首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Tran LM  Rizk ML  Liao JC 《Biophysical journal》2008,95(12):5606-5617
Complete modeling of metabolic networks is desirable, but it is difficult to accomplish because of the lack of kinetics. As a step toward this goal, we have developed an approach to build an ensemble of dynamic models that reach the same steady state. The models in the ensemble are based on the same mechanistic framework at the elementary reaction level, including known regulations, and span the space of all kinetics allowable by thermodynamics. This ensemble allows for the examination of possible phenotypes of the network upon perturbations, such as changes in enzyme expression levels. The size of the ensemble is reduced by acquiring data for such perturbation phenotypes. If the mechanistic framework is approximately accurate, the ensemble converges to a smaller set of models and becomes more predictive. This approach bypasses the need for detailed characterization of kinetic parameters and arrives at a set of models that describes relevant phenotypes upon enzyme perturbations.  相似文献   

3.
4.
5.
6.
7.

Background  

Direct visualization of data sets in the context of biochemical network drawings is one of the most appealing approaches in the field of data evaluation within systems biology. One important type of information that is very helpful in interpreting and understanding metabolic networks has been overlooked so far. Here we focus on the representation of this type of information given by the strength of regulatory interactions between metabolite pools and reaction steps.  相似文献   

8.
Mathematical modeling often helps to provide a systems perspective on gene regulatory networks. In particular, qualitative approaches are useful when detailed kinetic information is lacking. Multiple methods have been developed that implement qualitative information in different ways, e.g., in purely discrete or hybrid discrete/continuous models. In this paper, we compare the discrete asynchronous logical modeling formalism for gene regulatory networks due to R. Thomas with piecewise affine differential equation models. We provide a local characterization of the qualitative dynamics of a piecewise affine differential equation model using the discrete dynamics of a corresponding Thomas model. Based on this result, we investigate the consistency of higher-level dynamical properties such as attractor characteristics and reachability. We show that although the two approaches are based on equivalent information, the resulting qualitative dynamics are different. In particular, the dynamics of the piecewise affine differential equation model is not a simple refinement of the dynamics of the Thomas model  相似文献   

9.
10.
11.
Steady-state visually evoked potentials (SSVEP) have been widely used in the neural engineering and cognitive neuroscience researches. Previous studies have indicated that the SSVEP fundamental frequency responses are correlated with the topological properties of the functional networks entrained by the periodic stimuli. Given the different spatial and functional roles of the fundamental frequency and harmonic responses, in this study we further investigated the relation between the harmonic responses and the corresponding functional networks, using the graph theoretical analysis. We found that the second harmonic responses were positively correlated to the mean functional connectivity, clustering coefficient, and global and local efficiencies, while negatively correlated with the characteristic path lengths of the corresponding networks. In addition, similar pattern occurred with the lowest stimulus frequency (6.25 Hz) at the third harmonic responses. These findings demonstrate that more efficient brain networks are related to larger SSVEP responses. Furthermore, we showed that the main connection pattern of the SSVEP harmonic response networks originates from the interactions between the frontal and parietal–occipital regions. Overall, this study may bring new insights into the understanding of the brain mechanisms underlying SSVEP.  相似文献   

12.
Genes with common functions often exhibit correlated expression levels, which can be used to identify sets of interacting genes from microarray data. Microarrays typically measure expression across genomic space, creating a massive matrix of co-expression that must be mined to extract only the most relevant gene interactions. We describe a graph theoretical approach to extracting co-expressed sets of genes, based on the computation of cliques. Unlike the results of traditional clustering algorithms, cliques are not disjoint and allow genes to be assigned to multiple sets of interacting partners, consistent with biological reality. A graph is created by thresholding the correlation matrix to include only the correlations most likely to signify functional relationships. Cliques computed from the graph correspond to sets of genes for which significant edges are present between all members of the set, representing potential members of common or interacting pathways. Clique membership can be used to infer function about poorly annotated genes, based on the known functions of better-annotated genes with which they share clique membership (i.e., “guilt-by-association”). We illustrate our method by applying it to microarray data collected from the spleens of mice exposed to low-dose ionizing radiation. Differential analysis is used to identify sets of genes whose interactions are impacted by radiation exposure. The correlation graph is also queried independently of clique to extract edges that are impacted by radiation. We present several examples of multiple gene interactions that are altered by radiation exposure and thus represent potential molecular pathways that mediate the radiation response.  相似文献   

13.
Cellular components interact with each other to form networks that process information and evoke biological responses. A deep understanding of the behavior of these networks requires the development and analysis of mathematical models. In this article, different types of mathematical representations for modeling signaling networks are described, and the advantages and disadvantages of each type are discussed. Two experimentally well-studied signaling networks are then used as examples to illustrate the insight that could be gained through modeling. Finally, the modeling approach is expanded to describe how signaling networks might regulate cellular machines and evoke phenotypic behaviors.  相似文献   

14.

Background  

Gene regulation and metabolic reactions are two primary activities of life. Although many works have been dedicated to study each system, the coupling between them is less well understood. To bridge this gap, we propose a joint model of gene regulation and metabolic reactions.  相似文献   

15.
Optimization of regulatory architectures in metabolic reaction networks   总被引:4,自引:0,他引:4  
Successful biotechnological applications, such as amino acid production, have demonstrated significant improvement in bioprocess performance by genetic modifications of metabolic control architectures and enzyme expression levels. However, the stoichiometric complexity of metabolic pathways, along with their strongly nonlinear nature and regulatory coupling, necessitates the use of structured kinetic models to direct experimental applications and aid in quantitative understanding of cellular bioprocesses. A novel optimization problem is introduced here, the objective of which is to identify changes in the regulatory characteristics of pertinent enzymes and in their cellular content which should be implemented to optimize a particular metabolic process. The mathematical representation of the metabolic reaction networks used is the S-system representation, which at steady state is characterized by linear equations. Exploiting the linearity of the representation, we formulated the optimization problem as a mixed-integer linear programming (MILP) problem. This formulation allows the consideration of a regulatory superstructure that contains all alternative regulatory structures that can be considered for a given pathway. The proposed approach is developed and illustrated using a simple linear pathway. Application of the framework on a complicated pathway-namely, the xanthine monophosphate (XMP) and guanosine monophosphate (GMP) synthesis pathway-identified the modification of the regulatory architecture that, along with changes in enzyme expression levels, can increase the XMP and GMP concentration by over 114 times the reference value, which is 50 times more than could be achieved by changes in enzyme expression levels only. (c) 1996 John Wiley & Sons, Inc.  相似文献   

16.
17.
18.
19.
20.
Graph theory has been a valuable mathematical modeling tool to gain insights into the topological organization of biochemical networks. There are two types of insights that may be obtained by graph theory analyses. The first provides an overview of the global organization of biochemical networks; the second uses prior knowledge to place results from multivariate experiments, such as microarray data sets, in the context of known pathways and networks to infer regulation. Using graph analyses, biochemical networks are found to be scale-free and small-world, indicating that these networks contain hubs, which are proteins that interact with many other molecules. These hubs may interact with many different types of proteins at the same time and location or at different times and locations, resulting in diverse biological responses. Groups of components in networks are organized in recurring patterns termed network motifs such as feedback and feed-forward loops. Graph analysis revealed that negative feedback loops are less common and are present mostly in proximity to the membrane, whereas positive feedback loops are highly nested in an architecture that promotes dynamical stability. Cell signaling networks have multiple pathways from some input receptors and few from others. Such topology is reminiscent of a classification system. Signaling networks display a bow-tie structure indicative of funneling information from extracellular signals and then dispatching information from a few specific central intracellular signaling nexuses. These insights show that graph theory is a valuable tool for gaining an understanding of global regulatory features of biochemical networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号