共查询到20条相似文献,搜索用时 8 毫秒
1.
Jacob, Brenner, and Cuzin pioneered the development of the F plasmid as a model system to study replication control, and these investigations led to the development of the "replicon model" (Jacob, F., Brenner, S., and Cuzin, F. (1964) Cold Spring Harbor Symp. Quant. Biol. 28, 329-348). To elucidate further the mechanism of initiation of replication of this plasmid and its control, we have reconstituted its replication in vitro with 21 purified host-encoded proteins and the plasmid-encoded initiator RepE. The replication in vitro was specifically initiated at the F ori (oriV) and required both the bacterial initiator protein DnaA and the plasmid-encoded initiator RepE. The wild type dimeric RepE was inactive in catalyzing replication, whereas a monomeric mutant form called RepE(*) (R118P) was capable of catalyzing vigorous replication. The replication topology was mostly of the Cairns form, and the fork movement was unidirectional and mostly from right to left. The replication was dependent on the HU protein, and the structurally and functionally related DNA bending protein IHF could not efficiently substitute for HU. The priming was dependent on DnaG primase. Many of the characteristics of the in vitro replication closely mimicked those of in vivo replication. We believe that the in vitro system should be very useful in unraveling the mechanism of replication initiation and its control. 相似文献
2.
Reconstitution of DNA base excision-repair with purified human proteins: interaction between DNA polymerase beta and the XRCC1 protein. 总被引:37,自引:2,他引:37 下载免费PDF全文
Repair of a uracil-guanine base pair in DNA has been reconstituted with the recombinant human proteins uracil-DNA glycosylase, apurinic/apyrimidinic endonuclease, DNA polymerase beta and DNA ligase III. The XRCC1 protein, which is known to bind DNA ligase III, is not absolutely required for the reaction but suppresses strand displacement by DNA polymerase beta, allowing for more efficient ligation after filling of a single nucleotide patch. We show that XRCC1 interacts directly with DNA polymerase beta using far Western blotting, affinity precipitation and yeast two-hybrid analyses. In addition, a complex formed between DNA polymerase beta and a double-stranded oligonucleotide containing an incised abasic site was supershifted by XRCC1 in a gel retardation assay. The region of interaction with DNA polymerase beta is located within residues 84-183 in the N-terminal half of the XRCC1 protein, whereas the C-terminal region of XRCC1 is involved in binding DNA ligase III. These data indicate that XRCC1, which has no known catalytic activity, might serve as a scaffold protein during base excision-repair. DNA strand displacement and excessive gap filling during DNA repair were observed in cell-free extracts of an XRCC1-deficient mutant cell line, in agreement with the results from the reconstituted system. 相似文献
3.
4.
Reconstitution of progesterone receptor with heat shock proteins 总被引:10,自引:0,他引:10
D F Smith D B Schowalter S L Kost D O Toft 《Molecular endocrinology (Baltimore, Md.)》1990,4(11):1704-1711
Nonactivated chick progesterone receptor from hypotonic tissue extracts exists in a large complex containing the heat shock proteins hsp90 and hsp70 plus additional smaller proteins; activation of receptor to a DNA-binding form involves the dissociation of proteins from the complex. Whereas numerous attempts to reversibly bind components to the activated receptor have been unsuccessful, we now report conditions that promote the reassociation of hsp90 and hsp70 to progesterone receptor. Cytosolic receptor was dissociated from hsp90 and hsp70 by treatment with 0.5 M KCl and 10 mM ATP in the absence of progesterone. It was then purified by binding to immunoaffinity resins. After wash steps, the receptor-resin complex was incubated in rabbit reticulocyte lysate at 30 C, rewashed, and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Saturable binding of rabbit hsp90 and hsp70 to chick receptor was found after incubation with reticulocyte lysate; hsp binding was temperature dependent, but not dependent on exogenous ATP. Incubation of dissolved receptor with oviduct cytosol, from which receptor was obtained, or with purified hsp did not result in hsp binding. Furthermore, mixing oviduct cytosol with lysate inhibited hsp reconstitution, suggesting negative factors for hsp binding in oviduct cytosol. The steroid-binding domain of the receptor was required, since no hsp binding was observed in the reconstitution system using a receptor mutant lacking this domain. When the receptor was isolated in the presence of progesterone, reconstitution with hsp90 and hsp70 did not occur. This is consistent with the in vivo effects of progesterone in promoting hsp dissociation. 相似文献
5.
Reconstitution of damage DNA excision reaction from SV40 minichromosomes with purified nucleotide excision repair proteins 总被引:1,自引:0,他引:1
Araki M Masutani C Maekawa T Watanabe Y Yamada A Kusumoto R Sakai D Sugasawa K Ohkuma Y Hanaoka F 《Mutation research》2000,459(2):147-160
We previously constructed the cell-free nucleotide excision repair (NER) assay system with UV-irradiated SV40 minichromosomes to analyze the mechanism of NER reaction on chromatin DNA. Here we investigate the factor that acts especially on nucleosomal DNA during the damage excision reaction, and reconstitute the damage excision reaction on SV40 minichromosomes. NER-proficient HeLa whole cell extracts were fractionated, and the amounts of known NER factors involved in the column fractions were determined by immunoblot analyses. The column fractions were quantitatively and systematically replaced by highly purified NER factors. Finally, damage DNA excision reaction on SV40 minichromosomes was reconstituted with six highly purified NER factors, XPA, XPC-HR23B, XPF-ERCC1, XPG, RPA and TFIIH, as those essential for the reaction with naked DNA. Further analysis showed that the damages on chromosomal DNA were excised as the same efficiency as those on naked DNA for short incubation. At longer incubation time, however, the damage excision efficiency on nucleosomal DNA was decreased whereas naked DNA was still vigorously repaired. These observations suggest that although the six purified NER factors have a potential to eliminate the damage DNA from SV40 minichromosomes, the chromatin structure may still have some repressive effects on NER. 相似文献
6.
We have reconstituted a multiprotein system consisting of 22 purified proteins that catalyzed the initiation of replication specifically at ori gamma of R6K, elongation of the forks, and their termination at specific replication terminators. The initiation was strictly dependent on the plasmid-encoded initiator protein pi and on the host-encoded initiator DnaA. The wild type pi was almost inert, whereas a mutant form containing 3 amino acid substitutions that tended to monomerize the protein was effective in initiating replication. The replication in vitro was primed by DnaG primase, whereas in a crude extract system that had not been fractionated, it was dependent on RNA polymerase. The DNA-bending protein IHF was needed for optimal replication and its substitution by HU, unlike in the oriC system, was less effective in promoting optimal replication. In contrast, wild type pi-mediated replication in vivo requires IHF. Using a template that contained ori gamma flanked by two asymmetrically placed Ter sites in the blocking orientation, replication proceeded in the Cairns type mode and generated the expected types of termination products. A majority of the molecules progressed counterclockwise from the ori, in the same direction that has been observed in vivo. Many features of replication in the reconstituted system appeared to mimic those of in vivo replication. The system developed here is an important milestone in continuing biochemical analysis of this interesting replicon. 相似文献
7.
Reconstitution and characterization of the human DNA polymerase delta four-subunit holoenzyme 总被引:2,自引:0,他引:2
Mammalian DNA polymerase delta was originally characterized as a tightly associated heterodimer consisting of the catalytic subunit, p125, and the p50 subunit. Recently, two additional subunits, the third (p68) and fourth subunits (p12), have been identified. The heterotetrameric human pol delta complex was reconstituted by overexpression of the four subunits in Sf9 cells, followed by purification to near-homogeneity using FPLC chromatography. The properties of the four-subunit enzyme were shown to be functionally indistinguishable from those of pol delta isolated from calf thymus. The physicochemical properties of both the reconstituted heterotetramer and the heterodimer of the p125 and p50 subunits were examined by gel filtration and glycerol gradient ultracentrifugation. These studies show quite clearly that the heterodimer and heterotetramer complexes do not behave in solution as dimeric structures. This issue is of significance because several studies of the yeast pol delta complexes have indicated that the third subunit is able to bring about the dimerization of the pol delta complex. The heterodimer is only weakly stimulated by PCNA, whereas the heterotetramer is strongly stimulated to a level with a specific activity comparable to that of the calf thymus enzyme. These results resolve earlier, conflicting reports on the response of the heterodimer to PCNA. Nevertheless, the heterodimer does have some ability to interact functionally with PCNA, consistent with evidence that the p125 subunit itself has an ability to interact with PCNA. The functional interaction of PCNA with the pol delta complex may likely involve multiple contacts. 相似文献
8.
Inhibition of DNA synthesis in senescent-proliferating human cybrids is mediated by endogenous proteins 总被引:3,自引:0,他引:3
Cytoplasts were prepared from senescent human diploid fibroblasts. Brief treatments of the senescent cells with cycloheximide or puromycin prior to or after enucleation eliminated the ability of senescent cytoplasts to block initiation of DNA synthesis in senescent-young cybrids. Senescent cells treated with cycloheximide, enucleated and allowed to recover in complete medium without cycloheximide, regained the ability to block initiation of DNA synthesis in senescent-young cybrids. These results support the hypothesis that senescent cells synthesize an inhibitor of DNA synthesis which is either a protein(s) or its activity is mediated by a protein(s) found in the cytoplasm of the senescent cell. 相似文献
9.
Matsumoto Y Kim K Hurwitz J Gary R Levin DS Tomkinson AE Park MS 《The Journal of biological chemistry》1999,274(47):33703-33708
An apurinic/apyrimidinic (AP) site is one of the most abundant lesions spontaneously generated in living cells and is also a reaction intermediate in base excision repair. In higher eukaryotes, there are two alternative pathways for base excision repair: a DNA polymerase beta-dependent pathway and a proliferating cell nuclear antigen (PCNA)-dependent pathway. Here we have reconstituted PCNA-dependent repair of AP sites with six purified human proteins: AP endonuclease, replication factor C, PCNA, flap endonuclease 1 (FEN1), DNA polymerase delta, and DNA ligase I. The length of nucleotides replaced during the repair reaction (patch size) was predominantly two nucleotides, although longer patches of up to seven nucleotides could be detected. Neither replication protein A nor Ku70/80 enhanced the repair activity in this system. Disruption of the PCNA-binding site of either FEN1 or DNA ligase I significantly reduced efficiency of AP site repair but did not affect repair patch size. 相似文献
10.
Reconstitution of the base excision repair pathway for 7,8-dihydro-8-oxoguanine with purified human proteins 总被引:5,自引:1,他引:4
Pascucci B Maga G Hübscher U Bjoras M Seeberg E Hickson ID Villani G Giordano C Cellai L Dogliotti E 《Nucleic acids research》2002,30(10):2124-2130
In mammalian cells, repair of the most abundant endogenous premutagenic lesion in DNA, 7,8-dihydro-8-oxoguanine (8-oxoG), is initiated by the bifunctional DNA glycosylase OGG1. By using purified human proteins, we have reconstituted repair of 8-oxoG lesions in DNA in vitro on a plasmid DNA substrate containing a single 8-oxoG residue. It is shown that efficient and complete repair requires only hOGG1, the AP endonuclease HAP1, DNA polymerase (Pol) β and DNA ligase I. After glycosylase base removal, repair occurred through the AP lyase step of hOGG1 followed by removal of the 3′-terminal sugar phosphate by the 3′-diesterase activity of HAP1. Addition of PCNA had a slight stimulatory effect on repair. Fen1 or high concentrations of Pol β were required to induce strand displacement DNA synthesis at incised 8-oxoG in the absence of DNA ligase. Fen1 induced Pol β strand displacement DNA synthesis at HAP1-cleaved AP sites differently from that at gaps introduced by hOGG1/HAP1 at 8-oxoG sites. In the presence of DNA ligase I, the repair reaction at 8-oxoG was confined to 1 nt replacement, even in the presence of high levels of Pol β and Fen1. Thus, the assembly of all the core proteins for 8-oxoG repair catalyses one major pathway that involves single nucleotide repair patches. 相似文献
11.
Discontinuous DNA synthesis by purified mammalian proteins 总被引:20,自引:0,他引:20
M Goulian S H Richards C J Heard B M Bigsby 《The Journal of biological chemistry》1990,265(30):18461-18471
Five proteins purified from mouse cells acting together efficiently convert a single-stranded circular DNA template to covalently closed duplex circle by a discontinuous mechanism. DNA polymerase alpha/primase with the assistance of alpha accessory factor covers the single-stranded circle with RNA-primed DNA fragments. Primers are removed by a combination of RNase H-1 and a 5'-exonuclease that was identified by its ability to complete this in vitro system. The 5'-exonuclease is required to remove residual one or two ribonucleotides at the primer/DNA junction that are resistant to RNase H-1. Gap filling is by the DNA polymerase alpha/primase, and DNA ligase I converts the DNA fragments to continuous strand. The concerted action of the five proteins emulates synthesis of the staging strand at the replication fork. 相似文献
12.
The recombination-associated protein RdgC adopts a novel toroidal architecture for DNA binding 下载免费PDF全文
Ha JY Kim HK Kim do J Kim KH Oh SJ Lee HH Yoon HJ Song HK Suh SW 《Nucleic acids research》2007,35(8):2671-2681
RecA plays a central role in the nonmutagenic repair of stalled replication forks in bacteria. RdgC, a recombination-associated DNA-binding protein, is a potential negative regulator of RecA function. Here, we have determined the crystal structure of RdgC from Pseudomonas aeruginosa. The J-shaped monomer has a unique fold and can be divided into three structural domains: tip domain, center domain and base domain. Two such monomers dimerize to form a ring-shaped molecule of approximate 2-fold symmetry. Of the two inter-subunit interfaces within the dimer, one interface (‘interface A’) between tip/center domains is more nonpolar than the other (‘interface B’) between base domains. The structure allows us to propose that the RdgC dimer binds dsDNA through the central hole of ~30Å diameter. The proposed model is supported by our DNA-binding assays coupled with mutagenesis, which indicate that the conserved positively charged residues on the protein surface around the central hole play important roles in DNA binding. The novel ring-shaped architecture of the RdgC dimer has significant implications for its role in homologous recombination. 相似文献
13.
Reconstitution of resolved muscarinic cholinergic receptors with purified GTP-binding proteins 总被引:30,自引:0,他引:30
The association of agonists with muscarinic receptors in membranes from bovine brain was affected only slightly by guanine nucleotides. However, solubilization of these membranes with deoxycholate and subsequent removal of detergent resulted in a preparation of receptors with increased affinity for agonists and a large increase in response to guanine nucleotides. Chromatography of deoxycholate extracts of membranes on DEAE-Sephacel resulted in the separation of receptors from 95% of the guanine nucleotide-binding activity. Guanine nucleotides had no effect on the binding of agonists to these resolved receptors. The effect of guanine nucleotides was restored after the addition of either of two purified guanine nucleotide-binding proteins from bovine brain. One of these proteins, presumably brain GI, is composed of subunits with the same molecular weights (alpha, 41,000; beta, 35,000; gamma, 11,000) and functions as the inhibitory guanine nucleotide-binding protein isolated from liver. The other protein, termed Go, is a novel guanine nucleotide-binding protein that possesses a similar subunit composition (alpha, 39,000; beta, 35,000; gamma, 11,000) but whose function is not yet known. Addition of either protein to the resolved receptor preparation increased agonist affinity by at least 10-20-fold, and low concentrations of guanine nucleotides specifically reversed this effect. Reconstitution of receptors with the resolved subunits of Go demonstrates that the beta subunit alone had no effect on agonist binding, but that this subunit does appear to enhance the effects observed with the alpha subunit alone. 相似文献
14.
Summary DNA synthesis in vitro using intact duplex T7 DNA as template is dependent on a novel group of three phage T7-induced proteins: DNA-priming protein (activity which complements a cell extract lacking the T7 gene 4-protein), T7 DNA polymerase (gene 5-protein plus host factor), and T7 DNA-binding protein. The reaction requires, in addition to the four deoxyribonucleoside triphosphates, all four ribonucleoside triphosphates and is inhibited by low concentrations of actinomycin D. Evidence is presented that the priming protein serves as a novel RNA polymerase to form a priming segment which is subsequently extended by T7 DNA polymerase. T7 RNA polymerase (gene 1-protein) can only partially substitute for the DNA-priming protein. At 30°C, deoxyribonucleotide incorporation proceeds for more than 2 hours and the amount of newly synthesized DNA can exceed the amount of template DNA by 10-fold. The products of synthesis are not covalently attached to the template and sediment as short (12S) DNA chains in alkaline sucrose gradients. Sealing of these fragments into DNA of higher molecular weight requires the presence of E. coli DNA polymerase I and T7 ligase. Examination of the products in the electron microscope reveals many large, forked molecules and a few eye-shaped structures resembling the early replicative intermediates normally observed in vivo. 相似文献
15.
The fidelity of DNA synthesis by yeast DNA polymerase zeta alone and with accessory proteins 总被引:1,自引:3,他引:1
Zhong X Garg P Stith CM Nick McElhinny SA Kissling GE Burgers PM Kunkel TA 《Nucleic acids research》2006,34(17):4731-4742
DNA polymerase zeta (pol ζ) participates in several DNA transactions in eukaryotic cells that increase spontaneous and damage-induced mutagenesis. To better understand this central role in mutagenesis in vivo, here we report the fidelity of DNA synthesis in vitro by yeast pol ζ alone and with RFC, PCNA and RPA. Overall, the accessory proteins have little effect on the fidelity of pol ζ. Pol ζ is relatively accurate for single base insertion/deletion errors. However, the average base substitution fidelity of pol ζ is substantially lower than that of homologous B family pols α, δ and . Pol ζ is particularly error prone for substitutions in specific sequence contexts and generates multiple single base errors clustered in short patches at a rate that is unprecedented in comparison with other polymerases. The unique error specificity of pol ζ in vitro is consistent with Pol ζ-dependent mutagenic specificity reported in vivo. This fact, combined with the high rate of single base substitution errors and complex mutations observed here, indicates that pol ζ contributes to mutagenesis in vivo not only by extending mismatches made by other polymerases, but also by directly generating its own mismatches and then extending them. 相似文献
16.
The error-free repair of double-strand DNA breaks by homologous recombination (HR) ensures genomic stability using undamaged homologous sequence to copy genetic information. While some of the aspects of the initial steps of HR are understood, the molecular mechanisms underlying events downstream of the D-loop formation remain unclear. Therefore, we have reconstituted D-loop-based in vitro recombination-associated DNA repair synthesis assay and tested the efficacy of polymerases Pol δ and Pol η to extend invaded primer, and the ability of three helicases (Mph1, Srs2 and Sgs1) to displace this extended primer. Both Pol δ and Pol η extended up to 50% of the D-loop substrate, but differed in product length and dependency on proliferating cell nuclear antigen (PCNA). Mph1, but not Srs2 or Sgs1, displaced the extended primer very efficiently, supporting putative role of Mph1 in promoting the synthesis-dependent strand-annealing pathway. The experimental system described here can be employed to increase our understanding of HR events following D-loop formation, as well as the regulatory mechanisms involved. 相似文献
17.
Low-fidelity DNA synthesis by human DNA polymerase theta 总被引:1,自引:1,他引:1
Human DNA polymerase theta (pol θ or POLQ) is a proofreading-deficient family A enzyme implicated in translesion synthesis (TLS) and perhaps in somatic hypermutation (SHM) of immunoglobulin genes. These proposed functions and kinetic studies imply that pol θ may synthesize DNA with low fidelity. Here, we show that when copying undamaged DNA, pol θ generates single base errors at rates 10- to more than 100-fold higher than for other family A members. Pol θ adds single nucleotides to homopolymeric runs at particularly high rates, exceeding 1% in certain sequence contexts, and generates single base substitutions at an average rate of 2.4 × 10−3, comparable to inaccurate family Y human pol κ (5.8 × 10−3) also implicated in TLS. Like pol κ, pol θ is processive, implying that it may be tightly regulated to avoid deleterious mutagenesis. Pol θ also generates certain base substitutions at high rates within sequence contexts similar to those inferred to be copied by pol θ during SHM of immunoglobulin genes in mice. Thus, pol θ is an exception among family A polymerases, and its low fidelity is consistent with its proposed roles in TLS and SHM. 相似文献
18.
DNA photolyase from Escherichia coli contains both flavin and pterin. However, the isolated enzyme is depleted with respect to the pterin chromophore (0.5 mol of pterin/mol of flavin). The extinction coefficient of the pterin chromophore at 360 nm is underestimated by a method used in earlier studies which assumes stoichiometric amounts of pterin and flavin. The extinction coefficient of the pterin chromophore, determined on the basis of its (p-aminobenzoyl)polyglutamate content (epsilon 360 = 25.7 x 10(3) M-1 cm-1), is in good agreement with that expected for a 5,10-methenyltetrahydrofolate derivative. Also consistent with this structure, the pterin chromophore could be reversibly hydrolyzed to yield a 10-formyltetrahydrofolate derivative or reduced to yield a 5-methyltetrahydrofolate derivative. The isolated enzyme could be reconstituted with various folate derivatives to yield enzyme that contained equimolar amounts of pterin and flavin. Similar results were obtained in reconstitution studies with the natural pterin chromophore, with 5,10-methenyltetrahydrofolate, and with 10-formyltetrahydrofolate. The results show that the polyglutamate moiety, previously identified in the natural chromophore, is not critical for binding. Reconstitution with the natural pterin chromophore did not affect catalytic activity. The latter is consistent with our previous studies which show that, although the pterin chromophore acts as a sensitizer in native enzyme, it is not essential for dimer repair which can occur at the same rate under saturating light with flavin (1,5-dihydro-FAD) as the only chromophore. 相似文献
19.
Polymorphonuclear leucocytes have been induced to synthesize new DNA by exposure to UV light. Preliminary observations (not included) also indicate that 6-MeV electrons and incubation with the radiomimetic agent methyl methanesulfonate (MMS) are effective agents for inducing unscheduled DNA synthesis (UDS). A study of the kinetics of UV-induced DNA synthesis suggests that there are at least two processes operating, one fast and essentially complete within the first 1–2 h and the second lasting at least 8 h. 相似文献
20.
The cytotoxicity of bifunctional alkylating agents is generally attributed to DNA damage, especially DNA-DNA crosslinking activity. It is unclear how crosslinks or other cellular damage result in cell death. Studies of drug effects at the level of expression of specific gene products may help elucidate the mechanism of cell killing. We examined proteins synthesized in L-phenylalanine mustard treated human lymphoma cells by [35S]methionine labeling and SDS-PAGE. Drug-treated cells showed decreased labeling of proteins in two molecular weight bands of 17 kDa (a doublet) and 12 kDa at 6, 18 and 24 hours after drug removal. One of the components of the 17 kDa doublet has been identified as calmodulin, a calcium binding protein essential to cell cycle progression and survival. 相似文献