首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
高表达拟南芥miR396提高烟草抗旱性   总被引:2,自引:0,他引:2  
MiR396是一个由21个核苷酸组成的单链非编码RNA小分子。烟草内的miR396受干旱诱导说明其可能参与烟草的干旱应答。在35S强启动子作用下我们将miR396转入到烟草体内获得高表达转基因植株,生理学测试表明高表达miR396的转基因烟草耐旱性增强,同时叶片表现出比野生型较低的失水率和较高的相对含水量,进一步分析表明转基因植株除了叶片变得更为窄小外,其气孔密度和气孔系数都比野生型降低,这些都表明miR396作为一个正调节因子参与烟草的干旱胁迫应答。  相似文献   

2.
Breeding for Salinity Tolerance in Plants   总被引:4,自引:0,他引:4  
Accumulation of high levels of salts in the soil is characteristic of arid and semi-arid regions. Although different curative and management measures are being used to render salt-affected soils fit for agriculture, they are extremely expensive and do not provide permanent solutions to overcome the salinity problem. In contrast, a biotic approach for overcoming salinity stress has gained considerable recognition within the past few decades in view of the vast experimental evidence from what has happened in nature concerning the evolution of highly salt-tolerant ecotypes of different plant species, and also from the remarkable achievements that have been made in improveing different agronomic traits through artificial selection.

Considerable improvements in salt tolerance of important crop species have been achieved in the past 2 decades using barley, rice, pearl millet, maize, sorghum, alfalfa, and many grass species. Such achievements relied solely on assessment of the phenotypic expression of the features involved. Knowledge of the underlying physiological mechanisms producing those salt-tolerant individuals was not clearly known. The present review highlights the relationships between different physiological/biochemical variables being recommended as selection criteria, and salt tolerance of different plant species. This paper also lists different sources of genetic variation for salt tolerance since it is evident that for successful improvement in a character there must be a great amount of genetic variation present in the gene pool of a species.  相似文献   


3.
Seong  E. S.  Jeon  M. R.  Choi  J. H.  Yoo  J. H.  Lee  J. G.  Na  J. K.  Kim  N. Y.  Yu  C. Y. 《Russian Journal of Plant Physiology》2020,67(2):242-249
Russian Journal of Plant Physiology - Cold stress affects plant growth and crop productivity. Consequently, there is considerable interest in plant genes that respond to cold stress as these might...  相似文献   

4.
Heat shock factors (HSFs) in plants regulate heat stress response by mediating expression of a set of heat shock protein (HSP) genes. In the present study, we isolated a novel heat shock gene, TaHSF3, encoding a protein of 315 amino acids in wheat. Phylogenetic analysis showed that TaHSF3 belonged to HSF class B2. Subcellular localization analysis indicated that TaHSF3 localized in nuclei. TaHSF3 was highly expressed in wheat spikes and showed intermediate expression levels in roots, stems, and leaves under normal conditions. It was highly upregulated in wheat seedlings by heat and cold and to a lesser extent by drought and NaCl and ABA treatments. Overexpression of TaHSF3 in Arabidopsis enhanced tolerance to extreme temperatures. Frequency of survival of three TaHSF3 transgenic Arabidopsis lines was 75–91 % after heat treatment and 85–95 % after freezing treatment compared to 25 and 10 %, respectively, in wild-type plants (WT). Leaf chlorophyll contents of the transformants were higher (0.52–0.67 mg/g) than WT (0.35 mg/g) after heat treatment, and the relative electrical conductivities of the transformants after freezing treatment were lower (from 17.56 to 18.6 %) than those of WT (37.5 %). The TaHSF3 gene from wheat therefore confers tolerance to extreme temperatures in transgenic Arabidopsis by activating HSPs, such as HSP70.  相似文献   

5.
To elucidate the contribution of dehydrins (DHNs) to freezing stress tolerance in Arabidopsis, transgenic plants overexpressing multiple DHN genes were generated. Chimeric double constructs for expression of RAB18 and COR47 (pTP9) or LTI29 and LTI30 (pTP10) were made by fusing the coding sequences of the respective DHN genes to the cauliflower mosaic virus 35S promoter. Overexpression of the chimeric genes in Arabidopsis resulted in accumulation of the corresponding dehydrins to levels similar or higher than in cold-acclimated wild-type plants. Transgenic plants exhibited lower LT50 values and improved survival when exposed to freezing stress compared to the control plants. Post-embedding immuno electron microscopy of high-pressure frozen, freeze-substituted samples revealed partial intracellular translocation from cytosol to the vicinity of the membranes of the acidic dehydrin LTI29 during cold acclimation in transgenic plants. This study provides evidence that dehydrins contribute to freezing stress tolerance in plants and suggests that this could be partly due to their protective effect on membranes.  相似文献   

6.
7.

Background

Sterol glycosyltrnasferases (SGT) are enzymes that glycosylate sterols which play important role in plant adaptation to stress and are medicinally important in plants like Withania somnifera. The present study aims to find the role of WsSGTL1 which is a sterol glycosyltransferase from W. somnifera, in plant’s adaptation to abiotic stress.

Methodology

The WsSGTL1 gene was transformed in Arabidopsis thaliana through Agrobacterium mediated transformation, using the binary vector pBI121, by floral dip method. The phenotypic and physiological parameters like germination, root length, shoot weight, relative electrolyte conductivity, MDA content, SOD levels, relative electrolyte leakage and chlorophyll measurements were compared between transgenic and wild type Arabidopsis plants under different abiotic stresses - salt, heat and cold. Biochemical analysis was done by HPLC-TLC and radiolabelled enzyme assay. The promoter of the WsSGTL1 gene was cloned by using Genome Walker kit (Clontech, USA) and the 3D structures were predicted by using Discovery Studio Ver. 2.5.

Results

The WsSGTL1 transgenic plants were confirmed to be single copy by Southern and homozygous by segregation analysis. As compared to WT, the transgenic plants showed better germination, salt tolerance, heat and cold tolerance. The level of the transgene WsSGTL1 was elevated in heat, cold and salt stress along with other marker genes such as HSP70, HSP90, RD29, SOS3 and LEA4-5. Biochemical analysis showed the formation of sterol glycosides and increase in enzyme activity. When the promoter of WsSGTL1 gene was cloned from W. somnifera and sequenced, it contained stress responsive elements. Bioinformatics analysis of the 3D structure of the WsSGTL1 protein showed functional similarity with sterol glycosyltransferase AtSGT of A. thaliana.

Conclusions

Transformation of WsSGTL1 gene in A. thaliana conferred abiotic stress tolerance. The promoter of the gene in W.somnifera was found to have stress responsive elements. The 3D structure showed functional similarity with sterol glycosyltransferases.  相似文献   

8.
Zhou  W. Q.  Zhou  Y. Q.  He  C. Y.  Mou  B. Q.  Zhou  W. 《Russian Journal of Plant Physiology》2020,67(6):1152-1162
Russian Journal of Plant Physiology - Plant hormones play major roles in abiotic stress. This study shows that gibberellin acid-inefficient transgenic rice (Oryza sativa L.) is more tolerant to...  相似文献   

9.
基因转录调节是植物对非生物胁迫适应机制的一个重要方面,转录调节因子在胁迫信号转导途径中调节下游基因的表达,在建立植物对胁迫适应性过程中起到重要作用.锌指蛋白是功能多样的转录调节因子蛋白家族,家族成员在植物响应非生物胁迫方面扮演着重要角色.本研究以秋茄C2H2型锌指蛋白编码基因KcZFP为目的基因,在烟草中过表达KcZFP,分析C2H2型锌指蛋白在植物耐盐性中的作用.研究结果显示:转基因株系中,KcZFP表达量显著提高.过表达KcZFP的烟草植株的耐盐性明显提高,在200 mmol/L NaCl处理的条件下,KcZFP过表达烟草中脯氨酸水平远高于野生型植株.对光合作用参数比较分析显示,在KcZFP过表达植株中净光合速率受盐胁迫的影响小于野生型植株,光合系统在一定程度上得到了保护.研究结果说明KcZFP作为转录调节因子参与了植物的渗透调节,对植物的耐盐性具有贡献.  相似文献   

10.
Wang  Qingzhu  Lei  Shikang  Qian  Jie  Zheng  Min  Hsu  Yi-Feng 《Journal of Plant Growth Regulation》2023,42(3):1893-1904

Small ubiquitin-like modifier (SUMO) conjugation to target proteins is an important post-translational modification, which regulates plant tolerance to biotic and abiotic stresses. SIZ1, a well-characterized SUMO E3 ligase, facilitates the conjugation of SUMO to target proteins. Here, a SIZ/PAIS-type protein SlSIZ2 was identified in tomato (Solanum lycopersicum) that is a homolog of AtSIZ1 and SlSIZ1. SlSIZ2 was expressed in tomato vegetative and reproductive tissues, and induced by ABA and NaCl. Nucleus-localized SlSIZ2 partially rescued atsiz1-2 dwarfism and also alleviated the sensitivity of atsiz1-2 to ABA and NaCl, suggesting the functional replacement of SlSIZ2 to AtSIZ1. Moreover, SlSIZ2-overexpressing Arabidopsis has higher cotyledon expansion rate, lateral root density and survival rate under salinity stress. These results suggested the contribution of SlSIZ2 to the tolerance of salinity stress.

  相似文献   

11.
12.
Rab family proteins are small GTP-binding proteins involved in intracellular trafficking. They play critical roles in several plant development processes. Different expression patterns of 46 Rabs in the rice genome were examined in various rice tissues and in leaves treated with plant growth regulators and under senescence conditions. One of the OsRab genes, OsRab7B3, closely associated with senescence in expression pattern, was chosen for functional analysis. Expression of sGFP under the control of the OsRab7B3 promoter increased in leaves when ABA and NaCl were applied or when kept in dark. In transgenic rice overexpressing OsRab7B3, the senescence-related genes were upregulated and leaf senescence was significantly enhanced under dark conditions. Moreover, leaf yellowing occurred earlier in the transgenic plants than in the wild type at the ripening stage. Hence it is suggested that OsRab7B3 act as a stress–inducible gene that plays an important role in the leaf senescence process.  相似文献   

13.
水稻OsAQP是实验室前期从cDNA文库中筛选的功能未知的水通道蛋白质编码基因。本文采用DNA重组技术构建其植物过表达载体,并对拟南芥进行了遗传转化,筛选获得转基因拟南芥。采用50、100、125和150 mmol/L梯度盐胁迫处理,结果显示,转基因拟南芥的发芽率、根长以及鲜重分别比对照至少高17%、40.8%和14.29%,且差异达到显著水平(P<0.05)。在正常条件下,转基因植株叶片中抗坏血酸过氧化物酶(APX)活性显著高于WT;经300 mmol/L NaCl处理,转基因拟南芥叶片中超氧化物歧化酶(SOD)、过氧化物酶(POD)、APX酶活性均升高,与处理前相比分别提高7.37倍、30.87倍和1.77倍,且与WT的酶活性差异达到显著水平(P<0.05);丙二醛(MDA)含量也在处理后上升,但在转基因植株中的含量低于WT,分别是WT的0.74倍、0.68倍和0.62倍,差异同样达到显著水平(P<0.05)。本研究提示,OsAQP过表达不仅能够促进拟南芥种子萌发和根系生长,而且在盐胁迫下通过提高拟南芥内源抗氧化酶活性、降低膜脂过氧化程度,增强了转基因植株对一定程度盐胁迫的耐受性。  相似文献   

14.
Small heat shock proteins (smHSPs) play important and extensive roles in plant defenses against abiotic stresses. We cloned a gene for a smHSP from the David Lily (Lilium davidii (E. H. Wilson) Raffill var. Willmottiae), which we named LimHSP16.45 based on its protein molecular weight. Its expression was induced by many kinds of abiotic stresses in both the lily and transgenic plants of Arabidopsis. Heterologous expression enhanced cell viability of the latter under high temperatures, high salt, and oxidative stress, and heat shock granules (HSGs) formed under heat or salinity treatment. Assays of enzymes showed that LimHSP16.45 overexpression was related to greater activity by superoxide dismutase and catalase in transgenic lines. Therefore, we conclude that heterologous expression can protect plants against abiotic stresses by preventing irreversible protein aggregation, and by scavenging cellular reactive oxygen species.  相似文献   

15.
Carotenoids are essential components of the photosynthetic apparatus involved in plant photoprotection. To investigate the protective role of zeaxanthin and the xanthophyll cycle under high-light stress, we increased the capacity for their biosynthesis in Eustoma grandiflorum Shinn by overexpression of a gene (AtchyB) from Arabidopsis thaliana encoding ??-carotene hydroxylase (BCH). This enzyme is involved in the conversion of ??-carotene into zeaxanthin and plays an important role in the carotenoid biosynthetic pathway. Not only was the total carotenoid content of the transgenics enhanced (1.046- to?3.141-fold) but zeaxanthin biosynthesis was also faster and the compound was produced in larger quantities in transgenics (up to 3.344-fold) than in controls upon exposure to high-light stress. Additionally, a greater amount of xanthophyll cycle pigments (1.46- to?2.44-fold) was detected in the transgenics. Under high-light stress, untransformed controls showed obvious growth retardation, while transformants were more tolerant. The net addition of biomass in the transformants was more than that of non-transformants under high-light exposure. Furthermore, a new phenomenon was found: high-light stress induced an apparent periodical accumulation of biomass and zeaxanthin in transformants. Our results supplement data from previous research, and indicate that the periodic enhancement of zeaxanthin formation together with the periodic enlargement of the xanthophyll cycle pool contributes to long-term high-light stress protection and prevents plant damage.  相似文献   

16.
The bicistronic groESL operon, encoding the Hsp60 and Hsp10 chaperonins, was cloned into an integrative expression vector, pFPN, and incorporated at an innocuous site in the Anabaena sp. strain PCC7120 genome. In the recombinant Anabaena strain, the additional groESL operon was expressed from a strong cyanobacterial PpsbA1 promoter without hampering the stress-responsive expression of the native groESL operon. The net expression of the two groESL operons promoted better growth, supported the vital activities of nitrogen fixation and photosynthesis at ambient conditions, and enhanced the tolerance of the recombinant Anabaena strain to heat and salinity stresses.Nitrogen-fixing cyanobacteria, especially strains of Nostoc and Anabaena, are native to tropical agroclimatic conditions, such as those of Indian paddy fields, and contribute to the carbon (C) and nitrogen (N) economy of these soils (22, 30). However, their biofertilizer potential decreases during exposure to high temperature, salinity, and other such stressful environments (1). A common target for these stresses is cellular proteins, which are denatured and inactivated during stress, resulting in metabolic arrest, cessation of growth, and eventually loss of viability. Molecular chaperones play a major role in the conformational homeostasis of cellular proteins (13, 16, 24, 26) by (i) proper folding of nascent polypeptide chains; (ii) facilitating protein translocation and maturation to functional conformation, including multiprotein complex assembly; (iii) refolding of misfolded proteins; (iv) sequestering damaged proteins to aggregates; and (v) solubilizing protein aggregates for refolding or degradation. Present at basal levels under optimum growth conditions in bacteria, the expression of chaperonins is significantly enhanced during heat shock and other stresses (2, 25, 32).The most common and abundant cyanobacterial chaperones are Hsp60 proteins, and nitrogen-fixing cyanobacteria possess two or more copies of the hsp60 or groEL gene (http://genome.kazusa.or.jp/cyanobase). One occurs as a solitary gene, cpn60 (17, 21), while the other is juxtaposed to its cochaperonin encoding genes groES and constitutes a bicistronic operon groESL (7, 19, 31). The two hsp60 genes encode a 59-kDa GroEL and a 61-kDa Cpn60 protein in Anabaena (2, 20). Both the Hsp60 chaperonins are strongly expressed during heat stress, resulting in the superior thermotolerance of Anabaena, compared to the transient expression of the Hsp60 chaperonins in Escherichia coli (20). GroEL and Cpn60 stably associate with thylakoid membranes in Anabaena strain PCC7120 (14) and in Synechocystis sp. strain PCC6803 (15). In Synechocystis sp. strain PCC6803, photosynthetic inhibitors downregulate, while light and redox perturbation induce cpn60 expression (10, 25, 31), and a cpn60 mutant exhibits a light-sensitive phenotype (http://genome.kazusa.or.jp/cyanobase), indicating a possible role for Cpn60 in photosynthesis. GroEL, a lipochaperonin (12, 28), requires a cochaperonin, GroES, for its folding activity and has wider substrate selectivity. In heterotrophic nitrogen-fixing bacteria, such as Klebsiella pneumoniae and Bradyrhizobium japonicum, the GroEL protein has been implicated in nif gene expression and the assembly, stability, and activity of the nitrogenase proteins (8, 9, 11).Earlier work from our laboratory demonstrated that the Hsp60 family chaperonins are commonly induced general-stress proteins in response to heat, salinity, and osmotic stresses in Anabaena strains (2, 4). Our recent work elucidated a major role of the cpn60 gene in the protection from photosynthesis and the nitrate reductase activity of N-supplemented Anabaena cultures (21). In this study, we integrated and constitutively overexpressed an extra copy of the groESL operon in Anabaena to evaluate the importance and contribution of GroEL chaperonin to the physiology of Anabaena during optimal and stressful conditions.Anabaena sp. strain PCC7120 was photoautotrophically grown in combined nitrogen-free (BG11) or 17 mM NaNO3-supplemented (BG11+) BG11 medium (5) at pH 7.2 under continuous illumination (30 μE m−2 s−1) and aeration (2 liters min−1) at 25°C ± 2°C. Escherichia coli DH5α cultures were grown in Luria-Bertani medium at 37°C at 150 rpm. For E. coli DH5α, kanamycin and carbenicillin were used at final concentrations of 50 μg ml−1 and 100 μg ml−1, respectively. Recombinant Anabaena clones were selected on BG11+ agar plates supplemented with 25 μg ml−1 neomycin or in BG11 liquid medium containing 12.5 μg ml−1 neomycin. The growth of cyanobacterial cultures was estimated either by measuring the chlorophyll a content as described previously (18) or the turbidity (optical density at 750 nm). Photosynthesis was measured as light-dependent oxygen evolution at 25 ± 2°C by a Clark electrode (Oxy-lab 2/2; Hansatech Instruments, England) as described previously (21). Nitrogenase activity was estimated by acetylene reduction assays, as described previously (3). Protein denaturation and aggregation were measured in clarified cell extracts containing ∼500 μg cytosolic proteins treated with 100 μM 8-anilino-1-naphthalene sulfonate (ANS). The pellet (protein aggregate) was solubilized in 20 mM Tris-6 M urea-2% sodium dodecyl sulfate (SDS)-40 mM dithiothreitol for 10 min at 50°C. The noncovalently trapped ANS was estimated using a fluorescence spectrometer (model FP-6500; Jasco, Japan) at a λexcitation of 380 nm and a λemission of 485 nm, as described previously (29).The complete bicistronic groESL operon (2.040 kb) (GenBank accession no. FJ608815) was PCR amplified from PCC7120 genomic DNA using specific primers (Table (Table1)1) and the amplicon cloned into the NdeI-BamHI restriction sites of plasmid vector pFPN, which allows integration at a defined innocuous site in the PCC7120 genome and expression from a strong cyanobacterial PpsbA1 promoter (6). The resulting construct, designated pFPNgro (Table (Table1),1), was electroporated into PCC7120 using an exponential-decay wave form electroporator (200 J capacitive energy at a full charging voltage of 2 kV; Pune Polytronics, Pune, India), as described previously (6). The electroporation was carried out at 6 kV cm−1 for 5 ms, employing an external autoclavable electrode with a 2-mm gap. The electroporation buffer contained high concentrations of salt (10 mM HEPES, 100 mM LiCl, 50 mM CaCl2), as have been recommended for plant cells (23) and other cell types (27). The electrotransformants, selected on BG11+ agar plates supplemented with 25 μg ml−1 neomycin by repeated subculturing for at least 25 weeks to achieve complete segregation, were designated AnFPNgro.

TABLE 1.

Plasmids, strains, and primers used in this study
Plasmid, strain, or primerFeature or sequenceaSource or reference
Plasmids
    pFPNIntegrative expression vector6
    pFPNgropFPN with groESL operonThis study
Strains
    An7120Wild-type Anabaena sp. strain PCC7120R. Haselkorn
    AnFPNgroGroESL-overexpressing AnabaenaThis study
Primers
    groESLfwd5′-GGA ATT CCA TAT GGC AGC AGT ATC TCT AAG-3′This study
    groESLrev5′-CGC GGA TCC TTA GTA ATC GAA GTC ACC GCC-3′This study
    PpsbA1fwd5′-GAG CTG CAG GGA TTC CCA AAG ATA GGG-3′6
    PpsbA1rev5′-CTC GGA TCC CCA TAT GTT TTT ATG ATT GCT TTG-3′6
Open in a separate windowaThe underlined nucleotides in the primer sequences represent the incorporated restriction endonuclease sites.The transfer of pFPNgro to PCC7120 resulted in the integration of an extra copy of groESL (PpsbA1-groESL) into the PCC7120 genome. PCR amplification (Fig. (Fig.1I)1I) with the PpsbA1 forward and groESL reverse primer pairs showed the additional copy of groEL juxtaposed downstream to the PpsbA1 promoter (lane 6) in the recombinant Anabaena strain, while the native groESL operon found in the wild-type strain (lane 3) remained intact in the AnFPNgro strain (lane 5).Open in a separate windowFIG. 1.Integration and constitutive expression of an additional groESL operon in Anabaena strain PCC7120. (I) Integration of an additional groESL operon in the PCC7120 genome. The electrophoretogram shows the transfer and integration of PpsbA1-groESL in strain AnFPNgro. Lane 1, 1-kb DNA marker; lane 2, PCR control template without primer; lane 3, PCR product from wild-type Anabaena using the groESLfwd and groESLrev primers; lane 4, PCR product from PCC7120 using the PpsbA1fwd and groESLrev primers; lane 5, PCR product from AnFPNgro using the groESLfwd and groESLrev primers; lane 6, PCR product from AnFPNgro using the PpsbA1fwd and groESLrev primers. (II) Expression of the groESL operon in the wild-type and recombinant Anabaena strains during stress. PCC7120 (An7120) and AnFPNgro were grown for 3 days and then subjected to either heat stress (42°C) for 4 h (A and A′) or salinity stress (150 mM NaCl) for 3 days (B and B′). GroEL levels were estimated by Western blotting of 10% SDS-polyacrylamide gel electrophoresis-resolved whole-cell proteins, followed by immunodetection using anti-AnGroEL antiserum and densitometry (A and B). Panels A′ and B′ depict SDS-polyacrylamide gel electrophoresis-resolved and Coomassie blue-stained proteins to show equal sample loading. Various lanes contained protein samples under unstressed-control (U), heat (H), or salt (S) stress conditions. Numbers below panels A and B show GroEL quantitation by densitometry.Under normal growth conditions, the recombinant AnFPNgro cells expressed about 8.7- to 9.9-fold higher levels of GroEL protein than that detected in the PCC7120 cells (Fig. 1II), indicating a strong constitutive expression of the GroEL protein from the PpsbA1 promoter. In PCC7120, the wild-type copy of the GroEL protein was induced by both heat shock (Fig. 1IIA, lane 2) and salt stress (Fig. 1IIB, lane 2). GroEL levels in the recombinant strain were found to be about 2.5-fold higher under heat stress (Fig. 1IIA, lane 4) and approximately 1.7-fold higher under salinity stress (Fig. 1IIB, lane 4) than that expressed by PCC7120 under these stresses (Fig. 1IIA and IIB, lanes 2). The exposure of AnFPNgro cells to heat stress resulted in a further increase of approximately sixfold in GroEL levels (Fig. 1IIA, lane 4), while salt stress enhanced GroEL levels by approximately threefold (Fig. 1IIB, lane 4), compared to the constitutively expressed GroEL level in this strain (Fig. 1IIA and IIB, lanes 3). The constitutive expression of GroEL protein in AnFPNgro under ambient conditions (Fig. 1IIA and IIB, lanes 3) was from the PpsbA1 promoter (Fig. (Fig.1I,1I, lane 6). We assume that the additional increase in GroEL levels observed under heat and salt stress (Fig. 1IIA and IIB, lanes 4) was due to the native stress-induced groESL operon, functional from its own promoter.The diazotrophically grown PCC7120 did not grow during prolonged exposure to heat stress (42°C) (Fig. (Fig.2A)2A) and showed poor growth during salinity stress (150 mM) (Fig. (Fig.2B).2B). Salinity stress was particularly severe for photosynthetic pigments in PCC7120 and bleached the cells (data not shown). In contrast, the recombinant strain AnFPNgro showed a higher content of major photosynthetic pigments (Fig. (Fig.2C)2C) and presented a healthier blue-green phenotype (data not included). Strain AnFPNgro also showed better growth than wild-type PCC7120, both under unstressed and stressed conditions (Fig. 2A and B).Open in a separate windowFIG. 2.Effect of groESL overexpression on thermotolerance and salinity tolerance of diazotrophically grown Anabaena strains. (A) Growth (measured as chlorophyll a content) of strains during prolonged exposure to 42°C. (B) Growth (turbidity measured at an optical density at 750 nm) during prolonged exposure to 150 mM NaCl. (C) Absorption spectra of a dilute suspension of whole filaments after 7 days of exposure to various NaCl concentrations.The photosynthetic activity decreased with time during heat stress in PCC7120 but was maintained at comparatively higher levels in AnFPNgro cells (Fig. (Fig.3A)3A) than in PCC7120. The dinitrogenase activity in PCC7120 was severely inhibited after 4 h of heat stress (Fig. (Fig.3B).3B). In contrast, the dinitrogenase activity of the recombinant strain (AnFPNgro) was about 1.5-fold higher than PCC7120 under ambient conditions (25°C ± 2°C, no NaCl) and more than 3-fold higher than that of PCC7120 after 4 h of heat stress (Fig. (Fig.3B).3B). Prolonged exposure to salinity stress inhibited photosynthesis and nitrogen fixation in PCC7120 (Fig. 3C and D). However, strain AnFPNgro displayed significant protection of these activities, possibly due to overexpressed GroES/GroEL proteins. The recombinant strain (AnFPNgro) exhibited much-reduced protein aggregation after 4 h of heat stress or after prolonged exposure (10 days) to salinity stress than PCC7120 (Fig. (Fig.44).Open in a separate windowFIG. 3.Effect of groESL overexpression on photosynthesis and nitrogen fixation in Anabaena. Photosynthesis (A and C) and nitrogenase activity (B and D) in wild-type Anabaena strain PCC7120 (An7120) and recombinant AnFPNgro strains exposed to heat stress for 10 days (A) or 4 h (B) or to salinity stress (150 mM) for 10 days (C and D). Letters U, H, and S denote unstressed-control, heat stress, and salt stress conditions, respectively.Open in a separate windowFIG. 4.Protein aggregation in Anabaena strains during exposure to heat and salinity stress. The protein aggregation was monitored by ANS fluorescence after 4 h of exposure to 42°C (H) or 10 days of exposure to 150 mM NaCl (S) and compared with the unstressed controls (U) of recombinant strain AnFPNgro and the wild-type Anabaena strain PCC7120 (An7120). The fluorescence intensity output from the spectrofluorimeter is expressed as arbitrary units (a.u.).This study evaluated the possible benefits of groESL overexpression for the general stress tolerance of PCC7120. The recombinant AnFPNgro strain harbored two groESL operons, one native stress-inducible groESL and a second groESL operon integrated at a defined innocuous site and placed downstream of a constitutive PpsbA1 promoter (Fig. (Fig.1).1). The recombinant AnFPNgro strain showed an 8- to 10-fold higher constitutive expression of GroEL under ambient conditions than PCC7120, while its inherent stress-induced GroEL expression was not impaired and resulted in 30- and 48-fold more GroEL under salt and heat stress, respectively (Fig. (Fig.11).The AnFPNgro cells exhibited better growth (Fig. (Fig.2),2), photosynthesis, and nitrogen fixation (Fig. (Fig.3)3) than PCC7120, suggesting a possible limitation on the availability of GroEL under ambient conditions. The protection of photosynthetic pigments and oxygen photoevolution during salinity stress were particularly impressive. Nearly 2- to 2.5-fold higher GroEL levels in AnFPNgro under heat or salt stress, compared to those of PCC7120 (Fig. (Fig.1),1), lowered the stress-triggered protein aggregation (Fig. (Fig.4)4) and had beneficial consequences for photosynthesis and nitrogen fixation in the recombinant strain (Fig. (Fig.3).3). An overall improvement in the aforesaid vital metabolic activities eventually resulted in the superior tolerance of recombinant AnFPNgro to heat and salt stresses.  相似文献   

17.
18.
In this study, we tested the efficacy of increasing liver glycogen synthase to improve blood glucose homeostasis. The overexpression of wild-type liver glycogen synthase in rats had no effect on blood glucose homeostasis in either the fed or the fasted state. In contrast, the expression of a constitutively active mutant form of the enzyme caused a significant lowering of blood glucose in the former but not the latter state. Moreover, it markedly enhanced the clearance of blood glucose when fasted rats were challenged with a glucose load. Hepatic glycogen stores in rats overexpressing the activated mutant form of liver glycogen synthase were enhanced in the fed state and in response to an oral glucose load but showed a net decline during fasting. In order to test whether these effects were maintained during long term activation of liver glycogen synthase, we generated liver-specific transgenic mice expressing the constitutively active LGS form. These mice also showed an enhanced capacity to store glycogen in the fed state and an improved glucose tolerance when challenged with a glucose load. Thus, we conclude that the activation of liver glycogen synthase improves glucose tolerance in the fed state without compromising glycogenolysis in the postabsorptive state. On the basis of these findings, we propose that the activation of liver glycogen synthase may provide a potential strategy for improvement of glucose tolerance in the postprandial state.  相似文献   

19.
Peng  Kankan  Tian  Yu  Cang  Jing  Yu  Jing  Wang  Duojia  He  Fuxia  Jiao  Huarui  Tan  Yige 《Journal of Plant Growth Regulation》2022,41(1):314-326
Journal of Plant Growth Regulation - Freezing stress is the principal abiotic stress that is not conducive to plant growth and yield. Fructose-1, 6-bisphosphate aldolase (FBA; EC 4.1.2.13) is a key...  相似文献   

20.
过量表达叶绿体小分子热激蛋白提高番茄的抗寒性   总被引:17,自引:0,他引:17  
小分子热激蛋白与植物耐寒性提高有相关性,但是没有直接的实验证据能证明小分子热激蛋白的存在增加植物抗寒性.我们克隆了番茄叶绿体(定位)小分子热激蛋白cDNA,并将35SCaMV启动子驱动的番茄叶绿体小分子热激蛋白cDNA植物表达构架导入番茄,测定转基因番茄和未转基因番茄的抗寒性水平.低温处理后,转基因番茄的冷害症状轻于未转基因的番茄;转基因番茄细胞电解质外渗较少、花青素和MDA累积量较低;净光合速率和叶绿体含量高于对照.这些实验结果说明叶绿体小分子热激蛋白的过量表达提高了植物抗寒性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号