首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Molecular cell》2020,77(3):488-500.e9
  1. Download : Download high-res image (201KB)
  2. Download : Download full-size image
  相似文献   

2.
Nucleosomes were discovered more than thirty years ago as the basic repeating units of chromatin. Since then, nucleosomes have progressively revealed their taste to come in many appearances, upon either adjunction of other proteins (e.g. a fifth histone or a non-histone protein, HMG-N), histone substitution for isoforms (histone variants), depletion of one or the two H2A-H2B dimers (sub-nucleosomes), intimate two-particle association, or isomeric structural alterations. The resulting entities, some of them are only transient, acquire new properties useful for their specific roles in chromatin function. These structures are presented here in the chronological order of their identification, from the chromatosome to the sub-nucleosomal hexasome and tetrasome, and from the dinucleosomal altosome and nucleodisome to the nucleosome variants and altered forms: the old lexosome and the most recent reversome.  相似文献   

3.
4.
染色质是真核DNA的存在方式,可以通过影响DNA的可及性调节基因转录,其基本单元为核小体,系由约147 bp的DNA缠绕在组蛋白八联体上形成的结构,核小体之间以连接DNA相连.核小体组蛋白上能发生甲基化和乙酰化等化学修饰.核小体位置、DNA的甲基化和组蛋白的修饰等对染色质状态(常染色质或异染色质)及基因组之间的长程相互作用有重要影响.近年,基于高通量测序技术,核小体位置和染色质修饰在多种细胞中的基因组分布已被测定.结果显示,这些标记的分布模式具有位点特异、动态变化、相互偶联和高度复杂的特征.本文详细回顾并评述了核小体位置和染色质修饰的分布模式、对应生物学功能、修饰之间的关联、实验测定技术、染色质状态的计算分析等内容.该工作对于深入认识和理解染色质的表观遗传调节机制有重要意义.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
The regulation of chromatin biology ultimately depends on the manipulation of its smallest subunit, the nucleosome. The proteins that bind and operate on the nucleosome do so, while their substrate is part of a polymer embedded in the dense nuclear environment. Their molecular interactions must in some way be tuned to deal with this complexity. Due to the rapid increase in the number of high-resolution structures of nucleosome-protein complexes and the increasing understanding of the cellular chromatin structure, it is starting to become clearer how chromatin factors operate in this complex environment. In this review, we analyze the current literature on the interplay between nucleosome-protein interactions and higher-order chromatin structure. We examine in what way nucleosomes-protein interactions can affect and can be affected by chromatin organization at the oligonucleosomal level. In addition, we review the characteristics of nucleosome-protein interactions that can cause phase separation of chromatin. Throughout, we hope to illustrate the exciting challenges in characterizing nucleosome-protein interactions beyond the nucleosome.  相似文献   

18.
Abstract

The positioning of DNA on nucleosomes is critical to both the organization and expression of the genetic message. Here we focus on DNA conformational signals found in the growing library of known high-resolution core-particle structures and the ways in which these features may contribute to the positioning of nucleosomes on specific DNA sequences. We survey the chemical composition of the protein-DNA assemblies and extract features along the DNA superhelical pathway—the minor-groove width and the deformations of successive base pairs—determined with reasonable accuracy in the structures. We also examine the extent to which the various nucleosome core-particle structures accommodate the observed settings of the crystallized sequences and the known positioning of the high-affinity synthetic ‘601’ sequence on DNA. We ‘thread’ these sequences on the different structural templates and estimate the cost of each setting with knowledge-based potentials that reflect the conformational properties of the DNA base-pair steps in other high-resolution protein-bound complexes.  相似文献   

19.
The ability of retroviruses and transposons to insert their genetic material into host DNA makes them widely used tools in molecular biology, cancer research and gene therapy. However, these systems have biases that may strongly affect research outcomes. To address this issue, we generated very large datasets consisting of to unselected integrations in the mouse genome for the Sleeping Beauty (SB) and piggyBac (PB) transposons, and the Mouse Mammary Tumor Virus (MMTV). We analyzed (epi)genomic features to generate bias maps at both local and genome-wide scales. MMTV showed a remarkably uniform distribution of integrations across the genome. More distinct preferences were observed for the two transposons, with PB showing remarkable resemblance to bias profiles of the Murine Leukemia Virus. Furthermore, we present a model where target site selection is directed at multiple scales. At a large scale, target site selection is similar across systems, and defined by domain-oriented features, namely expression of proximal genes, proximity to CpG islands and to genic features, chromatin compaction and replication timing. Notable differences between the systems are mainly observed at smaller scales, and are directed by a diverse range of features. To study the effect of these biases on integration sites occupied under selective pressure, we turned to insertional mutagenesis (IM) screens. In IM screens, putative cancer genes are identified by finding frequently targeted genomic regions, or Common Integration Sites (CISs). Within three recently completed IM screens, we identified 7%–33% putative false positive CISs, which are likely not the result of the oncogenic selection process. Moreover, results indicate that PB, compared to SB, is more suited to tag oncogenes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号