首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Spinal muscular atrophy (SMA) is a frequent autosomal recessive neurodegenerative disorder leading to weakness and atrophy of voluntary muscles. The survival motor-neuron gene (SMN), a strong candidate for SMA, is present in two highly homologous copies (telSMN and cenSMN) within the SMA region. Only five nucleotide differences within the region between intron 6 and exon 8 distinguish these homologues. Independent of the severity of the disease, 90%-98% of all SMA patients carry homozygous deletions in telSMN, affecting either exon 7 or both exons 7 and 8. We present the molecular analysis of 42 SMA patients who carry homozygous deletions of telSMN exon 7 but not of exon 8. The question arises whether in these cases the telSMN is truncated upstream of exon 8 or whether hybrid SMN genes exist that are composed of centromeric and telomeric sequences. By a simple PCR-based assay we demonstrate that in each case the remaining telSMN exon 8 is part of a hybrid SMN gene. Sequencing of cloned hybrid SMN genes from seven patients, as well as direct sequencing and single-strand conformation analysis of all patients, revealed the same composition in all but two patients: the base-pair differences in introns 6 and 7 and exon 7 are of centromeric origin whereas exon 8 is of telomeric origin. Nonetheless, haplotype analysis with polymorphic multicopy markers, Ag1-CA and C212, localized at the 5' end of the SMN genes suggests different mechanisms of occurrence, unequal rearrangements, and gene conversion involving both copies of the SMN genes. In approximately half of all patients, we identified a consensus haplotype, suggesting a common origin. Interestingly, we identified a putative recombination hot spot represented by recombination-stimulating elements (TGGGG and TGAGGT) in exon 8 that is homologous to the human deletion-hot spot consensus sequence in the immunoglobulin switch region, the alpha-globin cluster, and the polymerase alpha arrest sites. This may explain why independent hybrid SMN genes show identical sequences.  相似文献   

2.
The autosomal recessive neuromuscular disorder proximal spinal muscular atrophy (SMA) is caused by the loss or mutation of the survival motor neuron (SMN) gene, which exists in two nearly identical copies, telomeric SMN (telSMN) and centromeric SMN (cenSMN). Exon 7 of the telSMN gene is homozygously absent in approximately 95% of SMA patients, whereas loss of cenSMN does not cause SMA. We searched for other telSMN mutations among 23 SMA compound heterozygotes, using heteroduplex analysis. We identified telSMN mutations in 11 of these unrelated SMA-like individuals who carry a single copy of telSMN: these include two frameshift mutations (800ins11 and 542delGT) and three missense mutations (A2G, S262I, and T274I). The telSMN mutations identified to date cluster at the 3' end, in a region containing sites for SMN oligomerization and binding of Sm proteins. Interestingly, the novel A2G missense mutation occurs outside this conserved carboxy-terminal domain, closely upstream of an SIP1 (SMN-interacting protein 1) binding site. In three patients, the A2G mutation was found to be on the same allele as a rare polymorphism in the 5' UTR, providing evidence for a founder chromosome; Ag1-CA marker data also support evidence of an ancestral origin for the 800ins11 and 542delGT mutations. We note that telSMN missense mutations are associated with milder disease in our patients and that the severe type I SMA phenotype caused by frameshift mutations can be ameliorated by an increase in cenSMN gene copy number.  相似文献   

3.
 The molecular analysis of the survival motor neuron (SMN) gene and several closely flanking polymorphic markers in an atypical pedigree with four patients suffering from spinal muscular atrophy (SMA) over two generations has raised new aspects concerning the etiology and the molecular spectrum of autosomal recessive SMA. Three patients in two generations show homozygous deletions of exons 7 and 8 of the telomeric copy of SMN (telSMN), thus confirming the presence of autosomal recessive SMA, with localisation on chromosome 5q12. The fourth SMA patient with mild neurogenic atrophy (confirmed by muscle biopsy and electromyography) shows no homozygous deletion of telSMN but carries a heterozygous deletion of telSMN, as can be deduced from her two affected homozygously deleted children. No intragenic mutation has been identified in the remaining telSMN. In addition, she shares only one SMA chromosome with her affected brother, is haploidentical with two healthy brothers, and has a 31-year-old healthy son, who has inherited an SMN-deleted paternal chromosome and the SMN non-deleted maternal chromosome. These results suggest that this patient either has a neurogenic atrophy of a different origin or exhibits an unusual heterozygous manifestation of SMA 5q12. Interestingly, the two haploidentical telSMN-deleted affected sibs in the second generation show a strikingly discordant clinical picture indicating that, in addition to telSMN mutations, other factors influence the phenotype of SMA in the reported pedigree. Received: 20 March 1997 / Accepted: 4 June 1997  相似文献   

4.
We identified homozygous absence of exon 7 of the telomeric copy of the survival motor neuron gene (telSMN) in 88.4% (38/43) of spinal muscular atrophy (SMA) patients from Slovakia. Additional deletions within the neuronal apoptosis inhibitory protein (NAIP) gene were found in 38.5% of type I, 12.5% of type II and never in type III SMA patients. Neither the SMN nor the NAIP gene was deleted in 81 healthy relatives and 25 controls tested. In one family, pseudodominant inheritance was identified. Both the type III SMA father and type II SMA son carried the homozygous deletion of the telSMN gene. One SMA I patient showed an SMN hybrid gene, probably created by intrachromosomal deletion. In two haploidentical type II SMA sibs, the telSMN exon 7 was absent on one chromosome, while the other carried an A-->G transition 96 bp upstream of exon 7 of the telSMN gene, a potential disease-causing mutation in these patients.  相似文献   

5.
Cho K  Ryu K  Lee E  Won S  Kim J  Yoo OJ  Hahn S 《Molecules and cells》2001,11(1):21-27
The goal of this study was to define the correlation between genotype and phenotype in Korean patients with spinal muscular atrophy (SMA). The SMA can be classified into three groups based on the age of onset and the clinical course. The candidate genes, survival motor neuron (SMN) gene, neuronal apoptosis inhibitory protein (NAIP) gene, and p44 gene were mapped and duplicated with telomeric and centromeric. The loss of the telomeric SMN occurs by a different mechanism. That is the deletion or conversion of telomeric SMN to centromeric SMN, in which case the conversion could produce a mild phenotype and deletion could produce a severe one. It has been known that there may be a balance between the numbers of copies expressed by the centromeric and telomeric SMN genes. In our study, ten patients with type I SMA and two type II patients were identified by their clinical findings and DNA studies. The major deletion of SMA candidate genes, deletion of the SMN gene, NAIP gene, and p44 gene were identified in six patients with type I SMA, while the rest of type I and all the type II patients showed the deletion of the SMN gene only. Allele numbers of the C212 marker were compared in patients and normal controls in order to find the correlation between the copy numbers and the clinical severity. The result was that type I patients had 2-5 alleles and the normal controls had 4-6. This suggests that the deletion is a major determining factor in the clinical phenotype. However, two type I patients with telomeric NAIP gene deletion notably had 4-5 alleles, as in the normal controls. This result implies that the correlation between the copy numbers and the severity is uncertain as opposed to the previous hypothesis. One type I patient showed the conversion of the centromeric SMN gene to the telomeric, which supports the conclusion that gene conversion is an important molecular mechanism for SMA. In the study of one hundred normal newborns, two physically normal newborns showed deletion of the centromeric SMN gene, suggesting frequent rearrangement in the locus.  相似文献   

6.
Autosomal recessive spinal muscular atrophy (SMA) is classified, by age of onset and maximal motor milestones achieved, into type I (severe form), type II (intermediate form) and type III (mild/moderate form). SMA is caused by mutations in the survival motor neuron telomeric gene (SMN1) and a centromeric functional copy of this gene (SMN2) exists, both genes being located at 5q13. Homozygous deletion of exons 7 and 8 of SMN1 has been detected in approx 85% of Spanish SMA patients regardless of their phenotype. Nineteen cases with the sole deletion of exon 7 but not exon 8 (2 cases of type I, 13 cases of type II, four cases of type III) were further analysed for the presence of SMN2-SMN1 hybrid genes. We detected four different hybrid structures. Most of the patients were carriers of a hybrid structure: centromeric intron 6- centromeric exon 7- telomeric exon 8 (CCT), with or without neuronal apoptosis-inhibitor protein (NAIP). In two patients, a different hybrid structure, viz. telomeric intron 6- centromeric exon 7- telomeric exon 8 (TCT), was detected with or without NAIP. A phenotype-genotype correlation comparing the different structures of the hybrid alleles was delineated. Type I cases in our series are attributable to intrachromosomal deletion with a smaller number of SMN2 copies. Most cases with hybrid genes are type II occurring by a combination of a classical deletion in one chromosome and a hybrid gene in the other. Type III cases are closely associated with homozygozity or compound heterozygozity for hybrid genes resulting from two conversion events and have more copies of hybrid genes and SMN2 than type I or II cases.  相似文献   

7.
Proximal spinal muscular atrophy (SMA) is one of the most common autosomal recessive diseases. According to the achieved milestones, SMA is divided into 3 groups: SMA types I–III. SMA is caused by mutations in the survival motor neuron 1 (SMN1) gene, which is located on chromosome 5. Wild type alleles usually have one or two SMN1 gene copies, disease alleles may show deletions, large scale deletions, or point mutations. The proposed genetic model is based on published data on SMA types I–III. The complex genetic model of SMA allows all parameters—even those which have not been assessed so far—to be calculated. The SMN1 allele frequencies included the following: normal allele b (1 copy of SMN1): ≈?0.9527; normal allele c (2 copies of SMN1): ≈?0.0362; deletion a (0 copies of SMN1): ≈?0.0104; point mutation d (1 copy of SMN1): ≈?0.0003; large scale deletion g (0 copies of SMN1): ≈?0.0004. The result is a gene frequency of approximately 1:90 and a carrier frequency of about 1:46.  相似文献   

8.
Results of analysis of chimeric SMN genes among some high SMA-risk families from Ukraine using the EcoRV and DdeI restriction enzyme hydrolysis of PCR products is presented. Chimeric cen/telSMN gene was detected in probands with homozygous deletions of telSMN exon 7 only, as well in proband with absent of homozygous deletion of exons 7 and/or 8 of the SMN gene. Effectivity of approach of detection of chimeric SMN genes based on the EcoRV and DdeI restriction enzyme analysis of PCR products and mechanisms of formation of chimeric SMN genes are discussed.  相似文献   

9.
Molecular characterization of de novo secondary trisomy 13.   总被引:12,自引:6,他引:6       下载免费PDF全文
Unbalanced Robertsonian translocations are a significant cause of mental retardation and fetal wastage. The majority of homologous rearrangements of chromosome 21 in Down syndrome have been shown to be isochromosomes. Aside from chromosome 21, very little is known about other acrocentric homologous rearrangements. In this study, four cases of de novo secondary trisomy 13 are presented. FISH using alpha-satellite sequences, rDNA, and a pTRI-6 satellite I sequence specific to the short arm of chromosome 13 showed all four rearrangements to be dicentric and apparently devoid of ribosomal genes. Three of four rearrangements retained the pTRI-6 satellite I sequence. Case 1 was the exception, showing a deletion of this sequence in the rearrangement, although both parental chromosomes 13 had strong positive hybridization signals. Eleven microsatellite markers from chromosome 13 were also used to characterize the rearrangements. Of the four possible outcomes, one maternal Robertsonian translocation, two paternal isochromosomes, and one maternal isochromosome were observed. A double recombination was observed in the maternally derived rob(13q13q). No recombination events were detected in any isochromosome. The parental origins and molecular chromosomal structure of these cases are compared with previous studies of de novo acrocentric rearrangements.  相似文献   

10.
Familial juvenile nephronophthisis is an autosomal recessive, genetically heterogeneous kidney disorder representing the most frequent inherited cause of chronic renal failure in children. A gene, NPHP1, responsible for approximately 85% of the purely renal form of nephronophthisis, has been mapped to 2q13 and characterized. The major NPHP1 gene defect is a large homozygous deletion found in approximately 80% of the patients. In this study, by large-scale genomic sequencing and pulsed-field gel electrophoresis analysis, we characterized the complex organization of the NPHP1 locus and determined the mutational mechanism that results in the large deletion observed in most patients. We showed that the deletion is 290 kb in size and that NPHP1 is flanked by two large inverted repeats of approximately 330 kb. In addition, a second sequence of 45 kb located adjacent to the proximal 330-kb repeat was shown to be directly repeated 250 kb away within the distal 330-kb repeat deleting the sequence tag site (STS) 804H10R present in the proximal copy. The patients' deletion breakpoints appear to be located within the 45-kb repeat, suggesting an unequal recombination between the two homologous copies of this smaller repeat. Moreover, we demonstrated a nonpathologic rearrangement involving the two 330-kb inverted repeats found in 11 patients and, in the homozygous state, in 2 (1.3%) control individuals. This could be explained by interchromosomal mispairing of the 330-kb inverted repeat, followed by double recombination or by a prior intrachromosomal mispairing of these repeats, leading to an inversion of the NPHP1 region, followed by an interchromosomal unequal crossover event. This complex rearrangement, as well as the common deletion found in most patients, illustrates the high level of rearrangements occurring in the centromeric region of chromosome 2.  相似文献   

11.
Polymerase chain reaction with subsequent SSCP (single-strand DNA conformational polymorphism) and restriction (BselI restriction endonuclease) analyses were used to type the DNA samples of affected individuals and their relatives from 23 Russian families with high risk of spinal muscular atrophy (SMA) residing in the northwestern region of Russia. Deletions of exon 7 of the SMN gene were found in 96% of the individuals examined. The frequency of homozygous deletion of exons 7 and 8 of the SMN1 gene was 65%. The frequency of homozygous isolated deletion of the SMN1 gene exon 7 among the SMA patients was 4.3%. Homozygous deletion of exon 5 of the NAIP gene was found in 22% of SMA patients. In SMA patients, a total of seven deletion types involving the SMN1, NAIP, and SMN2 genes were detected. Deletion of exons 7 and 8 of the SMN1 gene was the most common mutation associated with SMA in patients from the northwestern Russia.  相似文献   

12.
Deletions of the spinal muscular atrophy (SMA)-determining gene, SMN1, NAIP, and a third multicopy gene, BTF2p44tel were investigated in 60 unrelated Turkish SMA patients. SMN1 was deleted for at least exons 7 and 8 in 85% of the Turkish SMA patients. The NAIP gene was deleted in 75 and 33% of type I and type II SMA patients, respectively. Analysis of the 5'end of the BTF2p44tel gene indicated the extension of deletion in 13.3% of the cases, mainly in type I patients. Deletions of the NAIP and BTF2p44tel genes were detected in 1.3 and 3.9% of carrriers, respectively, in Turkish SMA families. Two patients were detected to harbor the hybrid SMN gene, one type II with deletion of the NAIP gene, and one type III without deletion of the NAIP gene.  相似文献   

13.
Spinal muscular atrophy (SMA) is an autosomal recessive disorder with a newborn prevalence of 1 in 10,000, and a carrier frequency of 1 in 40-60 individuals. The SMA locus has been mapped to chromosome 5q11.2-13. The disease is caused by a deletion of the SMN gene, often encompassing other genes and microsatellite markers. The SMN gene is present in two highly homologous copies, SMN1 and SMN2, differing at five nucleotide positions. Only homozygous SMN1 mutations cause the disease. The sequence similarity between the SMN1 and SMN2 genes can make molecular diagnosis and carrier identification difficult. We developed a sensitive and reliable molecular test for SMN1 carrier identification, by setting up a nonradioactive single strand conformation polymorphism (SSCP)-based method, which allows for the quantification of the amount of the SMN1 gene product with respect to a control gene. The assay was validated in 56 obligate (ascertained) carriers and 20 (ascertained) noncarriers. The sensitivity of the test is 96.4%, and its specificity, 98%. In addition, 6 of 7 SMA patients without homozygous deletions presented with a heterozygous deletion, suggesting a concomitant undetected point mutation on the nondeleted SMN1 allele. Therefore, the present test is effective for detecting compound hemizygote patients, for testing carriers in SMA families, and for screening for SMA heterozygotes in the general population.  相似文献   

14.
15.
Genetic testing and risk assessment for spinal muscular atrophy (SMA)   总被引:20,自引:0,他引:20  
Ogino S  Wilson RB 《Human genetics》2002,111(6):477-500
Spinal muscular atrophy (SMA) is one of the most common autosomal recessive diseases, affecting approximately 1 in 10,000 live births, and with a carrier frequency of approximately 1 in 50. Because of gene deletion or conversion, SMN1 exon 7 is homozygously absent in approximately 94% of patients with clinically typical SMA. Approximately 30 small intragenic SMN1 mutations have also been described. These mutations are present in many of the approximately 6% of SMA patients who do not lack both copies of SMN1, whereas SMA of other patients without a homozygous absence of SMN1 is unrelated to SMN1. A commonly used polymerase chain reaction/restriction fragment length polymorphism (PCR-RFLP) assay can be used to detect a homozygous absence of SMN1 exon 7. SMN gene dosage analyses, which can determine the copy numbers of SMN1 and SMN2 (an SMN1 homolog and a modifier for SMA), have been developed for SMA carrier testing and to confirm that SMN1 is heterozygously absent in symptomatic individuals who do not lack both copies of SMN1. In conjunction with SMN gene dosage analysis, linkage analysis remains an important component of SMA genetic testing in certain circumstances. Genetic risk assessment is an essential and integral component of SMA genetic testing and impacts genetic counseling both before and after genetic testing is performed. Comprehensive SMA genetic testing, comprising PCR-RFLP assay, SMN gene dosage analysis, and linkage analysis, combined with appropriate genetic risk assessment and genetic counseling, offers the most complete evaluation of SMA patients and their families at this time. New technologies, such as haploid analysis techniques, may be widely available in the future.  相似文献   

16.
Spinal muscular atrophy (SMA) is an autosomal recessive disorder with a carrier frequency of approximately 1 in 40. Approximately 95% of patients have homozygous deletions of exon 7 and/or 8 of the SMN1 gene. Carrier testing for SMA is relatively complex and requires quantitative polymerase chain reaction (PCR) of genomic DNA to determine SMN1 copy number. The purpose of this study was to assess the feasibility of carrier testing for SMA in males, by nested PCR analysis of SMN1 deletions in single sperm cells. A nested PCR method was developed to amplify SMN1 exon 7 in single cells. Restriction enzyme digestion with DraI was used to differentiate between the highly homologous SMN1 and SMN2 genes. Single sperm cells from five known SMA carriers and six noncarriers were analyzed. Among the five carriers, a total of 132 single sperm cells were analyzed and SMN1 exon 7 deletion was detected in 68 cells (51.5%). In contrast, among the six noncarriers, a total of 136 single sperm cells were analyzed. Of these, an apparent SMN1 exon 7 deletion was detected in four sperm cells. This was interpreted as an allele dropout (ADO) rate of 2.9%. We conclude that nested PCR of SMN1 exon 7 is an accurate and reproducible method for detection of SMA male carriers with a SMN1 deletion.  相似文献   

17.
We have assayed deletions of two candidate genes for spinal muscular atrophy (SMA), the survival motor neuron (SMN) and neuronal apoptosis inhibitory protein (NAIP) genes, in 101 patients from 86 Chinese SMA families. Deletions of exons 7 and 8 of the telomeric SMN gene were detected in 100%, 78.6%, 96.6%, and 16.7%, in type I, II, III, and adult-onset SMA patients, respectively. Deletion of exon 7 only was found in eight type II and one type III patient. One type II patient did not have a deletion of either exon 7 or 8. The prevalence of deletions of exons 5 and 6 of the NAIP gene were 22.5% and 2.4% in type I and II SMA patients, respectively. We also examined four polymorphisms of SMN genes and found that there were only two, SMN-2 and CBCD541-2, in Chinese subjects. In our study, analysis of the ratio of the telomeric to centromeric portion (T/C ratio) of the SMN gene after enzyme digestion was performed to differentiate carriers, normals, and SMA patients. We found the T/C ratio of exon 7 of the SMN gene differed significantly among the three groups, and may be used for carrier analysis. An asymptomatic individual with homozygous deletion of exons 7 and 8 of the SMN gene showed no difference in microsatellite markers in the SMA-related 5q11.2–5q13.3. In conclusion, SMN deletion in clinically presumed child-onset SMA should be considered as confirmation of the diagnosis. However, adult-onset SMA, a heterogeneous disease with phenotypical similarities to child-onset SMA, may be caused by SMN or other gene(s). Received: 13 November 1996 / Accepted: 13 May 1997  相似文献   

18.
Spinal muscular atrophy (SMA) is an autosomal recessive disorder characterized by degeneration of lower motor neurons. We have assayed deletions in two candidate genes, the survival motor neuron (SMN) and neuronal apoptosis inhibitory protein (NAIP) genes, in 108 samples, of which 46 were from SMA patients, and 62 were from unaffected subjects. The SMA patients included 3 from Bahrain, 9 from South Africa, 2 from India, 5 from Oman, 1 from Saudi Arabia, and 26 from Kuwait. SMN gene exons 7 and 8 were deleted in all type I SMA patients. NAIP gene exons 5 and 6 were deleted in 22 of 23 type I SMA patients. SMN gene exon 7 was deleted in all type II SMA patients while exon 8 was deleted in 19 of 21 type II patients. In 1 type II SMA patient, both centromeric and telomeric copies of SMN exon 8 were deleted. NAIP gene exons 5 and 6 were deleted in only 1 type II SMA patient. In 1 of the 2 type III SMA patients, SMN gene exons 7 and 8 were deleted with no deletion in the NAIP gene, while in the second patient, deletions were detected in both SMN and NAIP genes. None of the 62 unaffected subjects had deletions in either the SMN or NAIP gene. The incidence of biallelic polymorphism in SMN gene exon 7 (BsmAI) was found to be similar (97%) to that (98%) reported in a Spanish population but was significantly different from that reported from Taiwan (0%). The incidence of a second polymorphism in SMN gene exon 8 (presence of the sequence ATGGCCT) was markedly different in our population (97%) and those reported from Spain (50%) and Taiwan (0%).  相似文献   

19.
Type I spinal muscular atrophy (SMA) is an autosomal recessive disorder caused by loss or mutations of the survival motor neuron 1 (SMN1) gene. The reduction in SMN protein levels in SMA leads to degeneration and death of motor neurons. In this study, we have analyzed the nuclear reorganization of Cajal bodies, PML bodies and nucleoli in type I SMA motor neurons with homozygous deletion of exons 7 and 8 of the SMN1 gene. Western blot analysis revealed a marked reduction of SMN levels compared to the control sample. Using a neuronal dissociation procedure to perform a careful immunocytochemical and quantitative analysis of nuclear bodies, we demonstrated a severe decrease in the mean number of Cajal bodies per neuron and in the proportion of motor neurons containing these structures in type I SMA. Moreover, most Cajal bodies fail to recruit SMN and spliceosomal snRNPs, but contain the proteasome activator PA28γ, a molecular marker associated with the cellular stress response. Neuronal stress in SMA motor neurons also increases PML body number. The existence of chromatolysis and eccentric nuclei in SMA motor neurons correlates with Cajal body disruption and nucleolar relocalization of coilin, a Cajal body marker. Our results indicate that the Cajal body is a pathophysiological target in type I SMA motor neurons. They also suggest the Cajal body-dependent dysfunction of snRNP biogenesis and, therefore, pre-mRNA splicing in these neurons seems to be an essential component for SMA pathogenesis.  相似文献   

20.
Polymerase chain reaction with subsequent SSCP (single-strand DNA conformational polymorphism) and restriction (BselI restriction endonuclease) analyses were used to type the DNA samples of affected individuals and their relatives from 23 Russian families with high risk of spinal muscular atrophy (SMA) residing in the northwestern region of Russia. Deletions of exon 7 of the SMN1gene were found in 96% of the individuals examined. The frequency of homozygous deletion of exons 7 and 8 of the SMN1gene was 65%. The frequency of homozygous isolated deletion of the SMN1gene exon 7 among the SMA patients was 4.3%. Homozygous deletion of exon 5 of the NAIPgene was found in 22% of SMA patients. In SMA patients, a total of seven deletion types involving the SMN1, NAIP, and SMN2genes were detected. Deletion of exons 7 and 8 of the SMN1gene was the most common mutation associated with SMA in patients from the northwestern Russia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号