首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Phosphoenolpyruvate carboxylase (PEPC) is known to play a key role in the initial fixation of CO2 in C4 photosynthesis. The PEPC gene from sugarcane (a C4 plant) was introduced into indica rice (Hang2), a process mediated by Agrobacterium tumefaciens. Integration patterns and copy numbers of the gene was confirmed by DNA blot analysis. RT-PCR and western blotting results showed that the PEPC gene was expressed at both the mRNA and protein levels in the transgenic lines. Real-time PCR results indicated that expression of the sugarcane PEPC gene occurred mostly in green tissues and changed under high temperature and drought stress. All transgenic lines showed higher PEPC enzyme activities compared to the untransformed controls, with the highest activity (11.1 times higher than the controls) being observed in the transgenic line, T34. The transgenic lines also exhibited higher photosynthetic rates. The highest photosynthetic rate was observed in the transgenic line, T54 (22.3 μmol m?2 s?1; 24.6 % higher than that in non-transgenic plants) under high-temperature conditions. Furthermore, the filled grain and total grain numbers for transgenic lines were higher than those for non-transgenic plants, but the grain filling (%) and 1,000-grain weights of all transgenic lines remained unchanged. We concluded that over-expression of the PEPC gene from sugarcane in indica rice (Hang2) resulted in higher PEPC enzyme activities and higher photosynthesis rates under high-temperature conditions.  相似文献   

3.
DNA methylation is known to play an important role in various developmental processes and defense mechanisms in plants and other organisms. However, it is not known whether DNA methylation is implicated in the genetic regulation of plant secondary metabolism, including resveratrol biosynthesis. Resveratrol is a naturally occurring polyphenol that is present in grapes, peanuts, and other plant sources, and it exhibits a wide range of valuable biologically active properties. The transformation of the wild-growing grape Vitis amurensis with the oncogene rolB from Agrobacterium rhizogenes has been demonstrated to considerably increase resveratrol production. To investigate whether DNA methylation regulates resveratrol biosynthesis, we treated both rolB transgenic and empty vector control V. amurensis cell cultures with the DNA demethylation agent 5-azacytosine (azaC). The azaC treatment significantly increased stilbene synthase 10 gene (VaSTS10) expression and resveratrol content in the V. amurensis cell cultures. Using bisulfite sequencing, we examined the methylation status of VaSTS10 in cell cultures under normal conditions and after azaC treatment. Both the promoter and 3′-end of the protein coding region of the VaSTS10 gene were hypermethylated (54–67 %) in the control cell culture. The rolB transgenic cell culture had high levels of resveratrol and lower hypermethylation levels of the VaSTS10 gene (20–47 %). The azaC treatment resulted in reduction in the DNA methylation levels in the promoter and coding regions of the VaSTS10 gene in both cell cultures. These data suggest that the DNA methylation may be involved in the control of resveratrol biosynthesis via the regulation of STS genes expression.  相似文献   

4.
5.
Members of the aldo–keto reductase family including aldose reductases are involved in antioxidant defense by metabolizing a wide range of lipid peroxidation-derived cytotoxic compounds. Therefore, we produced transgenic wheat genotypes over-expressing the cDNA of alfalfa aldose reductase gene. These plants consequently exhibit 1.5–4.3 times higher detoxification activity for the aldehyde substrate. Permanent drought stress was generated in the greenhouse by growing wheat plants in soil with 20 % water capacity. The control and stressed plants were monitored by a semi automatic phenotyping platform providing computer-controlled watering, digital and thermal imaging. Calculation of biomass values was based on the correlation (R 2 = 0.7556) between fresh weight and green pixel-based shoot surface area. The green biomass production by plants of the three transgenic lines was 12–26–41 % higher than the non-transgenic plants’ grown under water limitation. Thermal imaging of stressed non-transgenic plants indicated an elevation in the leaf temperature. The thermal status of transformants was similar at both normal and suboptimal water regime. In drought, the transgenic plants used more water during the growing season. The described phenotyping platform provided a comprehensive data set demonstrating the improved physiological condition of the drought stressed transgenic wheat plants in the vegetative growth phase. In soil with reduced water capacity two transgenic genotypes showed higher seed weight per plant than the control non-transgenic one. Limitation of greenhouse-based phenotyping in analysis of yield potential is discussed.  相似文献   

6.
7.
Modifying plant cell walls by manipulating lignin biosynthesis can improve biofuel yields from lignocellulosic crops. For example, transgenic switchgrass lines with downregulated expression of caffeic acid O-methyltransferase, a lignin biosynthetic enzyme, produce up to 38 % more ethanol than controls. The aim of the present study was to understand cell wall lignification over the second and third growing seasons of COMT-downregulated field-grown switchgrass. COMT gene expression, lignification, and cell wall recalcitrance were assayed for two independent transgenic lines at monthly intervals. Switchgrass rust (Puccinia emaculata) incidence was also tracked across the seasons. Trends in lignification over time differed between the 2 years. In 2012, sampling was initiated in mid-growing season on reproductive-stage plants and there was little variation in the lignin content of all lines (COMT-downregulated and control) over time. COMT-downregulated lines maintained 11–16 % less lignin, 33–40 % lower S/G (syringyl-to-guaiacyl) ratios, and 15–42 % higher sugar release relative to controls for all time points. In 2013, sampling was initiated earlier in the season on elongation-stage plants and the lignin content of all lines steadily increased over time, while sugar release expectedly decreased. S/G ratios increased in non-transgenic control plants as biomass accumulated over the season, while remaining relatively stable across the season in the COMT-downregulated lines. Differences in cell wall chemistry between transgenic and non-transgenic lines were not apparent until plants transitioned to reproductive growth in mid-season, after which the cell walls of COMT-downregulated plants exhibited phenotypes consistent with what was observed in 2012. There were no differences in rust damage between transgenics and controls at any time point. These results provide relevant fundamental insights into the process of lignification in a maturing field-grown biofuel feedstock with downregulated lignin biosynthesis.  相似文献   

8.
Selection genes are routinely used in plant genetic transformation protocols to ensure the survival of transformed cells by limiting the regeneration of non-transgenic cells. In order to find alternatives to the use of antibiotics as selection agents, we followed a targeted approach utilizing a plant gene, encoding a mutant form of the enzyme acetolactate synthase, to convey resistance to herbicides. The sensitivity of sugarcane callus (Saccharum spp. hybrids, cv. NCo310) to a number of herbicides from the sulfonylurea and imidazolinone classes was tested. Callus growth was most affected by sulfonylurea herbicides, particularly 3.6 μg/l chlorsulfuron. Herbicide-resistant transgenic sugarcane plants containing mutant forms of a tobacco acetolactate synthase (als) gene were obtained following biolistic transformation. Post-bombardment, putative transgenic callus was selectively proliferated on MS medium containing 3 mg/l 2,4-dichlorophenoxyacetic acid (2,4-D), 20 g/l sucrose, 0.5 g/l casein, and 3.6 μg/l chlorsulfuron. Plant regeneration and rooting was done on MS medium lacking 2,4-D under similar selection conditions. Thirty vigorously growing putative transgenic plants were successfully ex vitro-acclimatized and established under glasshouse conditions. Glasshouse spraying of putative transgenic plants with 100 mg/l chlorsulfuron dramatically decreased the amount of non-transgenic plants that had escaped the in vitro selection regime. PCR analysis showed that six surviving plants were als-positive and that five of these expressed the mutant als gene. This report is the first to describe a selection system for sugarcane transformation that uses a selectable marker gene of plant origin targeted by a sulfonylurea herbicide.  相似文献   

9.
The field performance of genetic containment technologies–considered important for certain uses of transgenic trees in forestry–is poorly known. We tested the efficiency of a barnase gene driven by the TA29 tapetum-dominant promoter for influencing growth rate and inducing male sterility in a field trial of transgenic hybrid poplar (Populus tremula?×?Populus tremuloides). When the growth of 18 transgenic insertion events with the sterility transgene were compared to non-transgenic controls after two growing seasons, they grew 40 % more slowly in stem volume, and all but one transgenic event grew significantly more slowly than the control. In contrast, when we compared the growth of transgenic trees containing four kinds of β-glucuronidase (GUS) reporter gene constructs to non-transgenic trees—all of which had been produced using the same transformation method and poplar clone and grown at the same field site—there were no statistically significant differences in growth after three growing seasons. In 2 years where gross pollen release from catkins was monitored and found to be abundant in the control, no pollen was visible in the transgenic trees; microscopy suggested the cause was tapetal collapse and revealed the presence of a very few normal-sized pollen grains of unknown viability. In two additional years when viable, well-formed pollen was microscopically documented in controls, and no pollen could be observed in any transgenic trees. We conclude that this construct resulted in robust and possibly complete male sterility that was stable over 4 years in the field.  相似文献   

10.
An efficient and reproducible Agrobacterium-mediated genetic transformation of Withania coagulans was achieved using leaf explants of in vitro multiple shoot culture. The Agrobacterium strain LBA4404 harboring the binary vector pIG121Hm containing β-glucuronidase gene (gusA) under the control of CaMV35S promoter was used in the development of transformation protocol. The optimal conditions for the Agrobacterium-mediated transformation of W. coagulans were found to be the co-cultivation of leaf explants for 20 min to agrobacterial inoculum (O.D. 0.4) followed by 3 days of co-cultivation on medium supplemented with 100 μM acetosyringone. Shoot bud induction as well as differentiation occurred on Murashige and Skoog medium supplemented with 10.0 μM 6-benzylaminopurine, 8.0 μM indole 3-acetic acid, and 50.0 mgl?1 kanamycin after three consecutive cycles of selection. Elongated shoots were rooted using a two-step procedure involving root induction in a medium containing 2.5 μM indole 3-butyric acid for 1 week and then transferred to hormone free one-half MS basal for 2 weeks. We were successful in achieving 100 % frequency of transient GUS expression with 5 % stable transformation efficiency using optimized conditions. PCR analysis of T0 transgenic plants showed the presence of gusA and nptII genes confirming the transgenic event. Histochemical GUS expression was observed in the putative transgenic W. coagulans plants. Thin layer chromatography showed the presence of similar type of withanolides in the transgenic and non-transgenic regenerated plants. A. tumefaciens mediated transformation system via leaf explants developed in this study will be useful for pathway manipulation using metabolic engineering for bioactive withanolides in W. coagulans, an important medicinal plant.  相似文献   

11.
Analysis of target sequences of DDM1s in Brassica rapa by MSAP   总被引:1,自引:0,他引:1  
DNA methylation is an important epigenetic modification regulating gene expression and transposon silencing. Although epigenetic regulation is involved in some agricultural traits, there has been relatively little research on epigenetic modifications of genes in Brassica rapa, which includes many important vegetables. In B. rapa, orthologs of DDM1, a chromatin remodeling factor required for maintenance of DNA methylation, have been characterized and DNA hypomethylated knock-down plants by RNAi (ddm1-RNAi plants) have been generated. In this study, we investigated differences of DNA methylation status at the genome-wide level between a wild-type (WT) plant and a ddm1-RNAi plant by methylation-sensitive amplification polymorphism (MSAP) analysis. MSAP analysis detected changes of DNA methylation of many repetitive sequences in the ddm1-RNAi plant. Search for body methylated regions in the WT plant revealed no difference in gene body methylation levels between the WT plant and the ddm1-RNAi plant. These results indicate that repetitive sequences are preferentially methylated by DDM1 genes in B. rapa.  相似文献   

12.
The expression of recombinant proteins of pharmaceutical interest in the milk of transgenic farm animals can result in phenotypes exhibiting compromised lactation performance, as a result of the extraordinary demand placed on the mammary gland. In this study, we investigated differences in the protein composition of milk from control and transgenic goats expressing recombinant human butyrylcholinesterase. In Experiment 1, the milk was characterized by gel electrophoresis and liquid chromatography/mass spectrometry in order to identify protein bands that were uniquely visible in the transgenic milk and/or at differing band densities compared with controls. Differences in protein content were additionally evaluated by computer assisted band densitometry. Proteins identified in the transgenic milk only included serum proteins (i.e. complement component 3b, ceruloplasmin), a cytoskeleton protein (i.e. actin) and a stress-induced protein (94 kDA glucose-regulated protein). Proteins exhibiting evident differences in band density between the transgenic and control groups included immunoglobulins, serum albumin, β-lactoglobulin and α-lactalbumin. These results were found to be indicative of compromised epithelial tight junctions, premature mammary cell death, and protein synthesis stress resulting from transgene expression. In Experiment 2, the concentration of α-lactalbumin was determined using the IDRing® assay and was found to be significantly reduced on day 1 of lactation in transgenic goats (4.33 ± 0.97 vs. 2.24 ± 0.25 mg/ml, P < 0.01), but was not different from non-transgenic controls by day 30 (0.99 ± 0.46 vs. 0.90 ± 0.11 mg/ml, P > 0.05). We concluded that a decreased/delayed expression of the α-lactalbumin gene may be the cause for the delayed start of milk production observed in this herd of transgenic goats.  相似文献   

13.
The Fast-track breeding approach in apple is based on the utilization of the BpMADS4 gene from Betula pendula. However, this approach has several disadvantages which could be solved using other flowering inducing genes and inducible promoters. The FLOWERING LOCUS T genes (PtFT1 and PtFT2) from poplar (Populus trichocarpa) driven by the heat-inducible Gmhsp 17.5-E (HSP)-promoter from soybean (Glycine max) were transferred into apple (Malus × domestica Borkh.) cv. ‘Pinova’ in order to induce flowering. Seven transgenic apple lines were obtained. All transgenic apple lines micrografted onto ‘Golden Delicious’ seedlings used as rootstocks were transferred to the greenhouse. Six out of seven transgenic lines developed flowers after a heat treatment at 42 °C for 1 h daily over a period of 28 days. The transgenic line T836 failed to flower. Flower morphology and pollen vitality of transgenic lines appeared normal. Transgenic plants were successfully used for hybridizations. Pollen from Malus ×robusta 5 applied to flowers of transgenic plants resulted in fruit formation. Heat induced PtFT1, respectively PtFT2 over-expressing rootstocks did not cause flowering in micrografted non-transgenic ‘Pinova’ scions. The mRNA of the PtFT genes was transported from transgenic rootstocks to non-transgenic scions only in one case. As a balance between plant development and flowering is important for the production of early flowering plants usable for a fast-track breeding program the new approach based on heat-induced flowering could be a refinement of the fast breeding program using the possibility of turning-on-turning-off flowering in physiological well developed plants.  相似文献   

14.
DNA methylation occurs mostly at the C5 position of dinucleotide symmetric CpG sites in genomic DNA. A balance is maintained in the plant genome between DNA methylation mediated by RNA-directed DNA methylation (RdDM) and DNA demethylation mediated by the DEMETER (DME) protein family and REPRESSOR OF SILENCING (ROS1). We used double-stranded RNA (dsRNA) silencing to suppress ROS1 protein expression in ‘Nanlin895’ (Populus deltoides × Populus euramericana ‘Nanlin895’). Leaves of WT and transformant poplars revealed more symmetric methylation on CpG sites than roots and stems. In addition, leaves of transformant poplars revealed more methylated CpG sites in both 5.8S rDNA and histone H3 compared to WT types via 0, 50 and 100 mM NaCl treatments. In asymmetric methylation sites, transformant poplars exhibited more methylated CpHpG and CpHpH contexts than WT poplars. On the other hand, hypermethylation induced by PtROS1-RNAi construct resulted in pleiotropic phenotypic changes in transgenic poplars. The percentage of wavy leaves was increased maximum by ~45% in transgenic poplars. Also, the number of leaves was increased by ~200 number in transformants. Furthermore, shooting (%) and rooting (%) was decreased in transgenic poplars versus WT.  相似文献   

15.
16.
To understand the genetic and expression stability of transgenic insect-resistant poplar 741, this study compared the experimental plantations of transgenic insect-resistant poplar 741 lines (pb1, pb6, pb11, pb17, and pb29) with non-transgenic poplar 741, P. tomentosa Carr.f.yixianensis (poplar 84 K) and transgenic hybrid progeny lines cultured from immature embryos. The insect resistance and growth stability of transgenic poplar 741 were investigated by detecting exogenous genes by polymerase chain reaction (PCR), measuring the diameter at breast height (DBH) and volume growth, and performing insect-resistance tests against Clostera anachoreta and Hyphantria cunea. The inheritance and expression of the exogenous gene was also examined in transgenic hybrid progeny lines. The results revealed that the exogenous gene was stable, remaining stable in 8–10-year-old transgenic poplar 741 trees. No significant difference was found between the height of 10-year-old transgenic poplar 741 and non-transgenic poplar 741 in the experimental plantations in Baoding, China. The DBH and volume growth of pb17 was significantly greater than that of pb29 and pb11. The 8-year-old transgenic poplar 741 pb29 grown in Zhuozhou showed no significant difference from poplar 741 in terms of height growth, DBH, and volume. From 1999 to 2013, pb29-fed larvae (C. anachoreta larvae and H. cunea) exhibited stable mortality rates >79%. Likewise, pb11-fed larvae showed stable mortality rates (C. anachoreta larvae had mortality rates >75%, and H. cunea larvae exhibited rates >80%). pb17 conferred low insect-resistant stability, showing mortality rates that varied from 28.2 to 99.27% in C. anachoreta and H. cunea larvae. Among the hybrid progeny lines acquired by hybridization of pb1, pb29, and pb11 with 84 K poplar, the ratios of PCR-positive to PCR-negative lines for the BtCry1Ac gene were 1.31, 1.15, and 0.86, respectively. X 2 tests showed that the ratio was consistent with the Mendelian law of 1:1 segregation controlled by an allele pair. The hybrid progeny of pb6?×?84 K had a segregation ratio of 3:1. The nptII gene followed the same segregation rule as Cry1Ac. The transgenic hybrid progeny that contained Cry1Ac gene exhibited the same insect resistance as the parent plants.  相似文献   

17.
18.
19.
Stable expression of foreign genes over the entire life span of a plant is important for long-lived organisms such as trees. For transgenic forest trees, very little information is available on long-term transgene expression and genomic stability. Independent transgenic lines obtained directly after transformation are initially screened in respect to T-DNA integration and transgene expression. However, very little consideration has been given to long-term transgene stability in long-lived forest trees. We have investigated possible genome wide changes following T-DNA integration as well as long-term stability of transgene expression in different transgenic lines of hybrid aspen (Populus tremula × Populus tremuloides) that are up to 19 years old. For studies on possible genome wide changes following T-DNA integration, four different independent rolC-transgenic lines were subjected to an extensive AFLP study and compared to the non-transgenic control line. Only minor genomic changes following T-DNA integration could be detected. To study long-term transgene expression, six different independent rolC-transgenic lines produced in 1993 and since that time have been kept continuously under in vitro conditions. In addition, 18 transgenic plants belonging to eight independent rolC-transgenic lines transferred to glasshouse between 1994 and 2004 were chosen to determine the presence and expression of the rolC gene. In all transgenic lines examined, the rolC gene could successfully be amplified by PCR tests. Both, the 19 years old tissue cultures and the up to 18 years old glasshouse-grown trees revealed expression of the rolC transgene, as demonstrated by the rolC-phenotype and/or northern blot experiments confirming long-term transgene expression.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号