首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 988 毫秒
1.
Recombinant cDNA libraries were constructed from poly(A)+ RNA isolated from different stages of oogenesis and embryogenesis from the clawed toad Xenopus laevis. Hybridization analyses were used to describe the accumulation of specific RNAs represented by these cDNA clones in oocytes, embryos, adult liver, a cell line derived from Xenopus borealis embryos (Xb693), and a tumorigenic substrain of that cell line (Xb693T). It was found that from 550 cDNA clones analysed, six sequences accumulate to higher titers in poly(A)+ RNA isolated from the tumorigenic cell line compared with the non-tumorigenic cell line. All six sequences were expressed at high levels during oogenesis, and the titers of three of these sequences decreased considerably during oogenesis. DNA sequencing of these three sequences followed by a computer search of protein data banks has identified them as coding for the glycolytic enzyme enolase, the ATP-ADP carrier protein, and a-tubulin.  相似文献   

2.
C A Fox  M D Sheets  E Wahle    M Wickens 《The EMBO journal》1992,11(13):5021-5032
Specific maternal mRNAs receive poly(A) during early development as a means of translational regulation. In this report, we investigated the mechanism and control of poly(A) addition during frog oocyte maturation, in which oocytes advance from first to second meiosis becoming eggs. We analyzed polyadenylation in vitro in oocyte and egg extracts. In vivo, polyadenylation during maturation requires AAUAAA and a U-rich element. The same sequences are required for polyadenylation in egg extracts in vitro. The in vitro reaction requires at least two separable components: a poly(A) polymerase and an RNA binding activity with specificity for AAUAAA and the U-rich element. The poly(A) polymerase is similar to nuclear poly(A) polymerases in mammalian cells. Through a 2000-fold partial purification, the frog egg and mammalian enzymes were found to be very similar. More importantly, a purified calf thymus poly(A) polymerase acquired the sequence specificity seen during frog oocyte maturation when mixed with the frog egg RNA binding fraction, demonstrating the interchangeability of the two enzymes. To determine how polyadenylation is activated during maturation, we compared polymerase and RNA binding activities in oocyte and egg extracts. Although oocyte extracts were much less active in maturation-specific polyadenylation, they contained nearly as much poly(A) polymerase activity. In contrast, the RNA binding activity differed dramatically in oocyte and egg extracts: oocyte extracts contained less binding activity and the activity that was present exhibited an altered mobility in gel retardation assays. Finally, we demonstrate that components present in the RNA binding fraction are rate-limiting in the oocyte extract, suggesting that fraction contains the target that is activated by progesterone treatment. This target may be the RNA binding activity itself. We propose that in spite of the many biological differences between them, nuclear polyadenylation and cytoplasmic polyadenylation during early development may be catalyzed by similar, or even identical, components.  相似文献   

3.
We have investigated the accumulation and adenylation of the maternal mRNA during oogenesis in the oocytes of the marine worm Urechis caupo. The analysis, using in vitro translation and cDNA probes to assay for specific mRNAs, demonstrates that different maternal mRNAs accumulate with different patterns during oogenesis. One class of maternal mRNAs accumulates throughout oogenesis and remains at a steady level in the full-grown oocyte. These mRNAs do not have a poly(A) tail long enough to mediate binding to oligo(dT)-cellulose in oocytes, but are rapidly adenylated immediately following fertilization. The other maternal mRNAs accumulate in growing oocytes as poly(A)+ RNA and undergo some deadenylation in full-grown oocytes and embryos. Some of these mRNAs attain their highest concentration fairly early in oogenesis, while others continue to accumulate during later stages. Many of the mRNAs that accumulate as poly(A)+ RNA in growing oocytes diminish dramatically in concentration in full-grown oocytes.  相似文献   

4.
Cytoplasmic poly(A) elongation is one mechanism that regulates translational recruitment of maternal mRNA in early development. In Xenopus laevis, poly(A) elongation is controlled by two cis elements in the 3' untranslated regions of responsive mRNAs: the hexanucleotide AAUAAA and a U-rich structure with the general sequence UUUUUAAU, which is referred to as the cytoplasmic polyadenylation element (CPE). B4 RNA, which contains these sequences, is polyadenylated during oocyte maturation and maintains a poly(A) tail in early embryos. However, cdk2 RNA, which also contains these sequences, is polyadenylated during maturation but deadenylated after fertilization. This suggests that cis-acting elements in cdk2 RNA signal the removal of the poly(A) tail at this time. By using poly(A) RNA-injected eggs, we showed that two elements which reside 5' of the CPE and 3' of the hexanucleotide act synergistically to promote embryonic deadenylation of this RNA. When an identical RNA lacking a poly(A) tail was injected, these sequences also prevented poly(A) addition. When fused to CAT RNA, the cdk2 3' untranslated region, which contains these elements, as well as the CPE and the hexanucleotide, promoted poly(A) addition and enhanced chloramphenicol acetyltransferase activity during maturation, as well as repression of these events after fertilization. Incubation of fertilized eggs with cycloheximide prevented the embryonic inhibition of cdk2 RNA polyadenylation but did not affect the robust polyadenylation of B4 RNA. This suggests that a maternal mRNA, whose translation occurs only after fertilization, is necessary for the cdk2 deadenylation or inhibition of RNA polyadenylation. This was further suggested when poly(A)+ RNA isolated from two-cell embryos was injected into oocytes that were then allowed to mature. Such oocytes became deficient for cdk2 RNA polyadenylation but remained proficient for B4 RNA polyadenylation. These data show that CPE function is developmentally regulated by multiple sequences and factors.  相似文献   

5.
Cytoplasmic poly(A) elongation is widely utilized during the early development of many organisms as a mechanism for translational activation. Targeting of mRNAs for this mechanism requires the presence of a U-rich element, the cytoplasmic polyadenylation element (CPE), and its binding protein, CPEB. Blocking cytoplasmic polyadenylation by interfering with the CPE or CPEB prevents the translational activation of mRNAs that are crucial for oocyte maturation. The CPE sequence and CPEB are also important for translational repression of mRNAs stored in the Xenopus oocyte during oogenesis. To understand the contribution of protein metabolism to these two roles for CPEB, we have examined the mechanisms influencing the expression of CPEB during oogenesis and oocyte maturation. Through a comparison of CPEB mRNA levels, protein synthesis, and accumulation, we find that CPEB is synthesized during oogenesis and stockpiled in the oocyte. Minimal synthesis of CPEB, <3.6%, occurs during oocyte maturation. In late oocyte maturation, 75% of CPEB is degraded coincident with germinal vesicle breakdown. Using proteasome and ubiquitination inhibitors, we demonstrate that CPEB degradation occurs via the proteasome pathway, most likely through ubiquitin-conjugated intermediates. In addition, we demonstrate that degradation requires a 14 amino acid PEST domain.  相似文献   

6.
A lambda recombinant DNA library containing Drosophila melanogaster nuclear DNA inserts was screened with cDNA made from oocyte and gastrula poly(A)+ RNA. 124 clones were isolated which represented sequences complementary to a distribution of abundancies of their RNAs. The clone set was then used as probes to identify those whose RNA abundancies changed during embryonic development. The vast majority of clones showed little difference during development. Four different clones were identified whose poly(A)+ RNAs were quantitatively regulated; two were oocyte-specific, and two were embryonic-specific. 44 clones were chosen for in situ hybridization to salivary gland polytene chromosomes. The location and distribution of their sites are described. A class of clones, identified by in situ hybridization to the nucleolus, is further described. These clones contain a scrambled array of ribosomal intervening sequences.  相似文献   

7.
A set of nine phage lambda clones containing inserts from Drosophila melanogaster which are complementary to cDNA made from oocyte poly(A)+ RNA were selected from a larger group. These cloned elements code for a range of middle abundant RNA sequences which show no appreciable change in abundance during Drosophila embryogenesis. Seven of the nine clones are complementary to two oocyte RNAs, one to three RNAs and one to four RNAs. This study describes the changes that occur in these RNAs during embryonic development in the polysomal and non-polysomal fraction, and in the poly(A)+ RNA and poly(A)- RNA fraction. In all nine of these clones, greater than 70% of the complementary RNA is found in the polysomal region of a sucrose gradient. This proportion increases somewhat during development. Specific changes have been found during development in the proportion of RNA that is poly(A)+. Depending to the cloned sequence, this proportion may increase, decrease, or remain unchanged. For those clones that show a change, most of this change occurs between 8 and 19 h of development. Our data suggest, furthermore, the presence of a class of non-adenylated RNA being utilized during embryogenesis.  相似文献   

8.
9.
cDNA complementary to total oocyte poly(A)+ RNA from Drosophila melanogaster was enriched for sequences complementary to transient maternal sequences; that is, those sequences which disappear from the oocyte during subsequent. A seven- to ten-fold enrichment factor was obtained, from 5.3% to about 50% of the total cDNA. Kinetic analysis of this enriched fraction indicates that the transient maternal sequences include 44 +/- 14 different sequences.  相似文献   

10.
Expression of a Madin-Darby canine kidney (MDCK) cell taurine transporter was examined in Xenopus oocytes that had been injected with poly(A)+ RNA extracted from MDCK cells. Compared with water-injected oocytes, injection of total poly(A)+ RNA resulted in an increase in Na(+)-dependent taurine uptake which was directly related to the amount of RNA injected. The magnitude of expression in poly(A)+ RNA-injected oocytes was 5-10-fold higher than that of water-injected oocytes. Since the Vmax of taurine uptake in MDCK cells is increased by culture in hypertonic medium, we compared oocyte taurine uptake after injection with poly(A)+ RNA from MDCK cells cultured in hypertonic medium with uptake in oocytes injected with poly(A)+ RNA from hypertonic cells elicited twice the taurine uptake elicited by poly(A)+ RNA from isotonic cells. The transporter expressed in oocytes was like that in MDCK cells: it was completely dependent on external sodium and was also anion dependent (Cl- greater than or equal to Br- greater than SCN- much greater than gluconate-). Other beta-amino acids, beta-alanine and hypotaurine, inhibited taurine uptake, but L-alanine and 2-(methylamino) isobutyric acid did not. The apparent Km of the transporter was 7.0 microM. After size fractionation on a sucrose density gradient, poly(A)+ RNA encoding for the MDCK taurine transporter was found in the fraction whose average size was 4.4 kilobases.  相似文献   

11.
12.
Poly(A)+RNA fractions prepared from free and loosely and tightly membrane-bound polysome populations (poly(A)+RNAfree, poly(A)+RNAloose, and poly(A)+RNAtight) were used to drive cDNA in homologous and heterologous hybridization reactions. A large fraction by mass of sequences was shared among the three poly(A)+RNA populations, but shared sequences exhibited distinct frequency distributions within the different populations. 13-15 in vitro translation products of poly(A)+RNAfree and poly(A)+RNAloose detected by gel electrophoresis were shared. Most of these were produced in different relative quantities by the two RNA populations. Five or six higher mol wt polypeptides were produced by poly(A)+RNAloose that were not detected as products of either poly(A)+free or poly(A)+RNAtight. We suggest that loosely bound polysomes may not be artifactually derived as reflected in their quantitatively distinct poly(A)+RNA population. Two tightly membrane-bound RNP fractions were prepared from rat liver on the basis of their release from or retention on purified rough microsomes or a crude membrane fraction after in vitro disaggregation of polysomes with high-salt and puromycin. Homologous and heterologous hybridizations involving their poly(A)+RNA fractions revealed that a large portion by mass of sequences was shared but that these sequences exhibited distinct frequency distributions in the two fractions. The RNA fractions produced exhibited distinct frequency distributions in the two fractions. The RNA fractions produced an identical set of in vitro translation products but individual polypeptides were produced in different relative quantities. This indicates that the two RNP fractions do not arise by any random artifactual process and suggests that they may represent functionally distinct populations.  相似文献   

13.
We describe the accumulation and distribution of poly (A)+RNA during oogenesis and early embryogenesis as revealed by in situ hybridization with a radio-labeled poly (U) probe. The amount of poly (A)+RNA in nurse cell cytoplasm continuously increased untill mid-vitellogenic stage (st. 10), then decreased with the rapid increase of poly (A)+RNA in the oocyte (st. 11). The localization of poly (A)+RNA at stage 10 was in the anterior region of the oocyte, where it is connected by cytoplasmic bridge to the nurse cells. These observations indicate that most of the poly (A)+RNA synthesized in the nurse cells is transferred to the oocyte through the cytoplasmic bridges at stage 10–11. During the remainder of oogenesis (st. 11–14) and during preblastodermal embryogenesis, poly (A)+RNA was evenly distributed over the cytoplasm of oocytes and embryos. At blastoderm stage, poly(A)+RNA became concentrated in the peripheral region of embryos. Though the somatic nuclei of the blastoderm contained a detectable amount of poly (A)+ RNA, the pole cell nuclei did not. The cytoplasmic RNA visualised by acridine orange staining and the poly (A)+RNA detected by hybridization with [3H]poly (U) exhibited identical distributions during oogenesis and early embryogenesis. These observations provide a basis to assess the unique distributions of specific RNA sequences involved in early development.  相似文献   

14.
The distribution of cytoplasmic messenger ribonucleic acids (RNAs) in translationally active polysomes and inactive ribonucleoprotein particles changes during early development. Cellular levels and subcellular distributions have been determined for most messenger RNAs, but little is known about how individual sequences change. In this study, we used hybridization techniques with cloned sequences to measure the titers of 23 mitochondrial and non-mitochondrial polyadenylate-containing [poly(A)+]RNA species during early development in the frog Xenopus laevis. These RNA species were some of the most abundant cellular poly(A)+ RNA species in early embryos. The concentrations of most of the non-mitochondrial (cytoplasmic) RNAs remained constant in embryos during the first 10 h of development, although the concentrations of a few species increased. During neurulation, we detected several new poly(A)+ RNA sequences in polysomes, and with one possible exception the accumulation of these sequences was largely the result of new synthesis or de novo polyadenylation and not due to the recruitment of nonpolysomal (free ribonucleoprotein) poly(A)+ RNA. We measured the subcellular distributions of these RNA species in polysomes and free ribonucleoproteins during early development. In gastrulae, non-mitochondrial RNAs were distributed differentially between the two cell fractions; some RNA species were represented more in free ribonucleoproteins, and others were represented less. By the neurula stage this differential distribution in polysomes and free ribonucleoproteins was less pronounced, and we found species almost entirely in polysomes. Some poly(A)+ RNA species transcribed from the mitochondrial genome were localized within the mitochondria and were mapped to discrete fragments of the mitochondrial genome. Much of this poly(A)+ RNA was transcribed from the ribosomal locus. Nonribosomal mitochondrial poly(A)+ RNA species became enriched in polysome-like structures after fertilization, with time courses similar to the time course of mobilization of cytoplasmic poly(A)+ RNA.  相似文献   

15.
Oogenesis of amphibians is an atypical situation in which histone mRNA is polyadenylated. The poly(A) tract on H4 mRNA has been examined by Sl nuclease analysis. Throughout oogenesis the poly(A) tract is very short, and nonexistent on some mRNA molecules. The poly(A) tract is completely removed during maturation of the oocyte, and is absent in embryos and cultured cells.  相似文献   

16.
During oogenesis, Xenopus oocytes synthesize and accumulate all types of RNA. In particular, they store poly(A+) RNA to such an extent that only about 5% is actually translated in the oocyte. Using a protein blotting and in vitro binding assay, we have identified proteins which are associated with poly(A+) RNA and perhaps other RNAs as well. Two groups of binding proteins were identified. The first group accumulates during oogenesis, generally is less than 50,000 molecular weight, and sediments in the 80 S and polysome regions of a gradient. These proteins most likely include ribosomal proteins. A second group of proteins is oocyte-specific, sediments less than 80 S as well 80 S and slightly heavier, generally has molecular weights greater than 50,000, and diminishes in amount as oogenesis progresses. In addition, these proteins are retained by oligo(dT)-cellulose when ribonucleoproteins are analyzed by chromatography and, when challenged with several different types of RNA in vitro, bind poly(A+) RNA preferentially. The possibility that some of these proteins might regulate the stability or translatability of mRNAs during oogenesis is discussed.  相似文献   

17.
18.
Mouse follicles were labeled with [3H]uridine and then cultured in vitro for 3 days. When oocytes were disrupted, about 40% of the total radiolabeled RNA could be sedimented at 9,000g. Fractionation of this RNA on poly(U)-Sepharose revealed that about 30% and 60% of the total amount of radiolabeled poly(A)- and poly(A)+ RNA, respectively, were in the pellet fraction. Treatments that disrupt protein structure reduced the amount of 9,000g sedimentable RNA and affected to the same extent the distribution of Poly(A)- and poly(A)+ RNA in the pellet and supernatant fractions. CsCl centrifugation of formaldehyde-fixed pellets revealed that virtually all of the radiolabeled RNA had a density significantly lower than that of ribosomes. The sedimentable RNA appeared not to be polysomal, membrane bound or associated wih a cytoskeleton. Agarose gel electrophoresis after poly(U)-Sepharose fractionation of either the pellet or supernatant revealed the presence of 28S, 18S, 5S + 4S, and heterodisperse poly(A)+ RNA. The size of distribution of poly(A)+ RNA in the pellet and supernatant fractions was fairly similar. Pulse-chase experiments revealed that the stability of poly(A)- RNA in the pellet and supernatant fractions was the same within the experimental error and a similar situation was found for poly(A)+ RNA. RNA in pellet translated in vitro coded for discrete size classes of protein. Since the relative band intensities were similar for both total and pellet RNA translated in vitro there seemed to be no major partitioning of specific size classes of mRNA into the pellet fraction. These results are discussed in terms of a possible composition of the lattice structures that accumulate during mouse oocyte growth and have been postulated to be a storage form for ribosome (Burkholder et al., '71).  相似文献   

19.
Using a 3H-poly(U) binding technique, poly(A) content has been measured in Xenopus laevis eggs consisting of two groups: one was obtained from females 12 to 16 hr after a single injection of human chorionic gonadotropin (HCG) (designated "unstimulated" eggs), and the other was obtained one week later from the same females by the second injection of the hormone ("stimulated" eggs). The stimulated egg contained about a 1.2-fold larger amount of poly(A) than the unstimulated one. Gel electrophoresis has revealed that this slight but reproducible increase in the poly(A) content was due to the production of a specific size class of poly(A) (i.e., about 80 nucleotides long). This poly(A) was also detectable in the oocytes obtained one week after a single injection but not in those from uninjected females. Poly(A)+RNA was analyzed by sucrose density gradient centrifugation, and it has been shown that most of the 80 nucleotide-long poly(A) sequences in the stimulated eggs were associated with RNA whose size distribution was less heterogeneous than, and hence distinguishable from, that of the bulk poly(A)+RNA. The possibility is discussed that HCG hormone may stimulate the synthesis of a specific class of poly(A)+RNA in smaller oocytes, which may not normally take place to a significant extent during maturation.  相似文献   

20.
Nuclear RNA from Chinese hamster ovary cells was effectively separated into polyadenylic acid [poly(A)]-containing [poly (A)+] and non-poly(A)-containing [poly(A)-] fractions so that -90% of the poly(A) was present in the (A)+ fraction. Only 25% of the 5'-terminal caps of the large nuclear molecules were present in the (A)+ class, but about 70% of the specific mRNA sequences (assayed with cDNA clones) were in the (A)+ class. It appears that many long capped heterogeneous nuclear RNA molecules are of a different sequence category from those molecules that are successfully processed into mRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号