexercise muscle glycogen levels attenuates the activation of AMPKalpha2 during exercise in humans. Similarly, increasing glucose levels decreases AMPKalpha2 activity in rat skeletal muscle in vitro. We examined the effect of CHO ingestion on skeletal muscle AMPK signaling during exercise in nine active male subjects who completed two 120-min bouts of cycling exercise at 65 +/- 1% V(O2 peak). In a randomized, counterbalanced order, subjects ingested either an 8% CHO solution or a placebo solution during exercise. Compared with the placebo trial, CHO ingestion significantly (P < 0.05) increased plasma glucose levels and tracer-determined glucose disappearance. Exercise-induced increases in muscle-calculated free AMP (17.7- vs. 11.8-fold), muscle lactate (3.3- vs. 1.8-fold), and plasma epinephrine were reduced by CHO ingestion. However, the exercise-induced increases in skeletal muscle AMPKalpha2 activity, AMPKalpha2 Thr(172) phosphorylation and acetyl-CoA Ser(222) phosphorylation, were essentially identical in the two trials. These findings indicate that AMPK activation in skeletal muscle during exercise in humans is not sensitive to changes in plasma glucose levels in the normal range. Furthermore, the rise in plasma epinephrine levels in response to exercise was greatly suppressed by CHO ingestion without altering AMPK signaling, raising the possibility that epinephrine does not directly control AMPK activity during muscle contraction under these conditions in vivo.  相似文献   

16.
Sympathetic neural discharge and vascular resistance during exercise in humans   总被引:10,自引:0,他引:10  
The purpose of this study was to determine the relationship between changes in efferent muscle sympathetic nerve activity (MSNA) to the lower leg and calf vascular resistance (CVR) during isometric exercise in humans. We made intraneural (microneurographic) determinations of MSNA in the right leg (peroneal nerve) while simultaneously measuring calf blood flow to the left leg, arterial pressure, and heart rate in 10 subjects before (control), during, and after (recovery) isometric handgrip exercise performed for 2.5 min at 15, 25, and 35% of maximal voluntary contraction (MVC). Heart rate and arterial pressure increased above control within the initial 30 s of handgrip at all levels, and the magnitudes of the increases at end contraction were proportional to the intensity of the exercise. In general, neither MSNA nor CVR increased significantly above control levels during handgrip at 15% MVC. Similarly, neither variable increased above control during the initial 30 s of handgrip at 25 and 35% MVC; however, during the remainder of the contraction period, progressive, parallel increases were observed in MSNA and CVR (P less than 0.05). The correlation coefficients relating changes in MSNA to changes in CVR for the individual subjects averaged 0.63 +/- 0.07 (SE) (range 0.30-0.91) and 0.94 +/- 0.06 (range 0.80-0.99) for the 25 and 35% MVC levels, respectively. During recovery, both MSNA and CVR returned rapidly toward control levels. These findings demonstrate that muscle sympathetic nerve discharge and vascular resistance in the lower leg are tightly coupled during and after isometric arm exercise in humans. Furthermore, the exercise-induced adjustments in the two variables are both contraction intensity and time dependent.  相似文献   

17.
In this study we examined the time course of changes in the plasma concentration of oxypurines [hypoxanthine (Hx), xanthine and urate] during prolonged cycling to fatigue. Ten subjects with an estimated maximum oxygen uptake (VO2(max)) of 54 (range 47-67) ml x kg(-1) x min(-1) cycled at [mean (SEM)] 74 (2)% of VO2(max) until fatigue [79 (8) min]. Plasma levels of oxypurines increased during exercise, but the magnitude and the time course varied considerably between subjects. The plasma concentration of Hx ([Hx]) was 1.3 (0.3) micromol/l at rest and increased eight fold at fatigue. After 60 min of exercise plasma [Hx] was >10 micromol/l in four subjects, whereas in the remaining five subjects it was <5 micromol/l. The muscle contents of total adenine nucleotides (TAN = ATP+ADP+AMP) and inosine monophosphate (IMP) were measured before and after exercise in five subjects. Subjects with a high plasma [Hx] at fatigue also demonstrated a pronounced decrease in muscle TAN and increase in IMP. Plasma [Hx] after 60 min of exercise correlated significantly with plasma concentration of ammonia ([NH(3)], r = 0.90) and blood lactate (r = 0.66). Endurance, measured as time to fatigue, was inversely correlated to plasma [Hx] at 60 min (r = -0.68, P < 0.05) but not to either plasma [NH(3)] or blood lactate. It is concluded that during moderate-intensity exercise, plasma [Hx] increases, but to a variable extent between subjects. The present data suggest that plasma [Hx] is a marker of adenine nucleotide degradation and energetic stress during exercise. The potential use of plasma [Hx] to assess training status and to identify overtraining deserves further attention.  相似文献   

18.
Carnitine metabolism during prolonged exercise and recovery in humans   总被引:6,自引:0,他引:6  
Lennon et al. (J. Appl. Physiol. 55: 489-495, 1983) have recently reported a large loss of muscle total carnitine (TC) after 40 min of moderate exercise. These authors have also suggested that elevations in plasma esterified carnitine (EC) were due to the release of these carnitine esters from muscle during exercise. After 10 male subjects underwent 90 min of cycle egometry we found no alteration in muscle TC from preexercise values. Plasma EC progressively increased above resting values during exercise and remained elevated above rest at 0.75 and 1.5 h into recovery. Elevations of plasma EC were largely due to a decrement in free carnitine (FC) in both conditions. Immediately postexercise the urinary fractional reabsorbsion of EC and FC were similar to that at rest. These results suggest that a net loss of TC from exercising muscle does not occur. As in other conditions marked by falling insulin concentrations, elevations in plasma EC could result from an exchange of carnitine with the hepatic carnitine pool.  相似文献   

19.
Hormone-sensitive lipase (HSL) catalyzes the hydrolysis of intramuscular triacylglycerols (IMTGs), but HSL regulation is poorly understood in skeletal muscle. The present study measured human skeletal muscle HSL activity at rest and during 120 min of cycling at 60% of peak O2 uptake. Several putative HSL regulators were also measured, including muscle long-chain fatty acyl-CoA (LCFA CoA) and free AMP contents and plasma epinephrine and insulin concentrations. HSL activity increased from resting levels by 10 min of exercise (from 2.09 +/- 0.19 to 2.56 +/- 0.22 mmol. min-1x kg dry mass-1, P < 0.05), increased further by 60 min (to 3.12 +/- 0.27 mmol x min-1x kg dry mass-1, P < 0.05), and decreased to near-resting rates after 120 min of cycling. Skeletal muscle LCFA CoA increased (P < 0.05) above rest by 60 min (from 15.9 +/- 3.0 to 50.4 +/- 7.9 micromol/kg dry mass) and increased further by 120 min. Estimated free AMP increased (P < 0.05) from rest to 60 min and was approximately 20-fold greater than that at rest by 120 min. Epinephrine was increased above rest (P < 0.05) at 60 (1.47 +/- 0.15 nM) and 120 min (4.87 +/- 0.76 nM) of exercise. Insulin concentrations decreased rapidly and were lower than resting levels by 10 min and continued to decrease throughout exercise. In summary, HSL activity was increased from resting levels by 10 min, increased further by 60 min, and decreased to near-resting values by 120 min. The increased HSL activity at 60 min was associated with the stimulating effect of increased epinephrine and decreased insulin levels. After 120 min, the decreased HSL activity was associated with the proposed inhibitory effects of increased free AMP. The accumulation of LCFA CoA in the 2nd h of exercise may also have reduced the flux through HSL and accounted for the reduction in IMTG utilization previously observed late in prolonged exercise.  相似文献   

20.
Prolonged moderate-intensity exercise is characterized by a progressive reduction in carbohydrate oxidation and concomitant increase in fat oxidation. Pyruvate dehydrogenase (PDH) controls the entry of pyruvate into oxidative pathways and is a rate-limiting enzyme for carbohydrate metabolism. PDH is controlled by the activities of a kinase (PDK, inhibitory) and phosphatase (stimulatory). To test the hypothesis that increased PDK activity was associated with decreased PDH activity and carbohydrate oxidation during an acute exercise bout, seven recreationally active men completed 4 h of cycle exercise at 55% peak oxygen consumption. Muscle samples were obtained before and at 10 min and 4 h of exercise for the measurement of PDH activity and the extraction of intact mitochondria for the measurements of PDK activity and PDK-2 and PDK-4 protein expression. Carbohydrate oxidation was reduced (P < 0.05) with exercise duration. Muscle glycogen content was lower (P < or = 0.05) at 4 h compared with rest and there was no change in muscle pyruvate content from 10 to 240 min during exercise (10 min: 0.28 +/- 0.05; 240 min: 0.35 +/- 0.09 mmol/kg dry muscle). PDH activity increased (P < 0.05) above resting values at 10 min (2.86 +/- 0.26 mmol.min(-1).kg wet muscle(-1)), but was lower than 10 min after 4 h (2.23 +/- 0.24 mmol.min(-1).kg wet muscle(-1)) of exercise. PDK-2 and PDK-4 protein expression was not different from rest at 10 min and 4 h of exercise. PDK activity at rest averaged 0.081 +/- 0.016 min(-1), was similar at 10 min, and increased (P < 0.05) to 0.189 +/- 0.013 min(-1) at 4 h. Although reduced glycolytic flux may have played a role in decreasing carbohydrate oxidation, the results suggest that increased PDK activity contributed to the reduction in PDH activity and carbohydrate oxidation late in prolonged exercise. The increased PDK activity was independent of changes in intra-mitochondrial effectors, and PDK-2 and PDK-4 protein content, suggesting that it was caused by a change in the specific activity of the existing kinases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号